CS 473: Algorithms, Fall 2010 HBS 6

Problem 1. [Minimum Spanning Tree]

- Draw the edges in the Minimum Spanning Tree for the following graph.
- Given G and MST T, suppose you decrease the weight of an edge e not in T. Give an algorithm to recompute the MST in O(n) time.

Problem 2. [Stock Picking]

You have a group of investor friends who are looking at n consecutive days of a given stock at some point in the past. The days are numbered. i = 1, 2, ..., n. For each day i, they have a price p(i) per share for the stock on that day.

For certain (possibly large) values of k, they want to study what they call k-shot strategies. A k-shot strategy is a collection of m pairs of days $(b_1, s_1), \ldots, (b_m, s_m)$, where $0 \le m \le k$ and

$$1 \le b_1 < s_1 < b_2 < s_2 \cdots < b_m < s_m \le n$$

We view these as a set of up to k nonoverlapping intervals, during each of which the investors buy 1,000 shares of the stock (on day b_i and then sell it (on day s_i . The return of a given k-shot strategy is simply the profit obtained from the m buy-sell transactions, namely,

$$1000 \cdot \sum_{i=1}^{m} p(s_i) - p(b_i)$$

• Design an efficient algorithm that determines, given the sequence of prices, the k-shot strategy with the maximum possible return. Since k may be relatively large, your running time should be polynomial in both n and k.

• Now, modify your algorithm to only use O(n) space.

Problem 3. [Weighted Scheduling]

We have n jobs J_1, J_2, \ldots, J_n which we need to schedule on a machine. Each job J_i has a processing time t_i and a weight w_i . A schedule for the machine is an ordering of the jobs. Given a schedule, let C_i denote the finishing time of job J_i . For example, if job J_j is the first job in the schedule, its finishing time C_j is equal to t_j ; if job t_j follows job t_j in the schedule, its finishing time t_j is equal to t_j . The weighted completion time of the schedule is t_j is t_j in the schedule.

- Given an efficient algorithm that finds a minimum weighted schedule when $w_i = 1$ for all i.
- Give an efficient algorithm that finds a schedule with minimum weighted completion time given arbitrary weights.