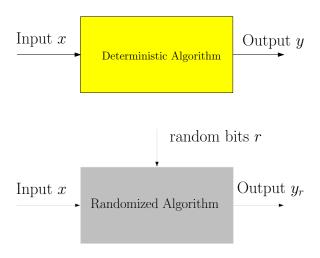
Introduction to Randomized Algorithms: QuickSort and QuickSelect

Lecture 13 October 13, 2011

Part I

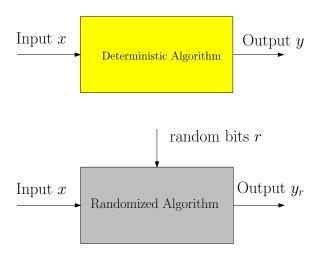
Introduction to Randomized Algorithms

Randomized Algorithms



Sariel (UIUC) CS473 3 Fall 2011 3 / 41

Randomized Algorithms



Sariel (UIUC) CS473 3 Fall 2011 3 / 41

Example: Randomized QuickSort

QuickSort [Hoare, 1962]

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Randomized QuickSort

- Pick a pivot element uniformly at random from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Example: Randomized Quicksort

Recall: QuickSort can take $\Omega(n^2)$ time to sort array of size n.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Sariel (UIUC) CS473 5 Fall 2011 5 / 4

Example: Randomized Quicksort

Recall: QuickSort can take $\Omega(n^2)$ time to sort array of size n.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On every input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On every input it may take $\Omega(n^2)$ time with some small probability.

Sariel (UIUC) CS473 5 Fall 2011 5 / 4

Example: Randomized Quicksort

Recall: QuickSort can take $\Omega(n^2)$ time to sort array of size n.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Sariel (UIUC) CS473 5 Fall 2011 5 / 4

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

- Multiply A and B and check if equal to C.
- Running time? $O(n^3)$ by straight forward approach. $O(n^{2.37})$

CS473 Fall 2011

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Deterministic algorithm:

- Multiply A and B and check if equal to C.
- Running time? $O(n^3)$ by straight forward approach. $O(n^{2.37})$ with fast matrix multiplication (complicated and impractical).

Sariel (UIUC) CS473 6 Fall 2011 6 / 4

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Deterministic algorithm:

- Multiply A and B and check if equal to C.
- Running time? $O(n^3)$ by straight forward approach. $O(n^{2.37})$ with fast matrix multiplication (complicated and impractical).

CS473 Fall 2011

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- Return the answer of the equality ABr = Cr.
- Running time? $O(n^2)$!

Theorem

If AB = C then the algorithm will always say YES. If $AB \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1/2^{100}$.

Sariel (UIUC) CS473 7 Fall 2011 7 / 41

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- Return the answer of the equality ABr = Cr.
- Running time? $O(n^2)$!

Theorem

If AB = C then the algorithm will always say YES. If $AB \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1/2^{100}$.

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- Return the answer of the equality ABr = Cr.
- Running time? $O(n^2)!$

Theorem

If AB = C then the algorithm will always say YES. If $AB \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1/2^{100}$.

Sariel (UIUC) CS473 7 Fall 2011 7 / 4

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- Return the answer of the equality ABr = Cr.
- Running time? $O(n^2)!$

Theorem

If AB = C then the algorithm will always say YES. If $AB \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1/2^{100}$.

Sariel (UIUC) CS473 7 Fall 2011 7 / 4

Why randomized algorithms?

- Many many applications in algorithms, data structures and computer science!
- In some cases only known algorithms are randomized or randomness is provably necessary.
- Often randomized algorithms are (much) simpler and/or more efficient.
- Several deep connections to mathematics, physics etc.
- . . .
- Lots of fun!

Where do I get random bits?

Question: Are true random bits available in practice?

- Buy them!
- CPUs use physical phenomena to generate random bits.
- Can use pseudo-random bits or semi-random bits from nature.
 Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.
- In practice pseudo-random generators work quite well in many applications.
- The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can *derandomize* randomized algorithms to obtain deterministic algorithms.

