Sequence alignment

Correspondence between bases of two DNA sequences, or between amino acids of two protein sequences

Alignment : $2 \times k$ matrix ($k \ge m, n$)

V = ACCTGGTAAA n = 10

W = ACTGCGTATA m = 10

- 8 matches
- 1 mismatches
- 1 deletions
- 1 insertions

"Goodness" of alignments

Given two sequences, there are many possible alignments

ATTTTCCC -ATTTACGC

distance=16

Edit distance: the total number of substitutions, insertions and deletions needed to transform one sequence to another

Manhattan tourist problem

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid

Recursive algorithm -> Dynamic programming

Function **MT**(*n*,*m*)

1.
$$x = MT(n-1,m)+$$

weight of the edge from (n-1,m) to (n,m)

2.
$$y = MT(n,m-1)+$$

weight of the edge from (n,m-1) to (n,m)

3. **return** *max*{*x*,*y*}

MT(x, y) returns the "most weighted" path from point (x, y) to the "sink".

How to find the optimal path

- Start from Sink.
- Find which of the two edges gave the "max". Take it.

Recipe

1. Identify subproblems

2. Write down recursions

3. Make it dynamic-programming!

The edit distance problem

AFGCDE-

Minimum Edit Distance

For sequence X and Y

Initialization

D(i,0) = i D(0,j) = j

Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$
 $D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 1; \\ \text{if } X(i) \neq Y(j) \\ 0; \\ \text{if } X(i) = Y(j) \end{cases}$

Termination:

D(N,M) is distance

Optimal alignment

Complexity

• Time:

O(nm)

Space:

O(nm)

Backtrace

O(n+m)

Is the edit distance the best way?

For sequence X and Y

Initialization

D(i,0) = i D(0,j) = j

Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$
 $D(i,j) = min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 1 \end{cases}$
 $D(i-1,j-1) + 1; if X(i) \neq Y(j) \\ 0; if X(i) = Y(j) \end{cases}$

Termination:

D(N,M) is distance

Amino acids can share similar properties

Amino Acids

A alanine (ala) R arginine (arg) N asparagine (asn) D aspartic acid (asp) C cysteine (cys) Q glutamine (gln) E glutamic acid (glu) G glycine (gly) H histidine (his) I isoleucine (ile) L leucine (leu) K lysine (lys) M metioneine (met) F phenyalanine (phe) P proline (pro) S serine (ser) T threonine (thr) W trytophan (trp) Y tyrosine (tyr)

Weighted edit distance

- To generalize scoring for DNA/RNA, consider a 4x4 scoring matrix
 S.
- In the case of an amino acid sequence alignment, the scoring matrix would be a 20x20 size.
- The addition of d is to include the score for comparison of a gap character "-".
- Two questions:
 - (a) What should **S** be?
 - (b) How do we find optimal scoring alignment?

Weighted edit distance

- To generalize scoring for DNA/RNA, consider a (4+1) x(4+1) scoring matrix S.
- In the case of an amino acid sequence alignment, the scoring matrix would be a (20+1)x(20+1) size.
- The addition of d is to include the score for comparison of a gap character "-".
- Two questions:
 - (a) What should **S** be?
 - (b) How do we find optimal scoring alignment?

Traditionally, people tend to maximize the alignment score with a negative gap penalty score

BLOcks SUbstitution Matrix (BLOSUM)

