Chapter 20

Polynomial Time Reductions

CS 473: Fundamental Algorithms, Fall 2011 November 10, 2011

20.1 Introduction to Reductions

20.2 Overview

20.2.0.1 Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions

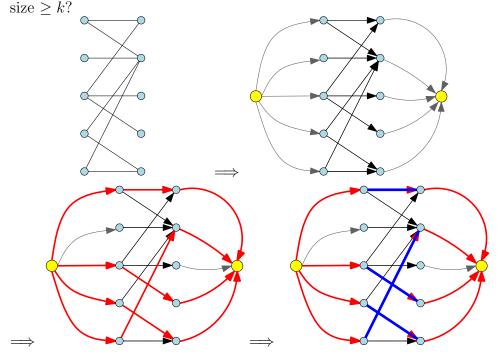
- (A) We use reductions to find algorithms to solve problems.
- (B) We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

Also, the right reductions might win you a million dollars!

20.2.0.2 Example 1: Bipartite Matching and Flows

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of



Solution

Reduce it to **Max-Flow**. G has a matching of size $\geq k$ iff there is a flow from s to t of value $\geq k$.

20.3 Definitions

20.3.0.3 Types of Problems

Decision, Search, and Optimization

- (A) Decision problems (example: given n, is n prime?)
- (B) Search problems (example: given n, find a factor of n if it exists)
- (C) Optimization problems (example: find the *smallest* prime factor of n.)

For **Max-Flow**, the Optimization version is: Find the Maximum flow between s and t. The Decision Version is: Given an integer k, is there a flow of value $\geq k$ between s and t?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

20.3.0.4 Problems vs Instances

- (A) A problem Π consists of an infinite collection of inputs $\{I_1, I_2, \ldots, \}$. Each input is referred to as an instance.
- (B) The size of an instance I is the number of bits in its representation.
- (C) For an instance I, sol(I) is a set of feasible solutions to I.
- (D) For optimization problems each solution $s \in sol(I)$ has an associated value.

20.3.0.5 Examples

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

An instance of **Max-Flow** is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value $\geq k$, else 'NO".

What is an algorithm for a decision Problem X? It takes as input an instance of X, and outputs either "YES" or "NO".

20.3.0.6 Encoding an instance into a string

- (A) I; Instance of some problem.
- (B) I can be fully and precisely described (say in a text file).
- (C) Resulting text file is a binary string.
- (D) \implies Any input can be interpreted as a binary string S.
- (E) ... Running time of algorithm: function of length of S (i.e., n).

20.3.0.7 Decision Problems and Languages

- (A) A finite alphabet Σ . Σ^* is set of all finite strings on Σ .
- (B) A language L is simply a subset of Σ^* ; a set of strings.

For every language L there is an associated decision problem Π_L and conversely, for every decision problem Π there is an associated language L_{Π} .

- (A) Given L, Π_L is the following problem: given $x \in \Sigma^*$, is $x \in L$? Each string in Σ^* is an instance of Π_L and L is the set of instances for which the answer is YES.
- (B) Given Π the associated language $L_{\Pi} = \{I \mid I \text{ is an instance of } \Pi \text{ for which answer is YES}\}. Thus, decision problems and languages are used interchangeably.$

20.3.0.8 Example

20.3.0.9 Reductions, revised.

For decision problems X, Y, a **reduction from** X **to** Y is:

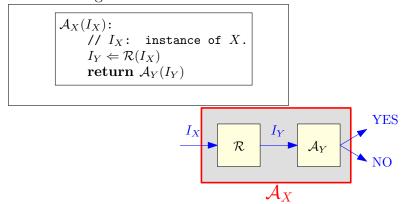
- (A) An algorithm ...
- (B) Input: I_X , an instance of X.
- (C) Output: I_Y an instance of Y.

(D) Such that:

$$I_Y$$
 is YES instance of $Y \iff I_X$ is YES instance of X (Actually, this is only one type of reduction, but this is the one we'll use most often.)

20.3.0.10 Using reductions to solve problems

- (A) \mathcal{R} : Reduction $X \to Y$
- (B) \mathcal{A}_Y : algorithm for Y:
- (C) \implies New algorithm for X:



In particular, if \mathcal{R} and \mathcal{A}_Y are polynomial-time algorithms, \mathcal{A}_X is also polynomial-time.

20.3.0.11 Comparing Problems

- (A) Reductions allow us to formalize the notion of "Problem X is no harder to solve than Problem Y".
- (B) If Problem X reduces to Problem Y (we write $X \leq Y$), then X cannot be harder to solve than Y.
- (C) Bipartite Matching ≤ Max-Flow.

