CS 473: Fundamental Algorithms, Fall 2011

Polynomial Time Reductions

Lecture 20 November 10, 2011

Part I

Introduction to Reductions

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions

- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

Also, the right reductions might win you a million dollars!

Example 1: Bipartite Matching and Flows

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size k?

Solution

Reduce it to Max-Flow. G has a matching of size $\geq k$ iff there is a flow from s to t of value $\geq k$.

Types of Problems

Decision, Search, and Optimization

- Decision problems (example: given n, is n prime?)
- Search problems (example: given n, find a factor of n if it exists)
- Optimization problems (example: find the smallest prime factor of n.)

For Max-Flow, the Optimization version is: Find the Maximum flow between s and t. The Decision Version is: Given an integer k, is there a flow of value $\geq k$ between s and t?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

Problems vs Instances

- A problem Π consists of an *infinite* collection of inputs $\{l_1, l_2, \ldots, \}$. Each input is referred to as an instance.
- The size of an instance I is the number of bits in its representation.
- For an instance I, sol(I) is a set of feasible solutions to I.
- For optimization problems each solution s ∈ sol(I) has an associated value.

Sariel (UIUC) CS473 6 Fall 2011 6 / 4

Examples

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value t0 t1, else 'NO".

What is an algorithm for a decision Problem X?

It takes as input an instance of X, and outputs either "YES" or "NO".

Encoding an instance into a string

- *I*; Instance of some problem.
- I can be fully and precisely described (say in a text file).
- Resulting text file is a binary string.
- $\bullet \implies$ Any input can be interpreted as a binary string S.
- \bullet ... Running time of algorithm: function of length of S (i.e., n).

Decision Problems and Languages

- A finite alphabet Σ . Σ^* is set of all finite strings on Σ .
- A language L is simply a subset of Σ^* ; a set of strings.

For every language L there is an associated decision problem Π_L and conversely, for every decision problem Π there is an associated language L_{Π} .

- Given L, Π_L is the following problem: given $x \in \Sigma^*$, is $x \in L$? Each string in Σ^* is an instance of Π_L and L is the set of instances for which the answer is YES.
- Given Π the associated language $L_{\Pi} = \{I \mid I \text{ is an instance of } \Pi \text{ for which answer is YES} \}.$

Thus, decision problems and languages are used interchangeably.

Sariel (UIUC) CS473 9 Fall 2011 9 / 45

Example

Sariel (UIUC) CS473 10 Fall 2011 10 / 4

Reductions, revised.

For decision problems X, Y, a **reduction from** X **to** Y is:

- An algorithm ...
- Input: I_X , an instance of X.
- Output: I_Y an instance of Y.
- Such that:

```
I_Y is YES instance of Y \iff I_X is YES instance of X
```

(Actually, this is only one type of reduction, but this is the one we'll use most often.)

Sariel (UIUC) CS473 11 Fall 2011 11 / 45

Using reductions to solve problems

- \mathcal{R} : Reduction $X \to Y$
- \mathcal{A}_{Y} : algorithm for Y:
- \Longrightarrow New algorithm for **X**:

$$\mathcal{A}_X(I_X)$$
:

// I_X : instance of X .

 $I_Y \leftarrow \mathcal{R}(I_X)$

return $\mathcal{A}_Y(I_Y)$

In particular, if \mathcal{R} and \mathcal{A}_{Y} are polynomial-time algorithms, \mathcal{A}_{X} is also polynomial-time.

Sariel (UIUC) CS473 12 Fall 2011 12 / 45

Comparing Problems

- Reductions allow us to formalize the notion of "Problem X is no harder to solve than Problem Y".
- If Problem X reduces to Problem Y (we write $X \leq Y$), then X cannot be harder to solve than Y.
- Bipartite Matching
 — Max-Flow.
 Therefore, Bipartite Matching cannot be harder than Max-Flow.
- Equivalently,
 Max-Flow is at least as hard as Bipartite Matching.
- More generally, if $X \leq Y$, we can say that X is no harder than Y, or Y is at least as hard as X.