Sariel (UIUC) CS473 9 Fall 2011 9 / 4

Average case analysis vs Randomized algorithms

Average case analysis:

- Fix a deterministic algorithm.
- Assume inputs comes from a probability distribution.
- Analyze the algorithm's average performance over the distribution over inputs.

Randomized algorithms:

- Algorithm uses random bits in addition to input.
- Analyze algorithms average performance over the given input where the average is over the random bits that the algorithm uses.
- On each input behaviour of algorithm is random. Analyze worst-case over all inputs of the (average) performance.

Sariel (UIUC) CS473 10 Fall 2011 10 / 41

Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair (Ω, \Pr) consists of finite set Ω of *elementary* events and function $p:\Omega \to [0,1]$ which assigns a probability $\Pr[\omega]$ for each $\omega \in \Omega$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Example

An unbiased coin. $\Omega = \{\emph{\textbf{H}}, \emph{\textbf{T}}\}$ and $\Pr[\emph{\textbf{H}}] = \Pr[\emph{\textbf{T}}] = 1/2$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\Pr[\emph{i}]=1/6$ for $1\leq \emph{i}\leq 6$.

Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair (Ω, \Pr) consists of finite set Ω of *elementary* events and function $p:\Omega \to [0,1]$ which assigns a probability $\Pr[\omega]$ for each $\omega \in \Omega$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Example

An unbiased coin. $\Omega = \{H, T\}$ and Pr[H] = Pr[T] = 1/2.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\Pr[\emph{\emph{i}}]=1/6$ for $1<\emph{\emph{i}}<6$.

Sariel (UIUC) CS473 11 Fall 2011 11 / 41

Discrete Probability

And more examples

Example

A biased coin. $\Omega = \{H, T\}$ and Pr[H] = 2/3, Pr[T] = 1/3.

Example

Two independent unbiased coins. $\Omega = \{HH, TT, HT, TH\}$ and $\Pr[HH] = \Pr[TT] = \Pr[HT] = \Pr[TH] = 1/4$.

Example

A pair of (highly) correlated dice.

$$\Omega = \{(i,j) \mid 1 \le i \le 6, 1 \le j \le 6\}.$$

 $\Pr[i, i] = 1/6$ for $1 \le i \le 6$ and $\Pr[i, j] = 0$ if $i \ne j$.

Events

Definition

Given a probability space (Ω, \Pr) an *event* is a subset of Ω . In other words an event is a collection of elementary events. The probability of an event A, denoted by $\Pr[A]$, is $\sum_{\omega \in A} \Pr[\omega]$. The complement of an event $A \subseteq \Omega$ is the event $\Omega \setminus A$ frequently denoted by \bar{A} .

Example

A pair of independent dice. $\Omega = \{(i,j) \mid 1 \le i \le 6, 1 \le j \le 6\}.$

- Let ${\bf A}$ be the event that the sum of the two numbers on the dice is even. Then ${\bf A}=\{({\bf i},{\bf j})\in\Omega\mid ({\bf i}+{\bf j}) \text{ is even}\}.$ $\Pr[{\bf A}]=|{\bf A}|/36=1/2.$
- Let $\textbf{\textit{B}}$ be the event that the first die has 1. Then $\textbf{\textit{B}} = \Big\{ (1,1), (1,2), (1,3), (1,4), (1,5), (1,6) \Big\}.$ $\Pr[\textbf{\textit{B}}] = 6/36 = 1/6.$

Independent Events

Definition

Given a probability space (Ω, Pr) and two events A, B are **independent** if and only if $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are *dependent*. In other words A, B independent implies one does not affect the other.

Example

Two coins.
$$\Omega = \{\mathit{HH}, \mathit{TT}, \mathit{HT}, \mathit{TH}\}$$
 and $\Pr[\mathit{HH}] = \Pr[\mathit{TT}] = \Pr[\mathit{HT}] = \Pr[\mathit{TH}] = 1/4.$

- A is the event that the first coin is heads and B is the event that second coin is tails. A, B are independent.
- **A** is the event that the two coins are different. **B** is the event that the second coin is heads. **A**, **B** independent.

