CS 473: Fundamental Algorithms, Fall 2011

Network Flows

Lecture 16 October 25, 2011

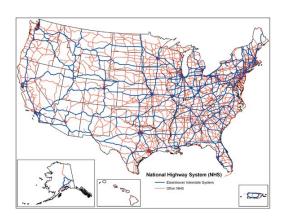
Everything flows

```
Panta rei – everything flows (literally). Heraclitus (535–475 BC)
```

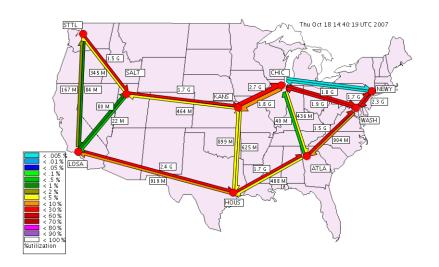
Part I

Network Flows: Introduction and Setup

Transportation/Road Network



Internet Backbone Network



Common Features of Flow Networks

- Network represented by a (directed) graph G = (V, E)
- Each edge e has a capacity c(e) > 0 that limits amount of traffic on e
- Source(s) of traffic/data
- Sink(s) of traffic/data
- Traffic flows from sources to sinks.
- Traffic is *switched/interchanged* at nodes

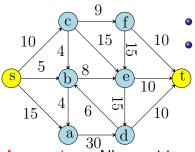
Flow: abstract term to indicate stuff (traffic/data/etc) that *flows* from sources to sinks.

Sariel (UIUC) CS473 Fall 2011

Single Source Single Sink Flows

Simple setting:

- single source s and single sink t
- every other node **v** is an *internal* node
- ullet flow originates at $oldsymbol{s}$ and terminates at $oldsymbol{t}$



- ullet Each edge $oldsymbol{e}$ has a capacity $oldsymbol{c}(oldsymbol{e}) \geq 0$
- Some times it is convenient to assume that source $s \in V$ has no incoming edges and sink $t \in V$ has no outgoing edges

Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

Sariel (UIUC) CS473 7 Fall 2011 7 / 3

Definition of Flow

Two ways to define flows:

- edge based
- path based

They are essentially equivalent but have different uses.

Edge based definition is more compact.

Sariel (UIUC) CS473 8 Fall 2011 8 / 31

Definition

A **flow** in a network G = (V, E), is a function $f : E \to \mathbb{R}^{\geq 0}$ such that

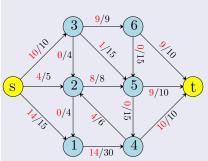


Figure: Flow with value

- Capacity Constraint: For each edge
 e, f(e) ≤ c(e)
- Conservation Constraint: For each vertex $\mathbf{v} \neq \mathbf{s}, \mathbf{t}$

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

 Value of flow: (total flow out of source) — (total flow in to source)

Sariel (UIUC) CS473 9 Fall 2011 9 / 31

Definition

A *flow* in a network G = (V, E), is a function $f : E \to \mathbb{R}^{\geq 0}$ such that

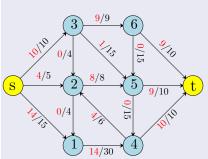


Figure: Flow with value

- Capacity Constraint: For each edge $e, f(e) \le c(e)$
- Conservation Constraint: For each vertex $\mathbf{v} \neq \mathbf{s}, \mathbf{t}$

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

 Value of flow: (total flow out of source) — (total flow in to source

Definition

A *flow* in a network G = (V, E), is a function $f : E \to \mathbb{R}^{\geq 0}$ such that

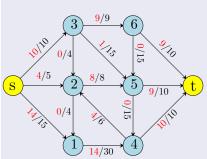


Figure: Flow with value

- Capacity Constraint: For each edge
 e, f(e) ≤ c(e)
- Conservation Constraint: For each vertex $v \neq s$, t

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

 Value of flow: (total flow out of source) — (total flow in to source

Definition

A *flow* in a network G = (V, E), is a function $f : E \to \mathbb{R}^{\geq 0}$ such that

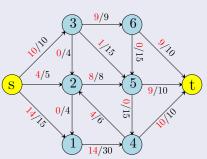


Figure: Flow with value

- Capacity Constraint: For each edge
 e, f(e) ≤ c(e)
- Conservation Constraint: For each vertex $v \neq s$, t

$$\sum_{e \text{ into } \mathbf{v}} \mathbf{f}(e) = \sum_{e \text{ out of } \mathbf{v}} \mathbf{f}(e)$$

 Value of flow: (total flow out of source) — (total flow in to source)

Flow...