 Therefore, Bipartite Matching cannot be harder than Max-Flow.
- (D) Equivalently,
 - **Max-Flow** is at least as hard as **Bipartite Matching**.
- (E) More generally, if $X \leq Y$, we can say that X is no harder than Y, or Y is at least as hard as X.

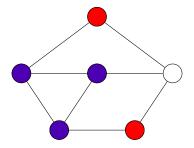
20.4 Examples of Reductions

20.5 Independent Set and Clique

20.5.0.12 Independent Sets and Cliques

Given a graph G, a set of vertices V' is:

- (A) An **independent set**: if no two vertices of V' are connected by an edge of G.
- (B) **clique**: every pair of vertices in V' is connected by an edge of G.



20.5.0.13 The Independent Set and Clique Problems

Independent Set Problem

(A) **Input:** A graph G and an integer k.

(B) Goal; Decide whether G has an independent set of size $\geq k$.

Clique Problem

(A) **Input:** A graph G and an integer k.

(B) Goal: Decide whether G has a clique of size $\geq k$.

20.5.0.14 Recall

For decision problems X, Y, a reduction from X to Y is:

(A) An algorithm ...

(B) that takes I_X , an instance of X as input ...

(C) and returns I_Y , an instance of Y as output ...

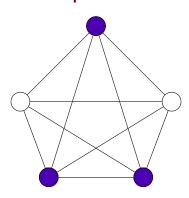
(D) such that the solution (YES/NO) to I_Y is the same as the solution to I_X .

20.5.0.15 Reducing Independent Set to Clique

An instance of **Independent Set** is a graph G and an integer k.

Convert G to \overline{G} , in which (u,v) is an edge iff (u,v) is not an edge of G. $(\overline{G}$ is the complement of G.)

We use \overline{G} and k as the instance of **Clique**.



20.5.0.16 Independent Set and Clique

(A) Independent Set \leq Clique.

What does this mean?

- (B) If have an algorithm for **Clique**, then we have an algorithm for **Independent Set**.
- (C) Clique is at least as hard as Independent Set.
- (D) Also... Independent Set is at least as hard as Clique.

20.6 NFAs/DFAs and Universality

20.6.0.17 DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular languages. NFAs are the same, except that they are non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same language using the *subset* construction.

(How long does this take?)

The smallest DFA equivalent to an NFA with n states may have $\approx 2^n$ states.

20.6.0.18 DFA Universality

A DFA M is universal if it accepts every string.

That is, $L(M) = \Sigma^*$, the set of all strings.

The **DFA Universality** Problem:

- (A) Input: A DFA M
- (B) Goal: Decide whether M is universal.

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

Alternatively, minimize M to obtain M' and see if M' has a single state which is an accepting state.

20.6.0.19 NFA Universality

An NFA N is said to be *universal* if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

The **NFA Universality** Problem:

Input An NFA N

Goal Decide whether N is universal.

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

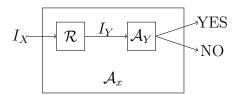
The reduction takes *exponential time!*

20.6.0.20 Polynomial-time reductions

We say that an algorithm is *efficient* if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in *polynomial-time* reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.



20.6.0.21 Polynomial-time Reduction

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an algorithm A that has the following properties:

- (A) given an instance I_X of X, A produces an instance I_Y of Y
- (B) \mathcal{A} runs in time polynomial in $|I_X|$.
- (C) Answer to I_X YES iff answer to I_Y is YES.

Proposition 20.6.1 If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions.

20.6.0.22 Polynomial-time reductions and hardness

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed Independent Set \leq_P Clique. If Clique had an efficient algorithm, so would Independent Set!

If $X \leq_P Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

20.6.0.23 Polynomial-time reductions and instance sizes

Proposition 20.6.2 Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof: \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

20.6.0.24 Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A that has the following properties:

- (A) given an instance I_X of X, A produces an instance I_Y of Y
- (B) \mathcal{A} runs in time polynomial in $|I_X|$. This implies that $|I_Y|$ (size of I_Y) is polynomial in $|I_X|$
- (C) Answer to I_X YES iff answer to I_Y is YES.

Proposition 20.6.3 If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions

20.6.0.25 Transitivity of Reductions

Proposition 20.6.4 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y

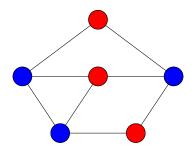
In other words show that an algorithm for Y implies an algorithm for X.

20.7 Independent Set and Vertex Cover

20.7.0.26 Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

(A) A vertex cover if every $e \in E$ has at least one endpoint in S.