Sariel (UIUC) CS473 15 Fall 2011 15 / 41

Independent Events

Definition

Given a probability space (Ω, \mathbf{Pr}) and two events \mathbf{A}, \mathbf{B} are **independent** if and only if $\mathbf{Pr}[\mathbf{A} \cap \mathbf{B}] = \mathbf{Pr}[\mathbf{A}] \, \mathbf{Pr}[\mathbf{B}]$. Otherwise they are *dependent*. In other words \mathbf{A}, \mathbf{B} independent implies one does not affect the other.

Example

Two coins. $\Omega = \{HH, TT, HT, TH\}$ and $\Pr[HH] = \Pr[TT] = \Pr[HT] = \Pr[TH] = 1/4$.

- **A** is the event that the first coin is heads and **B** is the event that second coin is tails. **A**, **B** are independent.
- **A** is the event that the two coins are different. **B** is the event that the second coin is heads. **A**, **B** independent.

Sariel (UIUC) CS473 15 Fall 2011 15 / 41

Independent Events

Examples

Example

 \boldsymbol{A} is the event that both are not tails and \boldsymbol{B} is event that second coin is heads. $\boldsymbol{A}, \boldsymbol{B}$ are dependent.

Random Variables

Definition

Given a probability space (Ω, \Pr) a (real-valued) random variable X over Ω is a function that maps each elementary event to a real number. In other words $X:\Omega\to\mathbb{R}$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\Pr[\emph{\textbf{i}}]=1/6$ for $1\leq \emph{\textbf{i}}\leq 6$.

- $X: \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$.
- $Y: \Omega \to \mathbb{R}$ where $Y(i) = i^2$.

Definition

A **binary random variable** is one that takes on values in $\{0,1\}$.

Random Variables

Definition

Given a probability space (Ω, \Pr) a (real-valued) random variable X over Ω is a function that maps each elementary event to a real number. In other words $X:\Omega\to\mathbb{R}$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\Pr[\emph{i}]=1/6$ for $1\leq \emph{i}\leq 6$.

- $X: \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$.
- $Y: \Omega \to \mathbb{R}$ where $Y(i) = i^2$.

Definition

A **binary random variable** is one that takes on values in $\{0,1\}$.

Random Variables

Definition

Given a probability space (Ω, \Pr) a (real-valued) random variable X over Ω is a function that maps each elementary event to a real number. In other words $X:\Omega\to\mathbb{R}$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\Pr[\emph{\emph{i}}]=1/6$ for $1\leq\emph{\emph{i}}\leq6.$

- $X: \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$.
- $Y: \Omega \to \mathbb{R}$ where $Y(i) = i^2$.

Definition

A **binary random variable** is one that takes on values in $\{0,1\}$.

Sariel (UIUC) CS473 17 Fall 2011 17 / 41

Indicator Random Variables

Special type of random variables that are quite useful.

Definition

Given a probability space (Ω, Pr) and an event $A \subseteq \Omega$ the indicator random variable X_A is a binary random variable where $X_A(\omega) = 1$ if $\omega \in A$ and $X_A(\omega) = 0$ if $\omega \not\in A$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\Pr[\emph{i}]=1/6$ for $1\leq \emph{i}\leq 6$. Let \emph{A} be the even that \emph{i} is divisible by $\emph{3}$. Then $\emph{X}_{\emph{A}}(\emph{i})=1$ if $\emph{i}=3,6$ and $\emph{0}$ otherwise.

Indicator Random Variables

Special type of random variables that are quite useful.

Definition

Given a probability space (Ω, Pr) and an event $A \subseteq \Omega$ the indicator random variable X_A is a binary random variable where $X_A(\omega) = 1$ if $\omega \in A$ and $X_A(\omega) = 0$ if $\omega \not\in A$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\Pr[\emph{i}]=1/6$ for $1\leq \emph{i}\leq 6$. Let \emph{A} be the even that \emph{i} is divisible by 3. Then $\emph{X}_{\emph{A}}(\emph{i})=1$ if $\emph{i}=3,6$ and 0 otherwise.