Conservation of flow law is also known as Kirchhoff's law.

Sariel (UIUC) CS473 10 Fall 2011 10 / 31

More Definitions and Notation

Notation

- The inflow into a vertex \mathbf{v} is $\mathbf{f}^{\text{in}}(\mathbf{v}) = \sum_{\mathbf{e} \text{ into } \mathbf{v}} \mathbf{f}(\mathbf{e})$ and the outflow is $\mathbf{f}^{\text{out}}(\mathbf{v}) = \sum_{\mathbf{e} \text{ out of } \mathbf{v}} \mathbf{f}(\mathbf{e})$
- For a set of vertices \mathbf{A} , $\mathbf{f}^{\text{in}}(\mathbf{A}) = \sum_{\mathbf{e} \text{ into } \mathbf{A}} \mathbf{f}(\mathbf{e})$. Outflow $\mathbf{f}^{\text{out}}(\mathbf{A})$ is defined analogously

Definition

For a network G = (V, E) with source s, the *value* of flow f is defined as $v(f) = f^{\text{out}}(s) - f^{\text{in}}(s)$

Sariel (UIUC) CS473 11 Fall 2011 11 / 31

Intuition: flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition

A flow in a network ${\it G}=({\it V},{\it E})$, is a function ${\it f}:{\it P}\to \mathbb{R}^{\geq 0}$ such that

• Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$$

• Conservation Constraint: No need! Automatic.

Intuition: flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition

A flow in a network ${\it G}=({\it V},{\it E})$, is a function ${\it f}:{\it P}\to \mathbb{R}^{\geq 0}$ such that

• Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$\sum_{p \in \mathcal{P}: e \in p} f(p) \le c(e)$$

• Conservation Constraint: No need! Automatic.

Intuition: flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition

A flow in a network ${\it G}=({\it V},{\it E})$, is a function ${\it f}:{\it P}\to \mathbb{R}^{\geq 0}$ such that

• Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$\sum_{p\in\mathcal{P}:e\in p} f(p) \leq c(e)$$

• Conservation Constraint: No need! Automatic.

Intuition: flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition

A flow in a network ${\it G}=({\it V},{\it E})$, is a function ${\it f}:{\it P}\to \mathbb{R}^{\geq 0}$ such that

• Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$\sum_{p \in \mathcal{P}: e \in p} f(p) \le c(e)$$

Conservation Constraint: No need! Automatic.

Intuition: flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition

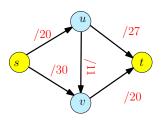
A flow in a network ${\it G}=({\it V},{\it E})$, is a function ${\it f}:{\it P}\to \mathbb{R}^{\geq 0}$ such that

• Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$$

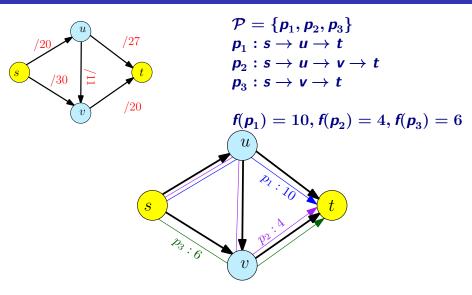
Conservation Constraint: No need! Automatic.

Example



$$\mathcal{P} = \{ p_1, p_2, p_3 \}$$
 $p_1 : s \rightarrow u \rightarrow t$
 $p_2 : s \rightarrow u \rightarrow v \rightarrow t$
 $p_3 : s \rightarrow v \rightarrow t$
 $f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$

Example



Sariel (UIUC) CS473 13 Fall 2011 13 / 31

Path based flow implies Edge based flow

Lemma

Given a path based flow $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $f: \mathbf{E} \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

For each edge e define $f'(e) = \sum_{p:e \in p} f(p)$.

Exercise: verify capacity and conservation constraints for f.

