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Strong Connected Components (SCCs)

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges
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Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture: saw an O(n · (n + m)) time algorithm.
This lecture: O(n + m) time algorithm.
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Graph of SCCs

AB C

DE F

G H

Figure: Graph G

B, E , F

G H

A, C , D

Figure: Graph of SCCs GSCC

Meta-graph of SCCs

Let S1, S2, . . . Sk be the SCCs of G . The graph of SCCs is GSCC

Vertices are S1, S2, . . . Sk

There is an edge (Si , Sj) if there is some u ∈ Si and v ∈ Sj

such that (u, v) is an edge in G .
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Reversal and SCCs

Proposition

For any graph G , the graph of SCCs of G rev is the same as the
reversal of GSCC.

Proof.

Exercise.
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SCCs and DAGs

Proposition

For any graph G , the graph GSCC has no directed cycle.

Proof.

If GSCC has a cycle S1, S2, . . . , Sk then S1 ∪ S2 ∪ · · · ∪ Sk is an
SCC in G . Formal details: exercise.
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Part I

Directed Acyclic Graphs
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Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no
directed cycle in G .

1

2 3

4
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Sources and Sinks

source sink

1

2 3

4

Definition

A vertex u is a source if it has no in-coming edges.

A vertex u is a sink if it has no out-going edges.
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Simple DAG Properties

Every DAG G has at least one source and at least one sink.

If G is a DAG if and only if G rev is a DAG.

G is a DAG if and only each node is in its own strong
component.

Formal proofs: exercise.

Chekuri CS473ug



Simple DAG Properties

Every DAG G has at least one source and at least one sink.

If G is a DAG if and only if G rev is a DAG.

G is a DAG if and only each node is in its own strong
component.

Formal proofs: exercise.

Chekuri CS473ug



Simple DAG Properties

Every DAG G has at least one source and at least one sink.

If G is a DAG if and only if G rev is a DAG.

G is a DAG if and only each node is in its own strong
component.

Formal proofs: exercise.

Chekuri CS473ug



Simple DAG Properties

Every DAG G has at least one source and at least one sink.

If G is a DAG if and only if G rev is a DAG.

G is a DAG if and only each node is in its own strong
component.

Formal proofs: exercise.

Chekuri CS473ug



Simple DAG Properties

Every DAG G has at least one source and at least one sink.

If G is a DAG if and only if G rev is a DAG.

G is a DAG if and only each node is in its own strong
component.

Formal proofs: exercise.

Chekuri CS473ug



Topological Ordering/Sorting

1

2 3

4

Figure: Graph G

1 2 3 4

Figure: Topological Ordering of G

Definition

A topological ordering/sorting of G = (V , E ) is an ordering < on
V such that if (u, v) ∈ E then u < v .
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DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a DAG.
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DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

Only if: Suppose G is not a DAG and has a topological ordering <.
G has a cycle C = u1, u2, . . . , uk , u1.
Then u1 < u2 < . . . < uk < u1! A contradiction.
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DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

If: Consider the following algorithm:

Pick a source u, output it.

Remove u and all edges out of u.

Repeat until graph is empty.

Exercise: prove this gives an ordering.

Exercise: show above algorithm can be implemented in O(m + n)
time.
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Topological Sort: An Example

1

2 3

4

Output:

1 2 3 4
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1

2 3

4

Output: 1 2 3 4

Chekuri CS473ug



Topological Sort: Another Example

a b c

d e

f g

h
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DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct
topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct
topological sorts for a given number n of vertices?
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DFS to check for Acylicity and Topological Ordering

Question

Given G , is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

Compute DFS(G)

If there is a back edge then G is not a DAG.

Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in DFS(G).

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G .

Chekuri CS473ug



DFS to check for Acylicity and Topological Ordering

Question

Given G , is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

Compute DFS(G)

If there is a back edge then G is not a DAG.

Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in DFS(G).

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G .