20.7.0.27 The Vertex Cover Problem

The **Vertex Cover** Problem:

Input A graph G and integer k

Goal Decide whether there is a vertex cover of size $\leq k$

Can we relate **Independent Set** and **Vertex Cover**?

20.7.1 Relationship between...

20.7.1.1 Vertex Cover and Independent Set

Proposition 20.7.1 Let G = (V, E) be a graph. S is an independent set if and only if $V \setminus S$ is a vertex cover

Proof:

- (\Rightarrow) Let S be an independent set
 - (A) Consider any edge $(u, v) \in E$
 - (B) Since S is an independent set, either $u \notin S$ or $v \notin S$
 - (C) Thus, either $u \in V \setminus S$ or $v \in V \setminus S$
 - (D) $V \setminus S$ is a vertex cover
- (\Leftarrow) Let $V \setminus S$ be some vertex cover
 - (A) Consider $u, v \in S$
 - (B) (u, v) is not edge, as otherwise $V \setminus S$ does not cover (u, v)
 - (C) S is thus an independent set

20.7.1.2 Independent Set \leq_P Vertex Cover

- (A) G: graph with n vertices, and an integer k be an instance of the **Independent Set** problem.
- (B) G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq n-k$
- (C) (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- (D) Therefore, Independent Set \leq_P Vertex Cover. Also Vertex Cover \leq_P Independent Set.

20.8 Vertex Cover and Set Cover

20.8.0.3 A problem of Languages

Suppose you work for the United Nations. Let U be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from U.

Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?

More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

20.8.0.4 The Set Cover Problem

Input Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k

Goal Is there is a collection of at most k of these sets S_i whose union is equal to U?

Example 20.8.1 i^2-i Let $U = \{1, 2, 3, 4, 5, 6, 7\}, k = 2$ with

$$S_1 = \{3,7\}$$
 $S_2 = \{3,4,5\}$
 $S_3 = \{1\}$ $S_4 = \{2,4\}$
 $S_5 = \{5\}$ $S_6 = \{1,2,6,7\}$

 $\{S_2, S_6\}$ is a set cover

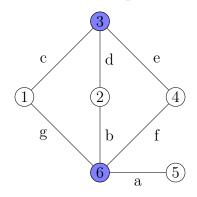
20.8.0.5 Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of **Vertex Cover**, construct an instance of **Set Cover** as follows:

- (A) Number k for the **Set Cover** instance is the same as the number k given for the **Vertex Cover** instance.
- (B) U = E
- (C) We will have one set corresponding to each vertex; $S_v = \{e \mid e \text{ is incident on } v\}$

Observe that G has vertex cover of size k if and only if $U, \{S_v\}_{v \in V}$ has a set cover of size k. (Exercise: Prove this.)

20.8.0.6 Vertex Cover \leq_P Set Cover: Example



 $\{3,6\}$ is a vertex cover

Let $U = \{a, b, c, d, e, f, g\}, k = 2$ with

$$S_1 = \{c, g\}$$
 $S_2 = \{b, d\}$
 $S_3 = \{c, d, e\}$ $S_4 = \{e, f\}$
 $S_5 = \{a\}$ $S_6 = \{a, b, f, g\}$

 $\{S_3, S_6\}$ is a set cover

20.8.0.7 Proving Reductions

To prove that $X \leq_P Y$ you need to give an algorithm \mathcal{A} that

- (A) transforms an instance I_X of X into an instance I_Y of Y
- (B) satisfies the property that answer to I_X is YES iff I_Y is YES
 - (A) typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - (B) typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO)
- (C) runs in *polynomial* time

20.8.0.8 Example of incorrect reduction proof

Try proving Matching \leq_P Bipartite Matching via following reduction:

- (A) Given graph G = (V, E) obtain a bipartite graph G' = (V', E') as follows.
 - (A) Let $V_1 = \{u_1 \mid u \in V\}$ and $V_2 = \{u_2 \mid u \in V\}$. We set $V' = V_1 \cup V_2$ (that is, we make two copies of V)
 - (B) $E' = \{(u_1, v_2) \mid u \neq v \text{ and } (u, v) \in E\}$
- (B) Given G and integer k the reduction outputs G' and k.

20.8.0.9 Example 20.8.0.10 "Proof"

Claim 20.8.2 Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof: Exercise.

Claim 20.8.3 If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $u \in V$ has two copies u_1 and u_2 in G'. A matching in G' may use both copies!

20.8.0.11 Summary

We looked at polynomial-time reductions.

Using polynomial-time reductions

- (A) If $X \leq_P Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.
- (B) If $X \leq_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

We looked at some examples of reductions between **Independent Set**, **Clique**, **Vertex Cover**, and **Set Cover**.