Sariel (UIUC) CS473 18 Fall 2011 18 / 41

Expectation

Definition

For a random variable \boldsymbol{X} over a probability space (Ω, \mathbf{Pr}) the **expectation** of \boldsymbol{X} is defined as $\sum_{\omega \in \Omega} \mathbf{Pr}[\omega] \, \boldsymbol{X}(\omega)$. In other words, the expectation is the average value of \boldsymbol{X} according to the probabilities given by $\mathbf{Pr}[\cdot]$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\Pr[\emph{i}]=1/6$ for $1\leq \emph{i}\leq 6$.

- $X: \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$. Then $\mathbf{E}[X] = 1/2$.
- $\mathbf{Y}:\Omega \to \mathbb{R}$ where $\mathbf{Y}(\mathbf{i})=\mathbf{i}^2$. Then $\mathbf{E}[\mathbf{Y}]=\sum_{i=1}^6 \frac{1}{6}\cdot\mathbf{i}^2=91/6$.

Expectation

Definition

For a random variable \boldsymbol{X} over a probability space (Ω, \mathbf{Pr}) the **expectation** of \boldsymbol{X} is defined as $\sum_{\omega \in \Omega} \mathbf{Pr}[\omega] \, \boldsymbol{X}(\omega)$. In other words, the expectation is the average value of \boldsymbol{X} according to the probabilities given by $\mathbf{Pr}[\cdot]$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\Pr[\emph{\emph{i}}]=1/6$ for $1\leq \emph{\emph{i}}\leq 6$.

- $X: \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$. Then $\mathbf{E}[X] = 1/2$.
- $Y: \Omega \to \mathbb{R}$ where $Y(i) = i^2$. Then $\mathsf{E}[Y] = \sum_{i=1}^6 \frac{1}{6} \cdot i^2 = 91/6$.

Sariel (UIUC) CS473 19 Fall 2011 19 / 41

Expectation

Proposition

For an indicator variable X_A , $E[X_A] = Pr[A]$.

Proof.

$$\begin{aligned} \mathbf{E}[\mathbf{X}_{A}] &= \sum_{\mathbf{y} \in \Omega} \mathbf{X}_{A}(\mathbf{y}) \, \mathsf{Pr}[\mathbf{y}] \\ &= \sum_{\mathbf{y} \in A} 1 \cdot \mathsf{Pr}[\mathbf{y}] + \sum_{\mathbf{y} \in \Omega \setminus A} 0 \cdot \mathsf{Pr}[\mathbf{y}] \\ &= \sum_{\mathbf{y} \in A} \mathsf{Pr}[\mathbf{y}] \\ &= \mathsf{Pr}[\mathbf{A}] \, . \end{aligned}$$

Sariel (UIUC) CS473 20 Fall 2011 20 / 41

Linearity of Expectation

Lemma

Let X, Y be two random variables over a probability space (Ω, Pr) . Then E[X + Y] = E[X] + E[Y].

Proof.

$$\begin{split} \mathsf{E}[\mathbf{X} + \mathbf{Y}] &= \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \left(\mathbf{X}(\omega) + \mathbf{Y}(\omega) \right) \\ &= \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \, \mathbf{X}(\omega) + \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \, \mathbf{Y}(\omega) = \mathsf{E}[\mathbf{X}] + \mathsf{E}[\mathbf{Y}] \,. \end{split}$$

Corollary

$$\mathbf{E}[a_1X_1 + a_2X_2 + \ldots + a_nX_n] = \sum_{i=1}^n a_i \, \mathbf{E}[X_i].$$

Linearity of Expectation

Lemma

Let X, Y be two random variables over a probability space (Ω, Pr) . Then E[X + Y] = E[X] + E[Y].

