CS 473: Fundamental Algorithms, Fall 2011

Reductions and NP

Lecture 21 November 15, 2011

Part I

Reductions Continued

Polynomial Time Reduction

Karp reduction

A **polynomial time reduction** from a decision problem X to a decision problem Y is an algorithm A that has the following properties:

- given an instance I_X of X, A produces an instance I_Y of Y
- \mathcal{A} runs in time polynomial in $|I_X|$. This implies that $|I_Y|$ (size of I_Y) is polynomial in $|I_X|$
- Answer to I_X YES iff answer to I_Y is YES.

Notation: $X \leq_P Y$ if X reduces to Y

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a *Karp reduction*. Most reductions we will need are Karp reductions.

Sariel (UIUC) CS473 3 Fall 2011 3 / 50

A More General Reduction

Turing Reduction

Definition (Turing reduction.)

Problem \boldsymbol{X} polynomial time reduces to \boldsymbol{Y} if there is an algorithm $\boldsymbol{\mathcal{A}}$ for \boldsymbol{X} that has the following properties:

- ullet on any given instance I_X of X, ${\cal A}$ uses polynomial in $|I_X|$ "steps"
- a step is either a standard computation step, or
- a sub-routine call to an algorithm that solves Y.

This is a **Turing reduction**.

Note: In making sub-routine call to algorithm to solve Y, A can only ask questions of size polynomial in $|I_X|$. Why?

Sariel (UIUC) CS473 4 Fall 2011 4 / 50

A More General Reduction

Turing Reduction

Definition (Turing reduction.)

Problem \boldsymbol{X} polynomial time reduces to \boldsymbol{Y} if there is an algorithm $\boldsymbol{\mathcal{A}}$ for \boldsymbol{X} that has the following properties:

- ullet on any given instance I_X of X, ${\cal A}$ uses polynomial in $|I_X|$ "steps"
- a step is either a standard computation step, or
- a sub-routine call to an algorithm that solves Y.

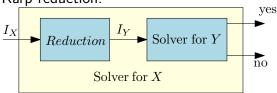
This is a **Turing reduction**.

Note: In making sub-routine call to algorithm to solve Y, A can only ask questions of size polynomial in $|I_X|$. Why?

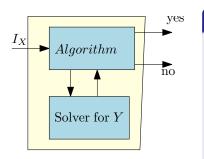
Sariel (UIUC) CS473 4 Fall 2011 4 / 50

Comparing reductions

• Karp reduction:



Turing reduction:



Turing reduction

- Algorithm to solve X can call solver for Y many times.
- Conceptually, every call to the solver of Y takes constant time.

Sariel (UIUC) CS473 5 Fall 2011 5 / 50

Example of Turing Reduction

Input Collection of arcs on a circle.

Goal Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Input Collection of intervals on the line.

Goal Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.

Example of Turing Reduction

Input Collection of arcs on a circle.

Goal Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Input Collection of intervals on the line.

Goal Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.

Example of Turing Reduction

Input Collection of arcs on a circle.

Goal Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Input Collection of intervals on the line.

Goal Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.

Sariel (UIUC) CS473 6 Fall 2011 6 / 50

Turing vs Karp Reductions

- Turing reductions more general than Karp reductions.
- Turing reduction useful in obtaining algorithms via reductions.
- Karp reduction is simpler and easier to use to prove hardness of problems.
- Perhaps surprisingly, Karp reductions, although limited, suffice for most known NP-COMPLETENESS proofs.

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A *literal* is either a boolean variable x_i or its negation $\neg x_i$.
- A clause is a disjunction of literals.
 For example, x₁ ∨ x₂ ∨ ¬x₄ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- A formula φ is a **3CNF**:
 - A CNF formula such that every clause has **exactly** 3 literals.
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Sariel (UIUC) CS473 8 Fall 2011 8 / 50

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A *literal* is either a boolean variable x_i or its negation $\neg x_i$.
- A clause is a disjunction of literals.
 For example, x₁ ∨ x₂ ∨ ¬x₄ is a clause.
- A *formula in conjunctive normal form (CNF)* is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- A formula φ is a **3CNF**:
 - A CNF formula such that every clause has **exactly** 3 literals.
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A *literal* is either a boolean variable x_i or its negation $\neg x_i$.
- A clause is a disjunction of literals.
 For example, x₁ ∨ x₂ ∨ ¬x₄ is a clause.
- A *formula in conjunctive normal form (CNF)* is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- A formula φ is a **3CNF**:
 - A CNF formula such that every clause has **exactly** 3 literals.
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Sariel (UIUC) CS473 8 Fall 2011 8 / 50

Satisfiability

Problem: SAT

Instance: A CNF formula φ .

