CS 473: Algorithms

Chandra Chekuri chekuri@cs.illinois.edu 3228 Siebel Center

University of Illinois, Urbana-Champaign

Fall 2009

Strong Connected Components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture: saw an $O(n \cdot (n + m))$ time algorithm. This lecture: O(n + m) time algorithm.

Graph of SCCs

Figure: Graph G

Meta-graph of SCCs

Let $S_1, S_2, \ldots S_k$ be the SCCs of G. The graph of SCCs is G^{SCC}

- Vertices are $S_1, S_2, \ldots S_k$
- There is an edge (S_i, S_j) if there is some u ∈ S_i and v ∈ S_j such that (u, v) is an edge in G.

For any graph G, the graph of SCCs of $G^{\rm rev}$ is the same as the reversal of $G^{\rm SCC}.$

Proof.

Exercise.

æ

For any graph G, the graph $G^{\rm SCC}$ has no directed cycle.

æ

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ is an SCC in G. Formal details: exercise.

Part I

Directed Acyclic Graphs

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Sources and Sinks

Definition

- A vertex *u* is a source if it has no in-coming edges.
- A vertex *u* is a sink if it has no out-going edges.

• Every DAG G has at least one source and at least one sink.

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- *G* is a DAG if and only each node is in its own strong component.

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- *G* is a DAG if and only each node is in its own strong component.

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- *G* is a DAG if and only each node is in its own strong component.

Formal proofs: exercise.

Topological Ordering/Sorting

Figure: Topological Ordering of G

Figure: Graph G

Definition

A topological ordering/sorting of G = (V, E) is an ordering < on V such that if $(u, v) \in E$ then u < v.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a DAG.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

Only if: Suppose G is not a DAG and has a topological ordering <. G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$. Then $u_1 < u_2 < \ldots < u_k < u_1$! A contradiction.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

If: Consider the following algorithm:

- Pick a source *u*, output it.
- Remove *u* and all edges out of *u*.
- Repeat until graph is empty.
- Exercise: prove this gives an ordering.

Exercise: show above algorithm can be implemented in O(m + n) time.

Output:

Output: 1

Output: 1 2

Output: 1 2 3

Output: 1 2 3 4

adbcegth abcegdth

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number *n* of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number *n* of vertices?

DFS to check for Acylicity and Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS to check for Acylicity and Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

DFS to check for Acylicity and Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in DFS(G).

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Example

▲母 ▶ ▲ 臣

æ

⊸ ≣ ⊁

G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS. All other nodes in C are descendents of v_i since they are reachable from v_i .

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof.

Assume post(v) > post(u) and (u, v) is an edge in *G*. We derive a contradiction. One of two cases holds from DFS property.

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that (u, v) is a back edge but a DAG has no back edges!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would be explored from u.

A partially ordered set is a set S along with a binary relation \leq such that \leq is (i) reflexive ($a \leq a$ for all $a \in V$), (ii) anti-symmetric ($a \leq b$ implies $b \not\leq a$) and (iii) transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

A partially ordered set is a set S along with a binary relation \leq such that \leq is (i) reflexive ($a \leq a$ for all $a \in V$), (ii) anti-symmetric ($a \leq b$ implies $b \not\leq a$) and (iii) transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \preceq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

A partially ordered set is a set S along with a binary relation \leq such that \leq is (i) reflexive ($a \leq a$ for all $a \in V$), (ii) anti-symmetric ($a \leq b$ implies $b \not\leq a$) and (iii) transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \preceq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

Part II

Linear time Algorithm for finding all Strong Connected Components

Finding all SCCs of a Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Finding all SCCs of a Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Algorithm from previous lecture:

```
For each vertex u \in V do
find SCC(G, u) the strong component containing u as follows:
Obtain rch(G, u) using DFS(G, u)
Obtain rch(G^{rev}, u) using DFS(G^{rev}, u)
Output SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)
```

Running time: O(n(n+m))

Finding all SCCs of a Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Algorithm from previous lecture:

```
For each vertex u \in V do
find SCC(G, u) the strong component containing u as follows:
Obtain rch(G, u) using DFS(G, u)
Obtain rch(G^{rev}, u) using DFS(G^{rev}, u)
Output SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)
```

Running time: O(n(n+m))

Is there an O(n+m) time algorithm?

Structure of a Directed Graph

Figure: Graph of SCCs G^{SCC}

Figure: Graph G

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Exploit structure of meta-graph.

Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n+m)!

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

Answer: DFS(G) gives some information!

Definition

Given G and a SCC S of G, define $post(S) = max_{u \in S} post(u)$ where post numbers are with respect to some DFS(G).

۷

An Example

Figure: Graph G

Figure: Graph with pre-post times for DFS(A); black edges in tree

G^{SCC} and post-visit times

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let *u* be first vertex in $S \cup S'$ that is visited.