Proof.

$$\begin{split} \mathbf{E}[\mathbf{X} + \mathbf{Y}] &= \sum_{\omega \in \Omega} \Pr[\omega] \left(\mathbf{X}(\omega) + \mathbf{Y}(\omega) \right) \\ &= \sum_{\omega \in \Omega} \Pr[\omega] \left(\mathbf{X}(\omega) + \sum_{\omega \in \Omega} \Pr[\omega] \left(\mathbf{Y}(\omega) \right) \right) = \mathbf{E}[\mathbf{X}] + \mathbf{E}[\mathbf{Y}] \,. \end{split}$$

Corollary

$$E[a_1X_1 + a_2X_2 + \ldots + a_nX_n] = \sum_{i=1}^n a_i E[X_i].$$

Types of Randomized Algorithms

Typically one encounters the following types:

- Las Vegas randomized algorithms: for a given input x output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.
- Monte Carlo randomized algorithms: for a given input x the running time is deterministic but the output is random; correct with some probability. In this case we are interested in analyzing the probability of the correct output (and also the running time).
- Algorithms whose running time and output may both be random.

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :

- Let Q(x) be the time for Q to run on input x of length |x|.
- Worst-case analysis: run time on worst input for a given size *n*.

$$T_{wc}(n) = \max_{x:|x|=n} Q(x).$$

Randomized algorithm R for a problem Π :

- Let R(x) be the time for Q to run on input x of length |x|.
- R(x) is a random variable: depends on random bits used by R.
- E[R(x)] is the expected running time for R on x
- ullet Worst-case analysis: expected time on worst input of size $oldsymbol{n}$

$$T_{rand-wc}(n) = \max_{x:|x|=n} E[Q(x)].$$

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :

- Let Q(x) be the time for Q to run on input x of length |x|.
- Worst-case analysis: run time on worst input for a given size *n*.

$$T_{wc}(n) = \max_{x:|x|=n} Q(x).$$

Randomized algorithm R for a problem Π :

- Let R(x) be the time for Q to run on input x of length |x|.
- R(x) is a random variable: depends on random bits used by R.
- E[R(x)] is the expected running time for R on x
- Worst-case analysis: expected time on worst input of size n

$$T_{rand-wc}(n) = \max_{x:|x|=n} E[Q(x)].$$

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π :

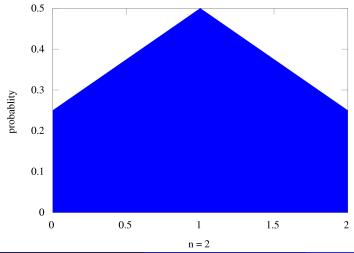
- Let M(x) be the time for M to run on input x of length |x|. For Monte Carlo, assumption is that run time is deterministic.
- Let Pr[x] be the probability that M is correct on x.
- Pr[x] is a random variable: depends on random bits used by M.
- Worst-case analysis: success probability on worst input

$$P_{rand-wc}(n) = \min_{x:|x|=n} \Pr[x]$$
.

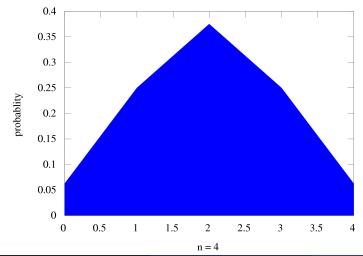
Part II

Why does randomization help?

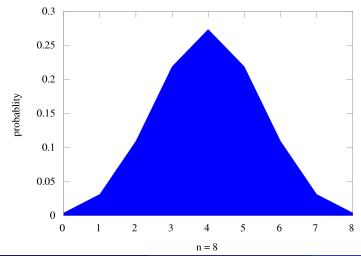
Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.



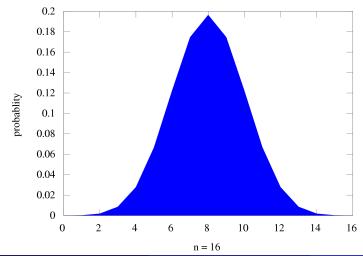
Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.