Exercise: verify that value of f and f' are equal

Path based flow implies Edge based flow

Lemma

Given a path based flow $\mathbf{f}: \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $\mathbf{f}: \mathbf{E} \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

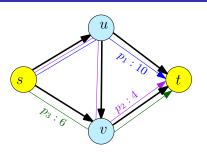
For each edge e define $f'(e) = \sum_{p:e \in p} f(p)$.

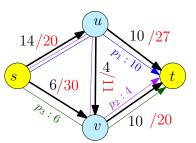
Exercise: verify capacity and conservation constraints for **f**.

Exercise: verify that value of **f** and **f** are equal

Sariel (UIUC) CS473 14 Fall 2011 14 / 31

Example





$$\mathcal{P} = \{p_1, p_2, p_3\}$$
 $p_1 : s \to u \to t$
 $p_2 : s \to u \to v \to t$
 $p_3 : s \to v \to t$
 $f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$
 $f'((s, u)) = 14$
 $f'((u, v)) = 4$
 $f'((s, v)) = 6$

f'((u,t)) = 10

 $f((\mathbf{v},\mathbf{t})) = 10$

Flow Decomposition

Edge based flow to Path based Flow

Lemma

Given an edge based flow $\mathbf{f}: \mathbf{E} \to \mathbb{R}^{\geq 0}$, there is a path based flow $\mathbf{f}: \mathcal{P} \to \mathbb{R}^{\geq 0}$ of same value. Moreover, \mathbf{f} assigns non-negative flow to at most \mathbf{m} paths where $|\mathbf{E}| = \mathbf{m}$ and $|\mathbf{V}| = \mathbf{n}$. Given \mathbf{f} , the path based flow can be computed in $\mathbf{O}(\mathbf{mn})$ time.

Sariel (UIUC) CS473 16 Fall 2011 16 / 31

Flow Decomposition

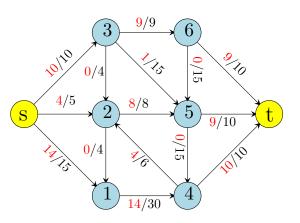
Edge based flow to Path based Flow

Proof Idea.

- remove all edges with f(e) = 0
- find a path p from s to t
- assign f(p) to be $\min_{e \in p} f'(e)$
- reduce f(e) for all $e \in p$ by f(p)
- ullet repeat until no path from $oldsymbol{s}$ to $oldsymbol{t}$
- in each iteration at least on edge has flow reduced to zero; hence at most m iterations. Can be implemented in O(m(m+n)) time. O(mn) time requires care.

Sariel (UIUC) CS473 17 Fall 2011 17 / 31

Example



Edge vs Path based Definitions of Flow

Edge based flows:

- compact representation, only m values to be specified
- need to check flow conservation explicitly at each internal node

Path flows:

- in some applications, paths more natural,
- not compact,
- no need to check flow conservation constraints.

Equivalence shows that we can go back and forth easily.

The Maximum-Flow Problem

Problem

Input A network **G** with capacity **c** and source **s** and sink **t**Goal Find flow of maximum value

Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink tGoal Find flow of maximum value

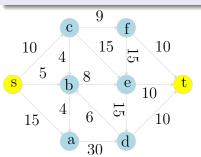
Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

Cuts

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'.

The *capacity* of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.



Caution:

- ullet Cut may leave $oldsymbol{t} o oldsymbol{s}$ paths!
- There might be many *s-t* cuts.

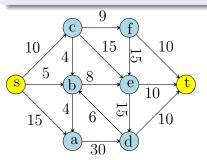
Sariel (UIUC) CS473 21 Fall 2011 21 / 31

Cuts

Definition (s-t cut)

Given a flow network an **s-t** cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'.

The *capacity* of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.



Caution

- ullet Cut may leave $oldsymbol{t} o oldsymbol{s}$ paths!
- There might be many **s-t** cuts.

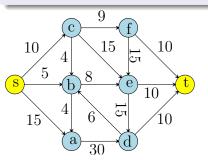
Sariel (UIUC) CS473 21 Fall 2011 21 / 31

Cuts

Definition (s-t cut)

Given a flow network an **s-t** cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'.