Ala	4																			
Arg	- 1	5																		
Asn	- 2	0	б																	
Asp	- 2	- 2	1	б																
Cys	0	- 3	- 3	- 3	9															
Gln	- 1	1	0	0	- 3	5														
Glu	- 1	0	0	2	- 4	2	5													
Gly	0	- 2	0	- 1	- 3	- 2	- 2	б												
His	- 2	0	1	- 1	- 3	0	0	- 2	8											
lle	- 1	- 3	- 3	- 3	- 1	- 3	- 3	- 4	- 3	4										
Leu	- 1	- 2	- 3	- 4	- 1	- 2	- 3	- 4	- 3	2	4									
Lys	- 1	2	0	- 1	- 3	1	1	- 2	- 1	- 3	- 2	5								
Met	- 1	- 1	- 2	- 3	- 1	0	- 2	- 3	- 2	1	2	- 1	5							
Phe	- 2	- 3	- 3	- 3	- 2	- 3	- 3	- 3	- 1	0	0	- 3	0	б						
Pro	- 1	- 2	- 2	- 1	- 3	- 1	- 1	- 2	- 2	- 3	- 3	- 1	- 2	- 4	7					
Ser	1	- 1	1	0	- 1	0	0	0	- 1	- 2	- 2	0	- 1	- 2	- 1	4				
Thr	0	- 1	0	- 1	- 1	- 1	- 1	- 2	- 2	- 1	- 1	- 1	- 1	- 2	- 1	1	5			
Trp	- 3	- 3	- 4	- 4	- 2	- 2	- 3	- 2	- 2	- 3	- 2	- 3	- 1	1	- 4	- 3	- 2	11		
Tyr	- 2	- 2	- 2	- 3	- 2	- 1	- 2	- 3	2	- 1	- 1	- 2	- 1	3	- 3	- 2	- 2	2	7	
Val	0	- 3	- 3	- 3	- 1	- 2	- 2	- 3	- 3	3	1	- 2	1	- 1	- 2	- 2	0	- 3	- 1	4
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	lle	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val

amino acids

BLOcks SUbstitution Matrix (BLOSUM)

Introduced by Henikoff & Henikoff in 1992

Start with the BLOCKS database

- Look for conserved (gapless, >=62% identical) regions in alignments.
- 2. Count all pairs of amino acids in each column of the alignments.
- 3. Use amino acid pair frequencies to derive "score" for a mutation/replacement

1. Look for conserved (gapless) regions in alignments.

sequences too similar are "clustered" & represented by either a single sequence, or a weighted combination of the cluster members

2. Count all pairs of amino acids in each column of the alignments.

FPTADAGGRS FVTADALGRS FPTPDAGLRN FVTAEAGIRQ FPTAEAGGRS

$$c_{AB}^{(i)} = egin{cases} {c}{c_A^{(i)} \choose 2} & ext{if } A = B \ {c_A^{(i)} imes c_B^{(i)} imes c_B^{(i)} & ext{otherwise} \end{cases}$$

 $c_A^{(i)} =$ num. of occurrences of A in column i

Count all pairs of amino acids in each column of the alignments.

FPTADAGGRS FVTADALGRS FPTPDAGLRN FVTAEAGLRQ FPTAEAGGRS

Example:

$$egin{aligned} c_{GG}^{(i)} &= \begin{pmatrix} 3 \ 2 \end{pmatrix} = 3 \ c_{GL}^{(i)} &= 3 imes 2 \ c_{LL}^{(i)} &= \begin{pmatrix} 2 \ 2 \end{pmatrix} = 1 \end{aligned}$$

In this column, there are 3 ways to pair G with G, 6 potential ways to pair G with L and 1 potential way to pair L with L. Use amino acid pair frequencies to derive "score" for a mutation/replacement

Total # of potential align. between A & B: $c_{AB} = \sum_i c_{AB}^{(i)}$

Total number of pairwise char. alignments: $T = \sum_{A \ge B} c_{AB}$

Normalized frequency of aligning A & B: $q_{AB} = \frac{c_{AB}}{T}$

 Use amino acid pair frequencies to derive "score" for a mutation/replacement

Probability of occurrence of amino acid A in any {A,B} pair:

$$p_A = q_{AA} + \sum_{A \neq B} q_{AB}$$

Expected likelihood of each {A,B} pair, assuming independence:

$$e_{AB} = \begin{cases} (p_A) (p_B) = (p_A)^2 & \text{if } A = B \\ (p_A) (p_B) + (p_B) (p_A) = 2 (p_A) (p_B) & \text{otherwise} \end{cases}$$

How to get a good substitution score?

Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution Matrices from Protein Blocks". PNAS 89 (22): 10915–10919.

TODO: compute weighted edit distance?