Sequence alignment

Correspondence between bases of two DNA sequences, or between amino acids of two protein sequences

Alignment : $2 \times \mathrm{k}$ matrix $(\mathrm{k} \geq \mathrm{m}, \mathrm{n})$

$$
\begin{array}{lll}
\mathrm{V}=\mathrm{ACCTGGTAAA} & \mathrm{n}=10 & 8 \text { matches } \\
\mathrm{W}=\mathrm{ACTGCGTATA} & \mathrm{~m}=10 & 1 \text { mismatches } \\
& & 1 \text { deletions } \\
& 1 \text { insertions }
\end{array}
$$

V	A	C	C	T	G	-	G	T	A	A
W										
A	A									

"Goodness" of alignments

Given two sequences, there are many possible alignments

ATTTTCCC
ATTTACGC

distance=2

```
ATTT-TCCC
ATTTA-CGC
```

distance=3

ATTTTCCC ATTTACGC

distance=16

Edit distance: the total number of substitutions, insertions and deletions needed to transform one sequence to another

Enumeration of all possible alignments

A-GCDEF
AFGCDE-

Manhattan tourist problem

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid

Would a greedy algorithm work?

How about a recursive solution?

Function MT(n, m)

1. $x=M T(n-1, m)+$
weight of the edge from $(n-1, m)$ to (n, m)
2. $\quad y=M T(n, m-1)+$
weight of the edge from $(n, m-1)$ to (n, m)
3. return $\max \{x, y\}$

MT(x, y) returns the "most weighted" path from point (x, y) to the "sink".

Why this is not efficient?

- MT(n,m) needs MT(n, m-1) and MT(n-1, m)
- Both of these need MT(n-1, m-1)
- So MT(n-1, m-1) will be computed at least twice
- Dynamic programming: the same idea as this recursive algorithm, but keep all intermediate results in a table and reuse

How to avoid redundant calculations

- Calculate optimal path score for each vertex in the graph
- Each vertex's score is the maximum of the prior vertices score plus the weight of the respective edge in between

To ensure the correctness

- By the time the vertex x is analyzed, the values sy for all its predecessors y should be computed - otherwise we are in trouble.
- We need to traverse the vertices in some order
- For a grid, can traverse vertices row by row, column by column, or diagonal by diagonal

3 different strategies: a) Column by column

b) Row by row
c) Along diagonals

Pseudocode?

Runtime?

Recursive algorithm -> Dynamic programming ?

Function MT(n, m)

1. $x=M T(n-1, m)+$
weight of the edge from $(n-1, m)$ to (n, m)
2. $y=M T(n, m-1)+$
weight of the edge from $(n, m-1)$ to (n, m)
3. return $\max \{x, y\}$

MT(x, y) returns the "most weighted" path from point (x, y) to the "sink".

How to find the optimal path

- Start from Sink.
- Find which of the two edges gave the "max". Take it.
- Repeat.

The edit distance problem

Recipe

1. Identify subproblems
2. Write down recursions
3. Make it dynamic-programming!