The *capacity* of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.



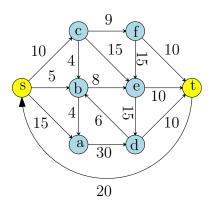
Caution:

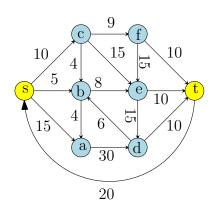
- Cut may leave $t \rightarrow s$ paths!
- There might be many **s-t** cuts.

Sariel (UIUC) CS473 21 Fall 2011 21 / 31

s — t cuts

A death by a thousand cuts



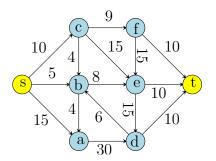


Sariel (UIUC) CS473 22 Fall 2011 22 / 31

Minimal Cut

Definition

Given a flow network an s-t, E' is a $minimal\ cut$ if for all $e \in E'$, $E' - \{e\}$ is not a cut.



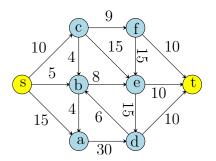
Observation: given a cut E', can check efficiently whether E' is a minimal cut or not. How?

Sariel (UIUC) CS473 23 Fall 2011 23 / 31

Minimal Cut

Definition

Given a flow network an s-t, E' is a $minimal\ cut$ if for all $e \in E'$, $E' - \{e\}$ is not a cut.



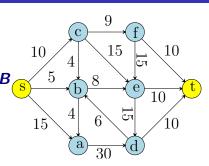
Observation: given a cut \mathbf{E}' , can check efficiently whether \mathbf{E}' is a minimal cut or not. How?

Sariel (UIUC) CS473 23 Fall 2011 23 / 31

Let $A \subset V$ such that '

- $s \in A$, $t \not\in A$
- B = V A and hence $t \in B$

Define cut $(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$ The set of edges leaving A.



Claim

(A, B) is an s-t cut.

Proof.

Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- Let \boldsymbol{A} be set of all nodes reachable by \boldsymbol{s} in $(\boldsymbol{V}, \boldsymbol{E} \boldsymbol{E}')$.
- Since E' is a cut, $t \not\in A$.
- $(A, B) \subseteq E'$. Why? If some edge $(u, v) \in (A, B)$ is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Every minimal set cut F' is a cut of the form (A B)

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- Let \boldsymbol{A} be set of all nodes reachable by \boldsymbol{s} in $(\boldsymbol{V}, \boldsymbol{E} \boldsymbol{E}')$.
- Since \mathbf{E}' is a cut, $\mathbf{t} \not\in \mathbf{A}$.
- $(A, B) \subseteq E'$. Why? If some edge $(u, v) \in (A, B)$ is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Seriel (IIIIC)

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- Let \boldsymbol{A} be set of all nodes reachable by \boldsymbol{s} in $(\boldsymbol{V}, \boldsymbol{E} \boldsymbol{E}')$.
- Since \mathbf{E}' is a cut, $\mathbf{t} \not\in \mathbf{A}$.
- $(A, B) \subseteq E'$. Why? If some edge $(u, v) \in (A, B)$ is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- Let **A** be set of all nodes reachable by **s** in (V, E E').
- Since E' is a cut, $t \not\in A$.
- $(A, B) \subseteq E'$. Why? If some edge $(u, v) \in (A, B)$ is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Fvery minimal set cut F' is a cut of the form (A B)

Sariel (UIUC)

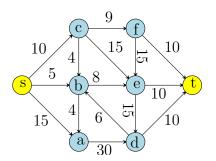
CS473

25

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.

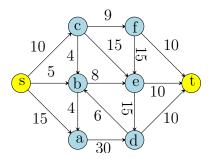


Observation: exponential number of **s**-**t** cuts and no "easy" algorithm to find a minimum cut.

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.



Observation: exponential number of **s-t** cuts and no "easy" algorithm to find a minimum cut.

