
Correspondence between bases of two DNA sequences, or between 
amino acids of two protein sequences 

Sequence alignment

V""="ACCTGGTAAA

W"="ACTGCGTATA

n"="10

m"="10

A C C T G G T A A A
A C T G C G T A T A

V
W"

8
1
1
1

matches
mismatches
deletions
insertions

Alignment":""2"x"k"matrix"("k"≥m,"n")



“Goodness” of alignments

Given two sequences, there are many possible alignments

ATTTTCCC

ATTTACGC

ATTT-TCCC

ATTTA-CGC

ATTTTCCC————————
————————ATTTACGC

Edit distance: the total number of substitutions, insertions and deletions 
needed to transform one sequence to another

distance=2

distance=3

distance=16



Enumeration of all possible alignments
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Very expensive



Manhattan tourist problem

Imagine seeking a 
path (from source 
to sink) to travel 
(only eastward and 
southward) with the 
most number of 
attractions (*) in 
the Manhattan grid 

Sink
*

*

*

*
*

**

* *

*

*

Source

*



2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2promising/start,/
but/leads/to/
bad/choices!

source

sink
18

22

Would a greedy algorithm work?



How about a recursive solution?

Function MT(n,m)
  
1.    x = MT(n-1,m)+
                   weight of the edge from (n-1,m) to (n,m)
2.    y = MT(n,m-1)+
                   weight of the edge from (n,m-1) to (n,m)
3.    return max{x,y}

MT(x, y) returns the “most weighted” path
from point (x, y) to the “sink”.



• MT(n,m) needs MT(n, m-1) and MT(n-1, m) 
• Both of these need MT(n-1, m-1) 
• So MT(n-1, m-1) will be computed at least 

twice 
• Dynamic programming: the same idea as 

this recursive algorithm, but keep all 
intermediate results in a table and reuse

Why this is not efficient?
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•  Calculate optimal path score for each vertex in the graph 
•  Each vertex’s score is the maximum of the prior vertices score plus the 

weight of the respective edge in between

How to avoid redundant calculations
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• By the time the vertex x is analyzed, the values 
sy for all its predecessors y should be 
computed – otherwise we are in trouble. 

  
• We need to traverse the vertices in some order 

• For a grid, can traverse vertices row by row, 
column by column, or diagonal by diagonal

To ensure the correctness



3 different strategies: 
a) Column by column 
b) Row by row 
c) Along diagonals 



Runtime?

Pseudocode?



Recursive algorithm -> Dynamic programming ?

Function MT(n,m)
  
1.    x = MT(n-1,m)+
                   weight of the edge from (n-1,m) to (n,m)
2.    y = MT(n,m-1)+
                   weight of the edge from (n,m-1) to (n,m)
3.    return max{x,y}

MT(x, y) returns the “most weighted” path
from point (x, y) to the “sink”.
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• Start from Sink. 

• Find which of the two 
edges gave the  “max”. 
Take it. 

• Repeat.

How to find the optimal path



The edit distance problem

Match 

Insertion_X

Insertion_Y

A-GCDEF
AFGCDE-

A   F   G   C   D   E

A
G

C
D

E
F



Recipe

1. Identify subproblems

2. Write down recursions

3. Make it dynamic-programming!