Sariel (UIUC) CS473 13 Fall 2011 13 / 45

Part II

Examples of Reductions

Sariel (UIUC) CS473 14 Fall 2011 14 / 45

Independent Sets and Cliques

Given a graph G, a set of vertices V is:

- An *independent set*: if no two vertices of V are connected by an edge of G.
- **clique**: every pair of vertices in V is connected by an edge of G.

Sariel (UIUC) CS473 15 Fall 2011 15 / 45

The Independent Set and Clique Problems

Independent Set Problem

- Input: A graph G and an integer k.
- Goal; Decide whether G has an independent set of size $\geq k$.

Clique Problem

- Input: A graph G and an integer k.
- Goal: Decide whether G has a clique of size $\geq k$.

Sariel (UIUC) CS473 16 Fall 2011 16 / 4

Recall

For decision problems X, Y, a reduction from X to Y is:

- An algorithm . . .
- that takes I_X , an instance of X as input . . .
- and returns I_Y , an instance of Y as output ...
- such that the solution (YES/NO) to I_Y is the same as the solution to I_X .

Sariel (UIUC) CS473 17 Fall 2011 17 / 45

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. (\overline{G}) is the *complement* of G.)

We use \overline{G} and k as the instance of Clique.

Sariel (UIUC) CS473 18 Fall 2011 18 / 45

Independent Set and Clique

- Independent Set ≤ Clique.
 What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- Also... Independent Set is at least as hard as Clique.

Sariel (UIUC) CS473 19 Fall 2011 19 / 45

DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular languages. NFAs are the same, except that they are non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same language using the subset construction.

(How long does this take?)

The smallest DFA equivalent to an NFA with n states may have $\approx 2^n$ states.

Sariel (UIUC) CS473 20 Fall 2011 20 / 45

DFA Universality

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings.

The **DFA Universality** Problem:

• Input: A DFA M

• **Goal**: Decide whether **M** is universal.

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

Alternatively, minimize M to obtain M' and see if M' has a single state which is an accepting state.

Sariel (UIUC) CS473 21 Fall 2011 21 / 45

NFA Universality

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

The **NFA Universality** Problem:

Input An NFA N

Goal Decide whether **N** is universal.

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA **N**, convert it to an equivalent DFA **M**, and use the **DFA Universality** Algorithm.

The reduction takes exponential time!

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm A_Y for Y, we have a polynomial-time/efficient algorithm for X.

Sariel (UIUC) CS473 23 Fall 2011 23 / 45

Polynomial-time Reduction

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- ullet given an instance I_X of X, A produces an instance I_Y of Y
- \mathcal{A} runs in time polynomial in $|I_X|$.
- Answer to I_X YES iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions.

Polynomial-time reductions and hardness

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed Independent Set \leq_P Clique. If Clique had an efficient algorithm, so would Independent Set!

If $X \leq_P Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

Sariel (UIUC) CS473 25 Fall 2011 25 / 4

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time Reduction

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- ullet given an instance I_X of X, A produces an instance I_Y of Y
- \mathcal{A} runs in time polynomial in $|I_X|$. This implies that $|I_Y|$ (size of I_Y) is polynomial in $|I_X|$
- Answer to I_X YES iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions

Sariel (UIUC) CS473 27 Fall 2011 27 / 45

Transitivity of Reductions

Proposition

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y In other words show that an algorithm for Y implies an algorithm for X.

Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

• A vertex cover if every $e \in E$ has at least one endpoint in S.

The Vertex Cover Problem

The Vertex Cover Problem:

Input A graph G and integer k

Goal Decide whether there is a vertex cover of size $\leq k$

Can we relate Independent Set and Vertex Cover?

Sariel (UIUC) CS473 30 Fall 2011 30 / 4

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if $V \setminus S$ is a vertex cover

Proof.

