Exact Pattern Matching

Goal: Find all occurrences of a pattern in a text

Input: Pattern $p = p_1 \ldots p_n$ and text $t = t_1 \ldots t_m$

Output: All positions $1 \leq i \leq (m - n + 1)$ such that the n-letter substring of t starting at i matches p

Motivation: Searching database for a known pattern
Pattern Matching: Running Time

• Naïve runtime: $O(nm)$
 • How?

• On average, it should be close to $O(m)$
 • Why?

• Can solve problem in $O(m)$ time?
 • Yes, we’ll see how (in a later lecture)
Naive algorithm is inefficient

As we saw, our alignment algorithms scale as \(O(nm)\). When \(n \approx 10^9\) and \(m \approx 10^2\) this becomes intractable (especially when we 10 of millions of strings of length \(\sim m\))

Even ignoring, e.g. memory access, say filling in each matrix cell takes \(C = 10\) CPU cycles.

\[
N = 10^9
M = 10^2
R = 10^7
\]

order of genome order of read length order of \# of reads

\[
\text{# of ops} \approx N \times M \times R \times C = 10^{19}
\]

\[
\text{ops/sec} \approx 3 \times 10^9 \text{ (3GHz CPU)}
\]

\[
\frac{\text{# ops}}{\text{ops/sec}} = \text{secs} \approx \frac{10^{19}}{(3 \times 10^9)} = \frac{1}{3} \times 10^{10}
\]

\(~106\) Years! (for a relatively small 10M read dataset)
Goal: Given a set of patterns and a text, find all occurrences of any of patterns in text

Input: k patterns p^1, \ldots, p^k, and text $t = t_1 \ldots t_m$

Output: Positions $1 \leq i \leq m$ where substring of t starting at i matches p_j for $1 \leq j \leq k$

Motivation: Searching database for known multiple patterns
Multiple Pattern Matching

- **Solution:** k “pattern matching problems” : O(kmn)

- **Another Solution:**
 - Using “Keyword trees” => O(kn+nm) where n is maximum length of p^i
 - Preprocess all k patterns to construct a “keyword tree”
 - Now, any given text, all occurrences of all patterns can be found in time O(m)
Keyword tree approach

- **Keyword tree:**
 - Apple
Keyword tree approach

- **Keyword tree:**
 - Apple
 - Apropos
Keyword tree approach

- **Keyword tree:**
 - Apple
 - Apropos
 - Banana
Keyword tree approach

- **Keyword tree:**
 - Apple
 - Apropos
 - Banana
 - Bandana
Keyword tree approach

- **Keyword tree:**
 - Apple
 - Apropos
 - Banana
 - Bandana
 - Orange
Keyword tree approach: Properties

- Stores a set of keywords in a rooted labeled tree
- Each edge labeled with a letter from an alphabet
- Any two edges coming out of the same vertex have distinct labels
- Every keyword stored can be spelled on a path from root to some leaf
Keyword tree: Construction

Construction for $\mathcal{P} = \{P_1, \ldots, P_k\}$:

Begin with a root node only;
Insert each pattern P_i, one after the other, as follows:
Starting at the root, follow the path labeled by chars of P_i;

1. If the path ends before P_i, continue it by adding new edges and nodes for the remaining characters of P_i
2. Store identifier i of P_i at the terminal node of the path

This takes clearly $O(|P_1| + \cdots + |P_k|)$
A keyword tree for $\mathcal{P} = \{\text{he, she, his, hers}\}$:
Keyword tree: Lookup of a string

Lookup of a string P: Starting at root, follow the path labeled by characters of P as long as possible;

- If the path leads to a node with an identifier, P is a keyword in the dictionary
- If the path terminates before P, the string is not in the dictionary

How to check all occurrences in a text t?
Keyword tree approach: Complexity

- Build keyword tree in $O(kn)$ time; kn is total length of all patterns

- Start “threading” at each position in text; at most n steps tell us if there is a match here to any p^i

- $O(kn + nm)$
 - We’re down from $O(kmn)$ to this

- The next big idea, Aho-Corasick algorithm: $O(kn + m)$
Aho-Corasick algorithm: Key idea

Exploit the redundancy in the patterns
Aho-Corasick algorithm: Key idea

Exploit the redundancy in the patterns
Aho-Corasick algorithm

With failing edges and node labels
Rules

- Transition among the different nodes by following edges depending on next character seen (say “h”)
- If outgoing edge with label “h”, follow it
- If no such edge, and are at root, stay
- If no such edge, and at non-root, follow dashes edge ("fail" transition); DO NOT CONSUME THE CHARACTER (say “h”)

Consider text “hershe”