Chekuri CS473ug



DFS to check for Acylicity and Topological Ordering

Question

Given G , is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

Compute DFS(G)

If there is a back edge then G is not a DAG.

Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in DFS(G).

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G .

Chekuri CS473ug



Example

1

2 3

4

Chekuri CS473ug



Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the
path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . .→ vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendents of vi since they are reachable
from vi .
Therefore, (vi−1, vi ) (or (vk , v1) if i = 1) is a back edge.
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Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G .

Proof.

Assume post(v) > post(u) and (u, v) is an edge in G . We derive a
contradiction. One of two cases holds from DFS property.

Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
Implies that (u, v) is a back edge but a DAG has no back
edges!

Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
This cannot happen since v would be explored from u.
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DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation �
such that � is (i) reflexive (a � a for all a ∈ V ), (ii)
anti-symmetric (a � b implies b 6� a) and (iii) transitive (a � b
and b � c implies a � c).

Example: For numbers in the plane define (x , y) � (x ′, y ′) iff
x ≤ x ′ and y ≤ y ′.

Observation: A finite partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a
complete (or total) ordering of the underlying partial order.
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Part II

Linear time Algorithm for finding all Strong
Connected Components
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Finding all SCCs of a Graph

Problem

Given a directed graph G = (V , E ), output all its strong connected
components.

Algorithm from previous lecture:

For each vertex u ∈ V do

find SCC(G , u) the strong component containing u as follows:

Obtain rch(G , u) using DFS(G , u)
Obtain rch(G rev, u) using DFS(G rev, u)
Output SCC(G , u) = rch(G , u) ∩ rch(G rev, u)

Running time: O(n(n + m))

Is there an O(n + m) time algorithm?
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Structure of a Directed Graph

AB C

DE F

G H

Figure: Graph G

B, E , F

G H

A, C , D

Figure: Graph of SCCs GSCC

Proposition

For a directed graph G, its meta-graph GSCC is a DAG.
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Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph.

Algorithm

Let u be a vertex in a sink SCC of GSCC

Do DFS(u) to compute SCC(u)

Remove SCC(u) and repeat

Justification

DFS(u) only visits vertices (and edges) in SCC(u)

DFS(u) takes time proportional to size of SCC(u)

Therefore, total time O(n + m)!
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Big Challenge(s)

How do we find a vertex in the sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without
computing GSCC?

Answer: DFS(G) gives some information!
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Post-visit times of SCCs

Definition

Given G and a SCC S of G , define post(S) = maxu∈S post(u)
where post numbers are with respect to some DFS(G ).
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An Example

AB C

DE F

G H

Figure: Graph G
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G H

[1, 16]

[2, 11] [12, 15]

[13, 14][3, 10] [6, 7]

[4, 5]

[8, 9]

Figure: Graph with pre-post times
for DFS(A); black edges in tree

B, E , F

G H

A, C , D

11 16

5 9

Figure: GSCC with post times
Chekuri CS473ug



G SCC and post-visit times

Proposition

If S and S ′ are SCCs in G and (S , S ′) is an edge in GSCC then
post(S) > post(S ′).

Proof.

Let u be first vertex in S ∪ S ′ that is visited.

If u ∈ S then all of S ′ will be explored before DFS(u)
completes.

If u ∈ S ′ then all of S ′ will be explored before any of S .

A False Statement: If S and S ′ are SCCs in G and (S , S ′) is an
edge in GSCC then for every u ∈ S and u′ ∈ S ′,
post(u) > post(u′).
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Topological ordering of G SCC

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological
ordering of GSCC

Recall: for a DAG, ordering nodes in decreasing post-visit order
gives a topological sort.

DFS(G ) gives some information on topological ordering of GSCC!
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Finding Sources

Proposition

The vertex u with the highest post visit time belongs to a source
SCC in GSCC

Proof.

post(SCC(u)) = post(u)

Thus, post(SCC(u)) is highest and will be output first in
topological ordering of GSCC.
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Finding Sinks

Proposition

The vertex u with highest post visit time in DFS(G rev) belongs to a
sink SCC of G .