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let *u* be first vertex in $S \cup S'$ that is visited.

If u ∈ S then all of S' will be explored before DFS(u) completes.

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let *u* be first vertex in $S \cup S'$ that is visited.

- If u ∈ S then all of S' will be explored before DFS(u) completes.
- If $u \in S'$ then all of S' will be explored before any of S.

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let *u* be first vertex in $S \cup S'$ that is visited.

- If u ∈ S then all of S' will be explored before DFS(u) completes.
- If $u \in S'$ then all of S' will be explored before any of S.

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let *u* be first vertex in $S \cup S'$ that is visited.

- If u ∈ S then all of S' will be explored before DFS(u) completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, post(u) > post(u').

Topological ordering of G^{SCC}

Corollary

Ordering SCCs in decreasing order of $\mathrm{post}(S)$ gives a topological ordering of G^{SCC}

Corollary

Ordering SCCs in decreasing order of $\mathrm{post}(S)$ gives a topological ordering of G^{SCC}

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

DFS(G) gives some information on topological ordering of G^{SCC} !

An Example

Figure: Graph G

Figure: Graph with pre-post times for DFS(A); black edges in tree

æ

Exploit structure of meta-graph.

Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n+m)!

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

Answer: DFS(G) gives some information!

The vertex u with the highest post visit time belongs to a source SCC in $G^{\rm SCC}$

æ

The vertex u with the highest post visit time belongs to a source SCC in $G^{\rm SCC}$

Proof.

- post(SCC(u)) = post(u)
- Thus, post(SCC(*u*)) is highest and will be output first in topological ordering of *G*^{SCC}.

The vertex u with highest post visit time in DFS(G^{rev}) belongs to a sink SCC of G.

The vertex u with highest post visit time in DFS(G^{rev}) belongs to a sink SCC of G.

Proof.

- u belongs to source SCC of G^{rev}
- Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, SCC(u) is sink SCC of G.

```
Do DFS(G<sup>rev</sup>) and sort vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
    if u is not visited then
        DFS(u)
        Output all nodes reached by u as a strong component
        Remove these nodes from G
```

Analysis

Running time is O(n+m).

Figure: Graph G

Figure: Graph G

Figure: G^{rev}

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Order of second DFS: $DFS(G) = \{G\};$

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Order of second DFS: DFS(G) = {G}; DFS(H) = {H};

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Order of second DFS: DFS(G) = {G}; DFS(H) = {H}; DFS(B) = {B, E, F};

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Order of second DFS: DFS(G) = {G}; DFS(H) = {H}; DFS(B) = {B, E, F}; DFS(A) = {A, C, D}.

Correctness: more details

• let S_1, S_2, \ldots, S_k be strong components in G

э
- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $post(u_i) = post(S_i) = max_{v \in S_i} post(v)$.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $post(u_i) = post(S_i) = max_{v \in S_i} post(v)$.
- Assume without loss of generality that *post*(u_k) > *post*(u_{k-1}) ≥ ... ≥ *post*(u₁) (renumber otherwise). Then S_k, S_{k-1},..., S₁ is a topological sort of meta-graph of G^{rev} and hence S₁, S₂,..., S_k is a topological sort of the meta-graph of G.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $post(u_i) = post(S_i) = max_{v \in S_i} post(v)$.
- Assume without loss of generality that *post*(u_k) > *post*(u_{k-1}) ≥ ... ≥ *post*(u₁) (renumber otherwise). Then S_k, S_{k-1},..., S₁ is a topological sort of meta-graph of G^{rev} and hence S₁, S₂,..., S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS (u_k) will explore all of S_k which is a sink component in G.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $post(u_i) = post(S_i) = max_{v \in S_i} post(v)$.
- Assume without loss of generality that *post*(u_k) > *post*(u_{k-1}) ≥ ... ≥ *post*(u₁) (renumber otherwise). Then S_k, S_{k-1},..., S₁ is a topological sort of meta-graph of G^{rev} and hence S₁, S₂,..., S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS (u_k) will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G S_k$. Formal proof by induction.

Part III

An Application to make

Image: Image:

æ

-∢ ≣⇒

make Utility [Feldman]

• Unix utility for automatically building large software applications

- Unix utility for automatically building large software applications
- A makefile specifies

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

An Example makefile

- main.o: main.c defs.h
 cc -c main.c
 utils.o: utils.c defs.h command.h
 cc -c utils.c
 command.o: command.c defs.h command.h
 cc -c command.c

- ₹ 🖬 🕨

э

makefile as a Digraph

< 17 ▶

Computational Problems for make

• Is the makefile reasonable?

э

Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?

Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.

Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

• Is the makefile reasonable? Is G a DAG?

글▶ 글

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them.