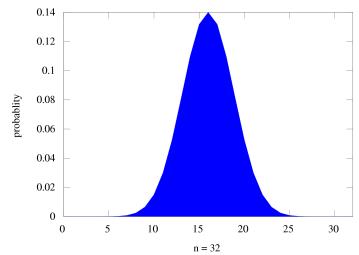
Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.



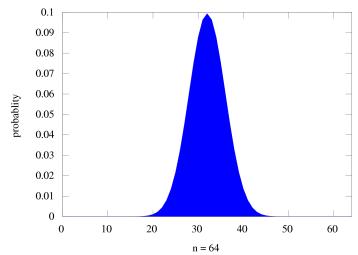
Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.



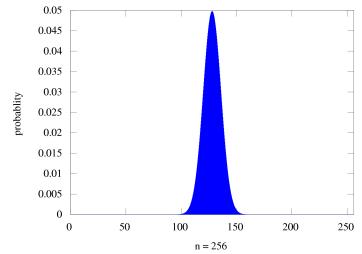
Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.



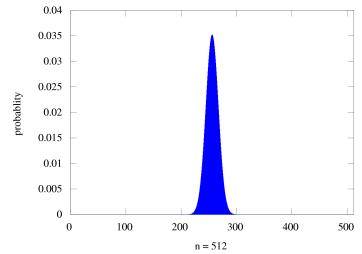
Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.



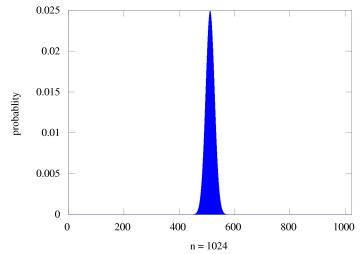
Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.



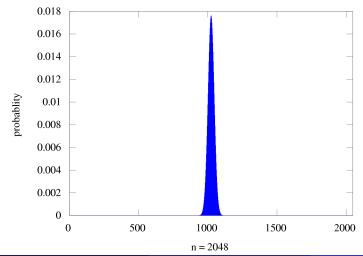
Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.



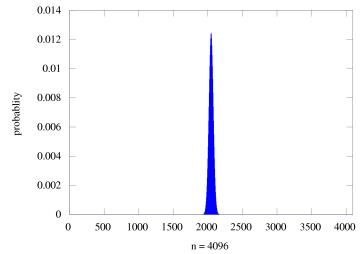
Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.



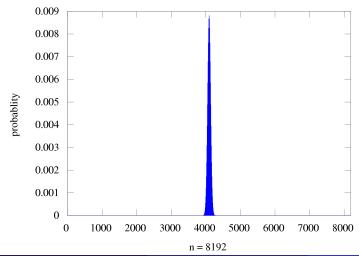
Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

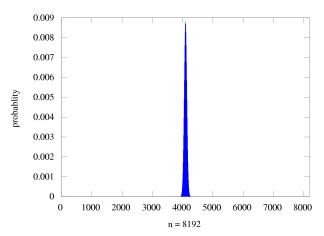


Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.



Consider flipping a fair coin n times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.





This is known as **concentration of mass**.

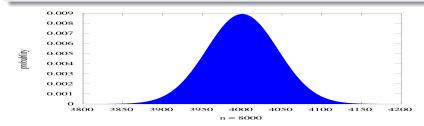
This is a very special case of the **law of large numbers**.

Side note...

Law of large numbers (weakest form)...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution looks like (converge to) the normal distribution.



Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

 X_n = numbers of heads when flipping a coin n times.

Claim

$$\Pr[X_n=i]=\frac{\binom{n}{i}}{2^n}.$$

Where: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.

Indeed, $\binom{n}{i}$ is the number of ways to choose i elements out of n elements (i.e., pick which i coin flip come up heads).

Each specific such possibility (say 0100010...) had probability $1/2^n$. We are interested in the bad event $\Pr[X_n \leq n/4]$ (way too few

heads). We are going to prove this probability is tiny.

Playing around with binomial coefficients

Lemma

$$n! \geq (n/e)^n$$
.

Proof.

$$\frac{n^n}{n!} \leq \sum_{i=0}^{\infty} \frac{n^i}{i!} = e^n,$$

by the Taylor expansion of $e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$. This implies that $(n/e)^n \le n!$, as required.

