
CS 466
Introduction to Bioinformatics

Instructor: Jian Peng

Biological sequences

TheDNAMolecule

G -- C
A -- T
T -- A
G -- C
C -- G
G -- C
T -- A
G -- C
T -- A
T -- A
A -- T
A -- T
C -- G
T -- A

=

5�

3�

Base$pairing$property

DNA

SOURCE:(http://www.microbe.org/espanol/news/human_genome.asp

DNA to chromosome

RNA = ribonucleic acid
• “U” instead of “T”
• Usually single stranded
• Has base-pairing capability

• Can form simple non-linear structures
• Life may have started with RNA

What is RNA?

Protein sequence

• DNA = nucleotide sequence
• Alphabet size = 4 (A,C,G,T)

• DNA to mRNA (single stranded)
• Alphabet size = 4 (A,C,G,U)

• mRNA to amino acid sequence
• Alphabet size = 20

• Amino acid sequence “folds” into 3-dimensional protein

A short summary: string transformation

determined by DNA sequences

• All organisms share the genetic code
• Similar genes across species
• Probably had a common ancestor
• Genomes are a wonderful resource to trace

back the history of life

Evolution theory

• Substitutions
• Insertions and Deletions
• Representing an alignment; “gaps”

Evolutionary process of sequences

ATTTTCCC

ATTTTACC

AT TTACC

AT TTACGC

substitution: C->A

deletion: T

insertion: G

Evolution direction

Correspondence between bases of two DNA sequences, or between
amino acids of two protein sequences

Sequence alignment

V""="ACCTGGTAAA

W"="ACTGCGTATA

n"="10

m"="10

A C C T G G T A A A
A C T G C G T A T A

V
W"

8
1
1
1

matches
mismatches
deletions
insertions

Alignment":""2"x"k"matrix"("k"≥m,"n")

• Find similarity between two DNA sequences that
have evolved from a common ancestor

• Estimate evolutionary “distance” (time) between
two related sequences, e.g., phylogeny
reconstruction

• Enables inferences about evolutionary process,
e.g., A map of recent positive selection in the
Human Genome – Voight et al, PLoS Bio, 2006.

Applications of sequence alignment

• Sequence alignments of RNA or amino acid
sequences help in structure prediction

Applications of sequence alignment

V""="ACCTGGTAAA

W"="ACTGCGTATA

n"="10

m"="10

A C C T G G T A A A
A C T G C G T A T A

V
W"

8
1
1
1

matches
mismatches
deletions
insertions

Alignment":""2"x"k"matrix"("k"≥m,"n")

How to compute an alignment?

“Goodness” of alignments

Given two sequences, there are many possible alignments

ATTTTCCC

ATTTACGC

ATTT-TCCC

ATTTA-CGC

ATTTTCCC————————
————————ATTTACGC

“Goodness” of alignments

Given two sequences, there are many possible alignments

ATTTTCCC

ATTTACGC

ATTT-TCCC

ATTTA-CGC

ATTTTCCC————————
————————ATTTACGC

Edit distance: the total number of substitutions, insertions and deletions
needed to transform one sequence to another

“Goodness” of alignments

Given two sequences, there are many possible alignments

ATTTTCCC

ATTTACGC

ATTT-TCCC

ATTTA-CGC

ATTTTCCC————————
————————ATTTACGC

Edit distance: the total number of substitutions, insertions and deletions
needed to transform one sequence to another

distance=2

distance=3

distance=16

How to compute the best alignment?

Enumeration of all possible alignments

Match

Insertion_X

Insertion_Y

A-GCDEF
AFGCDE-

A F G C D E

A
G

C
D

E
F

Very expensive

Introduction to dynamic programming
A simplified example

Manhattan tourist problem

Imagine seeking a
path (from source
to sink) to travel
(only eastward and
southward) with the
most number of
attractions (*) in
the Manhattan grid

Sink
*

*

*

*
*

**

* *

*

*

Source

*

Goal: Find a “most weighted” path in a weighted
grid. (Weights may not be just 0/1.)

Input: A weighted grid G with two distinct vertices,
one labeled “source” and the other labeled “sink”

Output: A “most weighted” path in G from
“source” to “sink”

Problem formulation

1 2 5

2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink

1 3

13

16 20

22

An example

2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2promising/start,/
but/leads/to/
bad/choices!

source

sink
18

22

Would a greedy algorithm work?

How about a recursive solution?

Function MT(n,m)

1. x = MT(n-1,m)+
 weight of the edge from (n-1,m) to (n,m)
2. y = MT(n,m-1)+
 weight of the edge from (n,m-1) to (n,m)
3. return max{x,y}

MT(x, y) returns the “most weighted” path
from point (x, y) to the “sink”.

• MT(n,m) needs MT(n, m-1) and MT(n-1, m)
• Both of these need MT(n-1, m-1)
• So MT(n-1, m-1) will be computed at least

twice
• Dynamic programming: the same idea as

this recursive algorithm, but keep all
intermediate results in a table and reuse

Why this is not efficient?