Question: Is there a truth assignment to the variable of

 φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of

arphi such that arphi evaluates to true?

Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

 $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \dots x_5$ to be all true

$$(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2)$$
 is not satisfiable

3SAT

Given a 3 CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

Importance of **SAT** and **3SAT**

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NP-COMPLETENESS.

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$\Big(x \lor y \lor z \lor w \lor u \Big) \land \Big(\neg x \lor \neg y \lor \neg z \lor w \lor u \Big) \land \Big(\neg x \Big)$$

In **3SAT** every clause must have *exactly* 3 different literals.

To reduce from an instance of **SAT** to an instance of **3SAT**, we must make all clauses to have exactly 3 variables...

Basic idea

- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.

Sariel (UIUC) CS473 12 Fall 2011 12 / 50

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$\Big(x \lor y \lor z \lor w \lor u \Big) \land \Big(\neg x \lor \neg y \lor \neg z \lor w \lor u \Big) \land \Big(\neg x \Big)$$

In **3SAT** every clause must have *exactly* 3 different literals.

To reduce from an instance of **SAT** to an instance of **3SAT**, we must make all clauses to have exactly **3** variables...

Basic idea

- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.

Sariel (UIUC) CS473 12 Fall 2011 12 / 50

- 3SAT \leq_P SAT.
- Because...

A **3SAT** instance is also an instance of **SAT**.

Claim

$SAT \leq_P 3SAT$

Given φ a SAT formula we create a 3SAT formula φ' such that

- ullet φ is satisfiable iff φ' is satisfiable
- \bullet φ' can be constructed from φ in time polynomial in $|\varphi|$.

 ${\sf Idea}$: if a clause of arphi is not of length 3, replace it with several clauses of length exactly 3

Claim

 $SAT \leq_P 3SAT$.

Given φ a **SAT** formula we create a **3SAT** formula φ' such that

- ullet arphi is satisfiable iff arphi' is satisfiable
- ullet φ' can be constructed from φ in time polynomial in $|\varphi|$.

 ${\sf Idea}$: if a clause of arphi is not of length ${f 3}$, replace it with several clauses of length exactly ${f 3}$

Claim

 $SAT \leq_P 3SAT$

Given φ a **SAT** formula we create a **3SAT** formula φ' such that

- ullet arphi is satisfiable iff arphi' is satisfiable
- ullet φ' can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length ${\bf 3}$, replace it with several clauses of length exactly ${\bf 3}$

A clause with a single literal

Reduction Ideas

Challenge: Some of the clauses in φ may have less or more than 3 literals. For each clause with < 3 or > 3 literals, we will construct a set of logically equivalent clauses.

• Case clause with one literal: Let c be a clause with a single literal (i.e., $c = \ell$). Let u, v be new variables. Consider

$$\begin{split} c' = & \left(\ell \lor u \lor v \right) \land \left(\ell \lor u \lor \neg v \right) \\ & \land \left(\ell \lor \neg u \lor v \right) \land \left(\ell \lor \neg u \lor \neg v \right). \end{split}$$

Observe that c' is satisfiable iff c is satisfiable

Reduction Ideas: 2 and more literals

• Case clause with 2 literals: Let $c = \ell_1 \vee \ell_2$. Let u be a new variable. Consider

$$\mathbf{c}' = ig(\ell_1 ee \ell_2 ee \mathbf{\textit{u}}ig) \, \wedge \, \Big(\ell_1 ee \ell_2 ee
eg \mathbf{\textit{u}}\Big) \, .$$

Again c is satisfiable iff c' is satisfiable

Breaking a clause

Lemma

For any boolean formulas \boldsymbol{X} and \boldsymbol{Y} and \boldsymbol{z} a new boolean variable. Then

$$X \lor Y$$
 is satisfiable

if and only if, z can be assigned a value such that

$$(X \lor z) \land (Y \lor \neg z)$$
 is satisfiable

(with the same assignment to the variables appearing in **X** and **Y**).

Sariel (UIUC) CS473 17 Fall 2011 17 / 50

SAT \leq_{P} **3SAT** (contd)

Clauses with more than 3 literals

Let ${m c} = \ell_1 \lor \dots \lor \ell_k$. Let ${m u}_1, \dots {m u}_{k-3}$ be new variables. Consider ${m c}' = \left(\ell_1 \lor \ell_2 \lor {m u}_1\right) \land \left(\ell_3 \lor \lnot {m u}_1 \lor {m u}_2\right) \ \land \left(\ell_4 \lor \lnot {m u}_2 \lor {m u}_3\right) \land \ \dots \land \left(\ell_{k-2} \lor \lnot {m u}_{k-4} \lor {m u}_{k-3}\right) \land \left(\ell_{k-1} \lor \ell_k \lor \lnot {m u}_{k-3}\right).$

Claim

c is satisfiable iff c' is satisfiable.

Another way to see it — reduce size of clause by one:

$$\mathbf{c}' = \left(\ell_1 \vee \ell_2 \ldots \vee \ell_{k-2} \vee \mathbf{u}_{k-3}\right) \wedge \left(\ell_{k-1} \vee \ell_k \vee \neg \mathbf{u}_{k-3}\right).$$

Sariel (UIUC) CS473 18 Fall 2011 18 / 50

Example

$$arphi = \left(\neg x_1 \lor \neg x_4 \right) \land \left(x_1 \lor \neg x_2 \lor \neg x_3 \right)$$

 $\land \left(\neg x_2 \lor \neg x_3 \lor x_4 \lor x_1 \right) \land \left(x_1 \right).$

Equivalent form:

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z)$$

$$\land (x_1 \lor \neg x_2 \lor \neg x_3)$$

$$\land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1)$$

$$\land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v)$$

$$\land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).$$

Sariel (UIUC) CS473 19 Fall 2011 19 / 50

Example

$$arphi = \left(\neg x_1 \lor \neg x_4 \right) \land \left(x_1 \lor \neg x_2 \lor \neg x_3 \right)$$

 $\land \left(\neg x_2 \lor \neg x_3 \lor x_4 \lor x_1 \right) \land \left(x_1 \right).$

Equivalent form:

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z)$$

$$\land (x_1 \lor \neg x_2 \lor \neg x_3)$$

$$\land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1)$$

$$\land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v)$$

$$\land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).$$

Sariel (UIUC) CS473 19 Fall 2011 19 / 50

Example

$$\varphi = \left(\neg x_1 \lor \neg x_4\right) \land \left(x_1 \lor \neg x_2 \lor \neg x_3\right)$$
$$\land \left(\neg x_2 \lor \neg x_3 \lor x_4 \lor x_1\right) \land \left(x_1\right).$$

Equivalent form:

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z)$$

$$\land (x_1 \lor \neg x_2 \lor \neg x_3)$$

$$\land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1)$$

$$\land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v)$$

$$\land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).$$

Example

$$arphi = \left(\neg x_1 \lor \neg x_4 \right) \land \left(x_1 \lor \neg x_2 \lor \neg x_3 \right)$$

 $\land \left(\neg x_2 \lor \neg x_3 \lor x_4 \lor x_1 \right) \land \left(x_1 \right).$

Equivalent form:

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z)$$

$$\land (x_1 \lor \neg x_2 \lor \neg x_3)$$

$$\land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1)$$

$$\land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v)$$

$$\land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).$$

Overall Reduction Algorithm

Reduction from SAT to 3SAT

```
ReduceSATTo3SAT(\varphi):

// \varphi: CNF formula.

for each clause c of \varphi do

if c does not have exactly 3 literals then

construct c' as before

else

c' = c

\psi is conjunction of all c' constructed in loop

return Solver3SAT(\psi)
```

Correctness (informal)

 φ is satisfiable iff ψ is satisfiable because for each clause c, the new 3CNF formula c' is logically equivalent to c.

Sariel (UIUC) CS473 20 Fall 2011 20 / 50

What about **2SAT**?

2SAT can be solved in polynomial time! (In fact, linear time!)

No known polynomial time reduction from **SAT** (or **3SAT**) to **2SAT**. If there was, then **SAT** and **3SAT** would be solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

Consider a clause $(x \lor y \lor z)$. We need to reduce it to a collection of ${}^{2}\text{CNF}$ clauses. Introduce a face variable α , and rewrite this as

$$(x \lor y \lor \alpha) \land (\neg \alpha \lor z)$$
 (bad! clause with 3 vars) or $(x \lor \alpha) \land (\neg \alpha \lor y \lor z)$ (bad! clause with 3 vars).

(In animal farm language: **2SAT** good, **3SAT** bad.)

Sariel (UIUC) CS473 21 Fall 2011 21 / 50

What about **2SAT**?

A challenging exercise: Given a **2SAT** formula show to compute its satisfying assignment...

(Hint: Create a graph with two vertices for each variable (for a variable x there would be two vertices with labels x=0 and x=1). For ever 2 CNF clause add two directed edges in the graph. The edges are implication edges: They state that if you decide to assign a certain value to a variable, then you must assign a certain value to some other variable.

Now compute the strong connected components in this graph, and continue from there...)

Independent Set

Problem: Independent Set

Instance: A graph G, integer **k**

Question: Is there an independent set in G of size *k*?

$3SAT \leq_P Independent Set$

The reduction $3SAT \leq_P Independent Set$

Input: Given a $3 \mathrm{CNF}$ formula φ

Goal: Construct a graph ${\it G}_{\varphi}$ and number ${\it k}$ such that ${\it G}_{\varphi}$ has an

independent set of size k if and only if φ is satisfiable.

 $extbf{\emph{G}}_{arphi}$ should be constructable in time polynomial in size of arphi

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

$3SAT \leq_P Independent Set$

The reduction $3SAT \leq_P Independent Set$

Input: Given a $3\mathrm{CNF}$ formula φ

Goal: Construct a graph ${\it G}_{\varphi}$ and number ${\it k}$ such that ${\it G}_{\varphi}$ has an

independent set of size ${\it k}$ if and only if ${\it \varphi}$ is satisfiable.

 $extbf{\emph{G}}_{arphi}$ should be constructable in time polynomial in size of arphi

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

$3SAT \leq_P Independent Set$

The reduction $3SAT \leq_P Independent Set$

Input: Given a $3\mathrm{CNF}$ formula φ

Goal: Construct a graph ${m G}_{\!arphi}$ and number ${m k}$ such that ${m G}_{\!arphi}$ has an

independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

Sariel (UIUC) CS473 24 Fall 2011 24 / 50

There are two ways to think about 3SAT

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

There are two ways to think about 3SAT

- \bullet Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

There are two ways to think about **3SAT**

- \bullet Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

There are two ways to think about 3SAT

- \bullet Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

- G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this
 ensures that the literals corresponding to the independent set do
 not have a conflict
- Take **k** to be the number of clauses

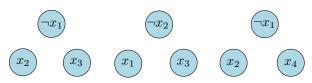
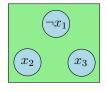


Figure: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

Sariel (UIUC) CS473 26 Fall 2011 26 / 50

- G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this
 ensures that the literals corresponding to the independent set do
 not have a conflict
- Take k to be the number of clauses



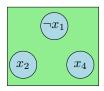
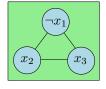
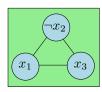


Figure: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this
 ensures that the literals corresponding to the independent set do
 not have a conflict
- Take **k** to be the number of clauses





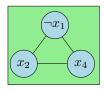


Figure: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this
 ensures that the literals corresponding to the independent set do
 not have a conflict
- Take **k** to be the number of clauses

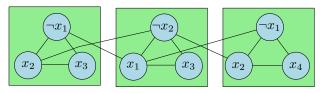


Figure: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

Sariel (UIUC) CS473 26 Fall 2011 26 / 50

- G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this
 ensures that the literals corresponding to the independent set do
 not have a conflict
- Take k to be the number of clauses

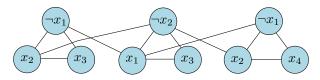


Figure: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

Sariel (UIUC) CS473 26 Fall 2011 26 / 50

Correctness

Proposition

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

- \Rightarrow Let **a** be the truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

Correctness

Proposition

 φ is satisfiable iff G_{ω} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let **a** be the truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

Sariel (UIUC) CS473 Fall 2011 27 / 50

Correctness (contd)

Proposition

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

- \leftarrow Let **S** be an independent set of size **k**
 - S must contain exactly one vertex from each clause
 - S cannot contain vertices labeled by conflicting clauses
 - Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Transitivity of Reductions

Lemma

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y In other words show that an algorithm for Y implies an algorithm for X.

Sariel (UIUC) CS473 29 Fall 2011 29 / 50

Part II

Definition of NP

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT

Relationship

3SAT \leq_{P} Independent Set \geq_{P}^{P} Vertex Cover \leq_{P} Set Cover 3SAT \leq_{P} SAT \leq_{P} 3SAT

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT

Relationship

3SAT \leq_P Independent Set $\overset{\leq_P}{\geq_P}$ Vertex Cover \leq_P Set Cover 3SAT \leq_P SAT \leq_P 3SAT

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT

Relationship

3SAT \leq_P Independent Set $\overset{\leq_P}{\geq_P}$ Vertex Cover \leq_P Set Cover 3SAT \leq_P SAT \leq_P 3SAT

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT

Relationship

3SAT \leq_P Independent Set $\overset{\leq_P}{\geq_P}$ Vertex Cover \leq_P Set Cover 3SAT \leq_P SAT \leq_P 3SAT

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT

Relationship

3SAT \leq_P Independent Set $\overset{\leq_P}{\geq_P}$ Vertex Cover \leq_P Set Cover 3SAT \leq_P SAT \leq_P 3SAT

Problems and Algorithms: Formal Approach

Decision Problems

- Problem Instance: Binary string s, with size |s|
- Problem: A set **X** of strings on which the answer should be "yes"; we call these YES instances of **X**. Strings not in **X** are NO instances of X.

Definition

- A is an algorithm for problem X if A(s) = "yes" iff $s \in X$
- A is said to have a polynomial running time if there is a polynomial $p(\cdot)$ such that for every string s, A(s) terminates in at most O(p(|s|)) steps

CS473 Fall 2011 32 / 50

Polynomial Time

Definition

Polynomial time (denoted P) is the class of all (decision) problems that have an algorithm that solves it in polynomial time

Example

Problems in P include

- Is there a shortest path from s to t of length $\leq k$ in G?
- Is there a flow of value $\geq k$ in network G?
- Is there an assignment to variables to satisfy given linear constraints?

Polynomial Time

Definition

Polynomial time (denoted P) is the class of all (decision) problems that have an algorithm that solves it in polynomial time

Example

Problems in **P** include

- Is there a shortest path from s to t of length $\leq k$ in G?
- Is there a flow of value > k in network G?
- Is there an assignment to variables to satisfy given linear constraints?

Efficiency Hypothesis

A problem X has an efficient algorithm iff $X \in P$, that is X has a polynomial time algorithm.

Justifications:

- Robustness of definition to variations in machines.
- A sound theoretical definition.
- Most known polynomial time algorithms for "natural" problems have small polynomial running times.

Problems with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are like above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

For any YES instance I_X of X there is a proof/certificate/solution that is of length $poly(|\mathbf{I}_X|)$ such that given a proof one can efficiently check that Ix is indeed a YES instance

- SAT formula φ : proof is a satisfying assignment
- Independent Set in graph G and k: a subset S of vertices

Sariel (UIUC) CS473 36 Fall 2011 36 / 50

Efficient Checkability

Above problems share the following feature:

For any YES instance I_X of X there is a proof/certificate/solution that is of length $poly(|\mathbf{I}_X|)$ such that given a proof one can efficiently check that Ix is indeed a YES instance

Examples:

- SAT formula φ : proof is a satisfying assignment
- Independent Set in graph G and k: a subset S of vertices

Sariel (UIUC) CS473 36 Fall 2011 36 / 50

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a certifier for problem X if for every $s \in X$ there is some string t such that C(s, t) = "yes", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$. The string t is called a certificate or proof for s

Efficient Certifier

C is an efficient certifier for problem X if there is a polynomial $p(\cdot)$ such that for every string s, $s \in X$ iff there is a string t with $|t| \leq p(|s|)$, C(s,t) = "yes" and C runs in polynomial time

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a certifier for problem X if for every $s \in X$ there is some string t such that C(s, t) = "yes", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$.

The string t is called a certificate or proof for s

Efficient Certifier

C is an efficient certifier for problem X if there is a polynomial $p(\cdot)$ such that for every string s, $s \in X$ iff there is a string t with $|t| \leq p(|s|)$, C(s,t) = "yes" and C runs in polynomial time

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set S ⊂ V
 - Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge

Example: Vertex Cover

- Problem: Does **G** have a vertex cover of size $\leq k$?
 - Certificate: $S \subseteq V$
 - ullet Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S

Example: **SAT**

- ullet Problem: Does formula φ have a satisfying truth assignment?
 - Certificate: Assignment a of 0/1 values to each variable
 - Certifier: Check each clause under **a** and say "yes" if all clauses are true

Example: Composites

- Problem: Is number s a composite?
 - Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$
 - Certifier: Check that t divides s (Euclid's algorithm)

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, Composites are all examples of problems in NP

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, Composites are all examples of problems in *NP*

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example: **SAT** formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

P versus NP

Proposition

 $P \subseteq NP$

For a problem in **P** no need for a certificate

Proof.

Consider problem $X \in P$ with algorithm A. Need to demonstrate that X has an efficient certifier

- ullet Certifier $oldsymbol{\mathcal{C}}$ on input $oldsymbol{s}, oldsymbol{t}$, runs $oldsymbol{A}(oldsymbol{s})$ and returns the answer
- C runs in polynomial time
- If $s \in X$ then for every t, C(s, t) = "yes"
- If $s \not\in X$ then for every t, C(s,t) = "no"

P versus NP

Proposition

 $P \subseteq NP$

For a problem in **P** no need for a certificate!

Proof.

Consider problem $X \in P$ with algorithm A. Need to demonstrate that X has an efficient certifier

- ullet Certifier $oldsymbol{C}$ on input $oldsymbol{s}, oldsymbol{t}$, runs $oldsymbol{A}(oldsymbol{s})$ and returns the answer
- C runs in polynomial time
- If $s \in X$ then for every t, C(s, t) = "yes"
- If $s \not\in X$ then for every t, C(s, t) = "no"

Exponential Time

Definition

Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

Exponential Time

Definition

Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

Sariel (UIUC) CS473 45 Fall 2011 45 / 50

NP versus EXP

Proposition

 $NP \subseteq EXP$

Proof.

Let $X \in NP$ with certifier C. Need to design an exponential time algorithm for X

- For every t, with $|t| \le p(|s|)$ run C(s, t); answer "yes" if any one of these calls returns "yes"
- The above algorithm correctly solves X (exercise)
- Algorithm runs in $O(q(|s| + |p(s)|)2^{p(|s|)})$, where q is the running time of C

Examples

- **SAT**: try all possible truth assignment to variables.
- Independent Set: try all possible subsets of vertices.
- Vertex Cover: try all possible subsets of vertices.

Sariel (UIUC) CS473 47 Fall 2011 47 / 50

Is **NP** efficiently solvable?

We know $P \subset NP \subset EXP$

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

Sariel (UIUC) CS473 48 Fall 2011 48 / 50

Is **NP** efficiently solvable?

We know $P \subset NP \subset EXP$

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

Sariel (UIUC) CS473 48 Fall 2011 48 / 50

If $P = NP \dots$

Or: If pigs could fly then life would be sweet.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

Sariel (UIUC) CS473 49 Fall 2011 49 / 50

P versus NP

Status

Relationship between \boldsymbol{P} and \boldsymbol{NP} remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $P \neq NP$.

Resolving P versus NP is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

Sariel (UIUC) CS473 51 Fall 2011 51 / 50

Sariel (UIUC) CS473 52 Fall 2011 52 / 50

Sariel (UIUC) CS473 53 Fall 2011 53 / 50

Sariel (UIUC) CS473 54 Fall 2011 54 / 50