Playing around with binomial coefficients

Lemma

For any $k \leq n$, we have $\binom{n}{k} \leq \left(\frac{ne}{k}\right)^k$.

Proof.

$$\binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}$$

$$\leq \frac{n^k}{k!} \leq \frac{n^k}{\left(\frac{k}{a}\right)^k} = \left(\frac{ne}{k}\right)^k.$$

since $k! > (k/e)^k$ (by previous lemma).

Playing around with binomial coefficients

$$\Pr[X_n \le n/4] = \sum_{k=0}^{n/4} \frac{1}{2^n} \binom{n}{k} \le \frac{1}{2^n} 2 \cdot \binom{n}{n/4}$$

For $k \le n/4$ the above sequence behave like a geometric variable.

$$\binom{n}{k+1} / \binom{n}{k} = \frac{n!}{(k+1)!(n-k-1)!} / \frac{n!}{(k)!(n-k)!}$$

$$= \frac{n-k}{k+1} \ge \frac{(3/4)n}{n/4+1} \ge 2.$$

Playing around with binomial coefficients

$$\begin{aligned} \Pr[\mathbf{X}_n \leq \mathbf{n}/4] &\leq \frac{1}{2^n} 2 \cdot \binom{\mathbf{n}}{\mathbf{n}/4} \leq \frac{1}{2^n} 2 \cdot \left(\frac{\mathbf{n}\mathbf{e}}{\mathbf{n}/4}\right)^{\mathbf{n}/4} \leq 2 \cdot \left(\frac{4\mathbf{e}}{2^4}\right)^{\mathbf{n}/4} \\ &\leq 2 \cdot 0.68^{\mathbf{n}/4}. \end{aligned}$$

We just proved the following theorem.

Theorem

Let X_n be the number heads when flipping a coin indepdently n times. Then

$$\mathsf{Pr}\Big[extbf{X}_{ extbf{n}} \leq rac{ extbf{n}}{4} \Big] \leq 2 \cdot 0.68^{ extbf{n}/4} \; ext{and} \; \mathsf{Pr}\Big[extbf{X}_{ extbf{n}} \geq rac{3 extbf{n}}{4} \Big] \leq 2 \cdot 0.68^{ extbf{n}/4}$$

Part III

Randomized Quick Sort and Selection

Randomized QuickSort

Randomized QuickSort

- Pick a pivot element uniformly at random from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Example

• array: 16, 12, 14, 20, 5, 3, 18, 19, 1

- Given array A of size n let Q(A) be number of comparisons of randomized QuickSort on A.
- Note that Q(A) is a random variable
- Let A_{left}^{i} and A_{right}^{i} be the left and right arrays obtained if:

pivot is of rank *i* in *A*.

$$Q(A) = n + \sum_{i=1}^{n} \Pr[\text{pivot has rank } i] \left(Q(A_{\text{left}}^{i}) + Q(A_{\text{right}}^{i}) \right)$$

Since each element of \boldsymbol{A} has probability exactly of $1/\boldsymbol{n}$ of being chosen:

$$Q(A) = n + \sum_{i=1}^{n} \frac{1}{n} \left(Q(A_{\text{left}}^{i}) + Q(A_{\text{right}}^{i}) \right)$$

- Given array A of size n let Q(A) be number of comparisons of randomized QuickSort on A.
- Note that Q(A) is a random variable
- Let A_{left}^{i} and A_{right}^{i} be the left and right arrays obtained if:

pivot is of rank *i* in *A*.

$$Q(A) = n + \sum_{i=1}^{n} \Pr[\text{pivot has rank } i] \left(Q(A_{\text{left}}^{i}) + Q(A_{\text{right}}^{i}) \right)$$

Since each element of \boldsymbol{A} has probability exactly of $1/\boldsymbol{n}$ of being chosen:

$$Q(A) = n + \sum_{i=1}^{n} \frac{1}{n} \left(Q(A_{\text{left}}^{i}) + Q(A_{\text{right}}^{i}) \right)$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} \Pr[\text{pivot has rank } i] \left(Q(A_{\text{left}}^{i}) + Q(A_{\text{right}}^{i}) \right)$$