The Minimum-Cut Problem

Problem

Input A flow network **G**

Goal Find the capacity of a minimum s-t cut

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $\boldsymbol{p} \in \mathcal{P}$ contains an edge $\boldsymbol{e} \in \boldsymbol{E}'$. Why? Assign each path $\boldsymbol{p} \in \mathcal{P}$ to exactly one edge $\boldsymbol{e} \in \boldsymbol{E}'$. Let \mathcal{P}_e be paths assigned to $\boldsymbol{e} \in \boldsymbol{E}'$. Then

$$\mathbf{v}(\mathbf{f}) = \sum_{\mathbf{p} \in \mathcal{P}} \mathbf{f}(\mathbf{p}) = \sum_{\mathbf{e} \in \mathbf{E}'} \sum_{\mathbf{p} \in \mathcal{P}_{\mathbf{e}}} \mathbf{f}(\mathbf{p}) \leq \sum_{\mathbf{e} \in \mathbf{E}'} \mathbf{c}(\mathbf{e})$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow. Suppose $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $\mathbf{p} \in \mathcal{P}$ contains an edge $\mathbf{e} \in \mathbf{E}'$. Why?

Assign each path $m{p} \in \mathcal{P}$ to exactly one edge $m{e} \in m{E}'$. Let \mathcal{P}_e be paths assigned to $m{e} \in m{E}'$. Then

$$\mathbf{v}(\mathbf{f}) = \sum_{\mathbf{p} \in \mathcal{P}} \mathbf{f}(\mathbf{p}) = \sum_{\mathbf{e} \in \mathbf{E}'} \sum_{\mathbf{p} \in \mathcal{P}_{\mathbf{e}}} \mathbf{f}(\mathbf{p}) \leq \sum_{\mathbf{e} \in \mathbf{E}'} \mathbf{c}(\mathbf{e})$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow.

Suppose $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why? Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$. Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$$\mathbf{v}(\mathbf{f}) = \sum_{\mathbf{p} \in \mathcal{P}} \mathbf{f}(\mathbf{p}) = \sum_{\mathbf{e} \in \mathbf{E}'} \sum_{\mathbf{p} \in \mathcal{P}_{\mathbf{e}}} \mathbf{f}(\mathbf{p}) \leq \sum_{\mathbf{e} \in \mathbf{E}'} \mathbf{c}(\mathbf{e})$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

Formal proof easier with path based definition of flow.

Suppose $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.

Every path $p \in \mathcal{P}$ contains an edge $e \in \mathbf{E}'$. Why? Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in \mathbf{E}'$. Let \mathcal{P}_e be paths assigned to $e \in \mathbf{E}'$. Then

$$extbf{v}(extbf{f}) = \sum_{ extbf{p} \in \mathcal{P}} extbf{f}(extbf{p}) = \sum_{ extbf{e} \in extbf{E}'} \sum_{ extbf{p} \in \mathcal{P}_e} extbf{f}(extbf{p}) \leq \sum_{ extbf{e} \in extbf{E}'} extbf{c}(extbf{e})$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Corollary

 $Maximum s-t flow \leq minimum s-t cut.$

Max-Flow Min-Cut Theorem

Theorem

In any flow network the maximum **s-t** flow is equal to the minimum **s-t** cut.

Can compute minimum-cut from maximum flow and vice-versa! Proof coming shortly.

Many applications

- optimization
- graph theory
- combinatorics

Max-Flow Min-Cut Theorem

Theorem

In any flow network the maximum **s-t** flow is equal to the minimum **s-t** cut.

Can compute minimum-cut from maximum flow and vice-versa!

Proof coming shortly

Many applications

- optimization
- graph theory
- combinatorics

Max-Flow Min-Cut Theorem

Theorem

In any flow network the maximum **s-t** flow is equal to the minimum **s-t** cut.

Can compute minimum-cut from maximum flow and vice-versa! Proof coming shortly.

Many applications:

- optimization
- graph theory
- combinatorics

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink tGoal Find flow of maximum value from s to t

Exercise: Given **G**, **s**, **t** as above, show that one can remove all edges into **s** and all edges out of **t** without affecting the flow value between **s** and **t**.

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink tGoal Find flow of maximum value from s to t

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.

Sariel (UIUC) CS473 33 Fall 2011 33 / 33

Sariel (UIUC) CS473 34 Fall 2011 34 / 31

Sariel (UIUC) CS473 35 Fall 2011 35 / 33