Proof.

u belongs to source SCC of G rev

Since graph of SCCs of G rev is the reverse of GSCC, SCC(u)
is sink SCC of G .
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Finding Sinks

Proposition

The vertex u with highest post visit time in DFS(G rev) belongs to a
sink SCC of G .

Proof.

u belongs to source SCC of G rev

Since graph of SCCs of G rev is the reverse of GSCC, SCC(u)
is sink SCC of G .
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Linear Time Algorithm

Do DFS(G rev) and sort vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do

if u is not visited then

DFS(u)

Output all nodes reached by u as a strong component

Remove these nodes from G

Analysis

Running time is O(n + m).
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Linear Time Algorithm: An Example

AB C

DE F

G H

Figure: Graph G

AB C

DE F

G H

[1, 6]

[7, 12] [3, 4]

[2, 5][9, 10] [8, 11]

[13, 16]

[14, 15]

Figure: G rev

with pre-post times.
Red edges not traversed in DFS

Order of second DFS: DFS(G ) = {G}; DFS(H) = {H};
DFS(B) = {B, E , F}; DFS(A) = {A, C , D}.
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Correctness: more details

let S1, S2, . . . , Sk be strong components in G

Strong components of G rev and G are same and meta-graph
of G is reverse of meta-graph of G rev .

consider DFG(G rev ) and let u1, u2, . . . , uk be such that
post(ui ) = post(Si ) = maxv∈Si

post(v).

Assume without loss of generality that
post(uk) > post(uk−1) ≥ . . . ≥ post(u1) (renumber
otherwise). Then Sk , Sk−1, . . . , S1 is a topological sort of
meta-graph of G rev and hence S1, S2, . . . , Sk is a topological
sort of the meta-graph of G .

uk has highest post number and DFS(uk) will explore all of Sk
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in remaining graph G − Sk . Formal proof by induction.

Chekuri CS473ug



Correctness: more details

let S1, S2, . . . , Sk be strong components in G

Strong components of G rev and G are same and meta-graph
of G is reverse of meta-graph of G rev .

consider DFG(G rev ) and let u1, u2, . . . , uk be such that
post(ui ) = post(Si ) = maxv∈Si

post(v).

Assume without loss of generality that
post(uk) > post(uk−1) ≥ . . . ≥ post(u1) (renumber
otherwise). Then Sk , Sk−1, . . . , S1 is a topological sort of
meta-graph of G rev and hence S1, S2, . . . , Sk is a topological
sort of the meta-graph of G .

uk has highest post number and DFS(uk) will explore all of Sk

which is a sink component in G .

After Sk is removed uk−1 has highest post number and
DFS(uk−1) will explore all of Sk−1 which is a sink component
in remaining graph G − Sk . Formal proof by induction.

Chekuri CS473ug



Correctness: more details

let S1, S2, . . . , Sk be strong components in G

Strong components of G rev and G are same and meta-graph
of G is reverse of meta-graph of G rev .

consider DFG(G rev ) and let u1, u2, . . . , uk be such that
post(ui ) = post(Si ) = maxv∈Si

post(v).

Assume without loss of generality that
post(uk) > post(uk−1) ≥ . . . ≥ post(u1) (renumber
otherwise). Then Sk , Sk−1, . . . , S1 is a topological sort of
meta-graph of G rev and hence S1, S2, . . . , Sk is a topological
sort of the meta-graph of G .

uk has highest post number and DFS(uk) will explore all of Sk

which is a sink component in G .

After Sk is removed uk−1 has highest post number and
DFS(uk−1) will explore all of Sk−1 which is a sink component
in remaining graph G − Sk . Formal proof by induction.

Chekuri CS473ug



Correctness: more details

let S1, S2, . . . , Sk be strong components in G

Strong components of G rev and G are same and meta-graph
of G is reverse of meta-graph of G rev .

consider DFG(G rev ) and let u1, u2, . . . , uk be such that
post(ui ) = post(Si ) = maxv∈Si

post(v).

Assume without loss of generality that
post(uk) > post(uk−1) ≥ . . . ≥ post(u1) (renumber
otherwise). Then Sk , Sk−1, . . . , S1 is a topological sort of
meta-graph of G rev and hence S1, S2, . . . , Sk is a topological
sort of the meta-graph of G .

uk has highest post number and DFS(uk) will explore all of Sk

which is a sink component in G .

After Sk is removed uk−1 has highest post number and
DFS(uk−1) will explore all of Sk−1 which is a sink component
in remaining graph G − Sk . Formal proof by induction.

Chekuri CS473ug



Correctness: more details

let S1, S2, . . . , Sk be strong components in G

Strong components of G rev and G are same and meta-graph
of G is reverse of meta-graph of G rev .

consider DFG(G rev ) and let u1, u2, . . . , uk be such that
post(ui ) = post(Si ) = maxv∈Si

post(v).

Assume without loss of generality that
post(uk) > post(uk−1) ≥ . . . ≥ post(u1) (renumber
otherwise). Then Sk , Sk−1, . . . , S1 is a topological sort of
meta-graph of G rev and hence S1, S2, . . . , Sk is a topological
sort of the meta-graph of G .

uk has highest post number and DFS(uk) will explore all of Sk

which is a sink component in G .

After Sk is removed uk−1 has highest post number and
DFS(uk−1) will explore all of Sk−1 which is a sink component
in remaining graph G − Sk . Formal proof by induction.

Chekuri CS473ug



Correctness: more details

let S1, S2, . . . , Sk be strong components in G

Strong components of G rev and G are same and meta-graph
of G is reverse of meta-graph of G rev .

consider DFG(G rev ) and let u1, u2, . . . , uk be such that
post(ui ) = post(Si ) = maxv∈Si

post(v).

Assume without loss of generality that
post(uk) > post(uk−1) ≥ . . . ≥ post(u1) (renumber
otherwise). Then Sk , Sk−1, . . . , S1 is a topological sort of
meta-graph of G rev and hence S1, S2, . . . , Sk is a topological
sort of the meta-graph of G .

uk has highest post number and DFS(uk) will explore all of Sk

which is a sink component in G .

After Sk is removed uk−1 has highest post number and
DFS(uk−1) will explore all of Sk−1 which is a sink component
in remaining graph G − Sk . Formal proof by induction.

Chekuri CS473ug





make utility
Computational Problems

Part III

An Application to make

Chekuri CS473ug



make utility
Computational Problems

make Utility [Feldman]

Unix utility for automatically building large software
applications

A makefile specifies

Object files to be created,
Source/object files to be used in creation, and
How to create them
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An Example makefile

project: main.o utils.o command.o

cc -o project main.o utils.o command.o

main.o: main.c defs.h

cc -c main.c

utils.o: utils.c defs.h command.h

cc -c utils.c

command.o: command.c defs.h command.h

cc -c command.c
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makefile as a Digraph

project

main.o

utils.o

command.o

main.c

utils.c

defs.h

command.h

command.c
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Computational Problems for make

Is the makefile reasonable?

If it is reasonable, in what order should the object files be
created?

If it is not reasonable, provide helpful debugging information.

If some file is modified, find the fewest compilations needed to
make application consistent.
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Algorithms for make

Is the makefile reasonable? Is G a DAG?

If it is reasonable, in what order should the object files be
created? Find a topological sort of a DAG.

If it is not reasonable, provide helpful debugging information.
Output a cycle. More generally, output all strong connected
components.

If some file is modified, find the fewest compilations needed to
make application consistent.

Find all vertices reachable (using DFS/BFS) from modified
files in directed graph, and recompile them.
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