Therefore, by linearity of expectation

$$\mathbf{E}[Q(A)] = n + \sum_{i=1}^{n} \Pr[\text{pivot of rank } i] \Big(\mathbf{E}[Q(A_{\text{left}}^{i})] + \mathbf{E}[Q(A_{\text{right}}^{i})] \Big).$$

$$\Rightarrow \quad \mathsf{E}\big[Q(A)\big] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} \Pr[\text{pivot has rank } i] \left(Q(A_{\text{left}}^{i}) + Q(A_{\text{right}}^{i}) \right)$$

Therefore, by linearity of expectation

$$\mathbf{E}[Q(A)] = n + \sum_{i=1}^{n} \Pr[\text{pivot of rank } i] \Big(\mathbf{E}[Q(A_{\text{left}}^{i})] + \mathbf{E}[Q(A_{\text{right}}^{i})] \Big).$$

$$\Rightarrow \quad \mathsf{E}\!\left[Q(A)\right] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} \Pr[\text{pivot has rank } i] \left(Q(A_{\text{left}}^{i}) + Q(A_{\text{right}}^{i}) \right)$$

Therefore, by linearity of expectation:

$$\mathbf{E}[Q(A)] = n + \sum_{i=1}^{n} \Pr[\text{pivot of rank } i] \Big(\mathbf{E}[Q(A_{\text{left}}^{i})] + \mathbf{E}[Q(A_{\text{right}}^{i})] \Big).$$

$$\Rightarrow \quad \mathsf{E}\!\left[Q(A)\right] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} \Pr[\text{pivot has rank } i] \left(Q(A_{\text{left}}^{i}) + Q(A_{\text{right}}^{i}) \right)$$

Therefore, by linearity of expectation:

$$\mathsf{E}ig[Q(A)ig] = n + \sum_{i=1}^n \mathsf{Pr}[\mathsf{pivot} \ \mathsf{of} \ \mathsf{rank} \ i] \Big(\mathsf{E}ig[Q(A_{\mathsf{left}}^i)ig] + \mathsf{E}ig[Q(A_{\mathsf{right}}^i)ig]\Big) \,.$$

$$\Rightarrow \quad \mathsf{E}\big[Q(A)\big] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Let $T(n) = \max_{A:|A|=n} \mathbb{E}[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We derived:

$$E[Q(A)] \le n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i)).$$

Note that above holds for any A of size n. Therefore

$$\max_{A:|A|=n} \mathsf{E}[Q(A)] = T(n) \le n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i)).$$

Sariel (UIUC) CS473 40 Fall 2011 40 / 41

Let $T(n) = \max_{A:|A|=n} \mathbf{E}[Q(A)]$ be the worst-case expected running time of randomized **QuickSort** on arrays of size n. We derived:

$$\mathsf{E}[Q(A)] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i) \right).$$

Note that above holds for any \boldsymbol{A} of size \boldsymbol{n} . Therefore

$$\max_{A:|A|=n} \mathsf{E}[Q(A)] = T(n) \le n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i)).$$

Sariel (UIUC) CS473 40 Fall 2011 40 / 4

Solving the Recurrence

$$T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i) \right)$$

with base case T(1) = 0.

Lemma

$$T(n) = O(n \log n).$$

Proof.

(Guess and) Verify by induction.

Solving the Recurrence

$$T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i) \right)$$

with base case T(1) = 0.

Lemma

$$T(n) = O(n \log n).$$

Proof

(Guess and) Verify by induction.

Solving the Recurrence

$$T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i) \right)$$

with base case T(1) = 0.

Lemma

$$T(n) = O(n \log n).$$

Proof.

(Guess and) Verify by induction.

Sariel (UIUC) CS473 44 Fall 2011 44 / 43

Sariel (UIUC) CS473 45 Fall 2011 45 / 4: