
Correspondence between bases of two DNA sequences, or between
amino acids of two protein sequences

Sequence alignment

V""="ACCTGGTAAA

W"="ACTGCGTATA

n"="10

m"="10

A C C T G G T A A A
A C T G C G T A T A

V
W"

8
1
1
1

matches
mismatches
deletions
insertions

Alignment":""2"x"k"matrix"("k"≥m,"n")

“Goodness” of alignments

Given two sequences, there are many possible alignments

ATTTTCCC

ATTTACGC

ATTT-TCCC

ATTTA-CGC

ATTTTCCC————————
————————ATTTACGC

Edit distance: the total number of substitutions, insertions and deletions
needed to transform one sequence to another

distance=2

distance=3

distance=16

Enumeration of all possible alignments

Match

Insertion_X

Insertion_Y

A-GCDEF
AFGCDE-

A F G C D E

A
G

C
D

E
F

Very expensive

Manhattan tourist problem

Imagine seeking a
path (from source
to sink) to travel
(only eastward and
southward) with the
most number of
attractions (*) in
the Manhattan grid

Sink
*

*

*

*
*

**

* *

*

*

Source

*

2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2promising/start,/
but/leads/to/
bad/choices!

source

sink
18

22

Would a greedy algorithm work?

How about a recursive solution?

Function MT(n,m)

1. x = MT(n-1,m)+
 weight of the edge from (n-1,m) to (n,m)
2. y = MT(n,m-1)+
 weight of the edge from (n,m-1) to (n,m)
3. return max{x,y}

MT(x, y) returns the “most weighted” path
from point (x, y) to the “sink”.

• MT(n,m) needs MT(n, m-1) and MT(n-1, m)
• Both of these need MT(n-1, m-1)
• So MT(n-1, m-1) will be computed at least

twice
• Dynamic programming: the same idea as

this recursive algorithm, but keep all
intermediate results in a table and reuse

Why this is not efficient?

1

5

0 1

0

1

i

source

1

5
S1,0 =,5

S0,1 =,1

j

• Calculate optimal path score for each vertex in the graph
• Each vertex’s score is the maximum of the prior vertices score plus the

weight of the respective edge in between

How to avoid redundant calculations

1 2

5

3

0 1 2

0

1

2

source

1 3

5

8

4

S2,0%=-8

i

S1,1 =-4

S0,2%=-33

15

j

1 2

5

3

0 1 2 3

0

1

2

3

i

source

1 3

5

8

8

4

0

5
8

103

5

-5
9

13
1-5

S3,0%=/8

S2,1%=/9

S1,2%=/13

S3,0%=/8

j

1 2 5

$5 1 $5

$5 3

0

5

3

0

3

5

0

10

$3

$5

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

9

12

S3,1%=/9

S2,2%=/12

S1,3%=/8

j

1 2 5

$5 1 $5

$5 3 3

0 0

5

3

0

3

5

0

10

$3

$5

$5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S3,2%=09

S2,3%=015

1 2 5

$5 1 $5

$5 3 3

0 0

5

3

0

3

5

0

10

$3

$5

$5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16
S3,3$=016

• By the time the vertex x is analyzed, the values
sy for all its predecessors y should be
computed – otherwise we are in trouble.

• We need to traverse the vertices in some order

• For a grid, can traverse vertices row by row,
column by column, or diagonal by diagonal

To ensure the correctness

3 different strategies:
a) Column by column
b) Row by row
c) Along diagonals

Runtime?

Pseudocode?

Recursive algorithm -> Dynamic programming ?

Function MT(n,m)

1. x = MT(n-1,m)+
 weight of the edge from (n-1,m) to (n,m)
2. y = MT(n,m-1)+
 weight of the edge from (n,m-1) to (n,m)
3. return max{x,y}

MT(x, y) returns the “most weighted” path
from point (x, y) to the “sink”.

1 2 5

$5 1 $5

$5 3 3

0 0

5

3

0

3

5

0

10

$3

$5

$5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9
0

1

16
S3,3$=/16

• Start from Sink.

• Find which of the two
edges gave the “max”.
Take it.

• Repeat.

How to find the optimal path

The edit distance problem

Match

Insertion_X

Insertion_Y

A-GCDEF
AFGCDE-

A F G C D E

A
G

C
D

E
F

Recipe

1. Identify subproblems

2. Write down recursions

3. Make it dynamic-programming!