- (\Rightarrow) Let **S** be an independent set
 - Consider any edge $(u, v) \in E$
 - Since **S** is an independent set, either $u \not\in S$ or $v \not\in S$
 - ullet Thus, either $oldsymbol{u} \in oldsymbol{V} \setminus oldsymbol{S}$ or $oldsymbol{v} \in oldsymbol{V} \setminus oldsymbol{S}$
 - **V** \ **S** is a vertex cover
- (\Leftarrow) Let $V \setminus S$ be some vertex cover
 - Consider $u, v \in S$
 - (u, v) is not edge, as otherwise $V \setminus S$ does not cover (u, v)
 - **S** is thus an independent set

Sariel (UIUC)

CS473

31

Fall 2011

31 / 45

Independent Set \leq_P Vertex Cover

- **G**: graph with **n** vertices, and an integer **k** be an instance of the **Independent Set** problem.
- G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq n-k$
- (G, k) is an instance of Independent Set , and (G, n k) is an instance of Vertex Cover with the same answer.
- Therefore, Independent Set \leq_P Vertex Cover. Also Vertex Cover \leq_P Independent Set.

Sariel (UIUC) CS473 32 Fall 2011 32 / 4

A problem of Languages

Suppose you work for the United Nations. Let \boldsymbol{U} be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from \boldsymbol{U} .

Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?

More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

Sariel (UIUC) CS473 33 Fall 2011 33 / 45

The **Set Cover** Problem

Input Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k

Goal Is there is a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$\emph{\textbf{U}}=\{1,2,3,4,5,6,7\},~\emph{\textbf{k}}=2$$
 with $\emph{\textbf{S}}_1=\{3,7\}~\emph{\textbf{S}}_2=\{3,4,5\}$ $\emph{\textbf{S}}_3=\{1\}~\emph{\textbf{S}}_4=\{2,4\}$ $\emph{\textbf{S}}_5=\{5\}~\emph{\textbf{S}}_6=\{1,2,6,7\}$

 $\{ \boldsymbol{S_2}, \boldsymbol{S_6} \}$ is a set cover

Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- \bullet U = E
- We will have one set corresponding to each vertex; $S_{v} = \{e \mid e \text{ is incident on } v\}$

Observe that G has vertex cover of size k if and only if U, $\{S_v\}_{v \in V}$ has a set cover of size k. (Exercise: Prove this.)

Vertex Cover \leq_{P} Set Cover: Example

Let
$$m{U} = \{a,b,c,d,e,f,g\}, \ m{k} = 2$$
 with $m{S}_1 = \{c,g\} \qquad m{S}_2 = \{b,d\} \ m{S}_3 = \{c,d,e\} \qquad m{S}_4 = \{e,f\} \ m{S}_5 = \{a\} \qquad m{S}_6 = \{a,b,f,g\}$

 $\{\boldsymbol{S}_3, \boldsymbol{S}_6\}$ is a set cover

 $\{3,6\}$ is a vertex cover

Proving Reductions

To prove that $X \leq_P Y$ you need to give an algorithm \mathcal{A} that

- transforms an instance I_X of X into an instance I_Y of Y
- satisfies the property that answer to I_X is YES iff I_Y is YES
 - typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO)
- runs in polynomial time

Sariel (UIUC) CS473 37 Fall 2011 37 / 45

Example of incorrect reduction proof

Try proving Matching \leq_P Bipartite Matching via following reduction:

- Given graph G = (V, E) obtain a bipartite graph G' = (V', E') as follows.
 - Let $V_1 = \{u_1 \mid u \in V\}$ and $V_2 = \{u_2 \mid u \in V\}$. We set $V = V_1 \cup V_2$ (that is, we make two copies of V)
 - $E' = \{(u_1, v_2) \mid u \neq v \text{ and } (u, v) \in E\}$
- Given G and integer k the reduction outputs G' and k.

Example

Sariel (UIUC) CS473 39 Fall 2011 39 / 45
"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $u \in V$ has two copies u_1 and u_2 in G'. A matching in G' may use both copies!

Sariel (UIUC) CS473 40 Fall 2011 40 / 45

Summary

We looked at polynomial-time reductions.

Using polynomial-time reductions

- If $X \leq_P Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.
- If $X \leq_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

We looked at some examples of reductions between **Independent Set**, **Clique**, **Vertex Cover**, and **Set Cover**.

Sariel (UIUC) CS473 41 Fall 2011 41 / 45