CS 466 Introduction to Bioinformatics

Instructor: Jian Peng

Biological sequences

DNA

G	-	The	DN	JA N	<u>lolecule</u>
A		5'			
T.G.		I	G		С
			А		Т
G···)C			Т		А
Cere			G		С
A ···21			С		G
C. G	Base pairing property	,	G		С
Pair	of Bases		Т		А
I	=		G		С
TT			Τ		А
A			Т		А
TA ZT			А		Т
	Pair of Bases		А		Т
6 0			С		G
A		י גי	Т		A
Base Pairing in DN	A	5			
Double Helix					

Copyright @ Pearson Education, Inc., publishin

DNA to chromosome

What is RNA?

RNA = ribonucleic acid

- "U" instead of "T"
- Usually single stranded
- Has base-pairing capability
 - Can form simple non-linear structures
- Life may have started with RNA

Protein sequence

A short summary: string transformation

- DNA = nucleotide sequence
 - Alphabet size = 4 (A,C,G,T)
- DNA to mRNA (single stranded)
 - Alphabet size = 4 (A,C,G,U)
- mRNA to amino acid sequence
 - Alphabet size = 20
- Amino acid sequence "folds" into 3-dimensional protein

Phylogenetic Tree of Life

determined by DNA sequences

Evolution theory

- All organisms share the genetic code
- Similar genes across species
- Probably had a common ancestor
- Genomes are a wonderful resource to trace back the history of life

Evolutionary process of sequences

- Substitutions
- Insertions and Deletions
- Representing an alignment; "gaps"

Sequence alignment

Correspondence between bases of two DNA sequences, or between amino acids of two protein sequences

Alignment : $2 \times k$ matrix ($k \ge m, n$)

V = ACCTGGTAAA n = 10

W = ACTGCGTATA m = 10

- 8 matches
- 1 mismatches
- 1 deletions
- 1 insertions

Applications of sequence alignment

- Find similarity between two DNA sequences that have evolved from a common ancestor
- Estimate evolutionary "distance" (time) between two related sequences, e.g., phylogeny reconstruction
- Enables inferences about evolutionary process, e.g., <u>A map of recent positive selection in the</u> <u>Human Genome</u> – Voight et al, PLoS Bio, 2006.

Applications of sequence alignment

Sequence alignments of RNA or amino acid sequences help in structure prediction

Query	pemvrgqvfd <mark>VGPRYTNLSYIGEGAYGMVCSAYDNVNKVRVAIKKI</mark> spfehqty <mark>CQRTLR</mark>	60
ident		
Sbjct	qallril <mark>KETEFKKIKVLGSGAFGTVYKGLWIPVKIPVAIKEL</mark> an <mark>KEILDE</mark>	51
0		117
Query	GIVIPPKEKUEWIIGIWDIIKHDCIEdmvDAIIAODPU-PIDPIKPPVIGUPOWDUIG	11/
ldent		
Sbjct	-WINWARNDNEHACKFFGICTIRIAGTIIGTWbreerkgunteroit	104
Overv	VET VOTI DET KVTHSANUTHEDIT KOSNITT I METCOT KTCH- BETAD	173
ident		1/5
Shict	MICUOTA CONVERDEDT VIED TA DAUT VETEORVETTE CLART A COOL	164
30)00	MCVQIAROMAIDEDARDVARDDAARAAVDVRIPQAVRIIDI	101
Oueru		
	DETMINERGYTESTDTWSVCCTLAEMISN_DDTEDAKHVIDOINHTIGTIAeneadinc	232
ident	PEIMLNsKGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILgspsgedlnc	232
ident	PEIMLNSKGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILgspsgedlnc	232
ident Sbjct	PEIMLN3KGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILgspsgedlnc LESILH-RIYTHQSDVWSYGVTVWELMTFgSKPYDgIPASEISSILEKGE	232 213
ident Sbjct	PEIMLNSKGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILgspsgedinc LESILH-RIYTHQSDVWSYGVTVWELMTFgSKPYDgIPASEISSILEKGE	232 213
ident Sbjct	PEIMLN3KGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILgspsgedinc I IIIIIIIIII LESILH-RIYTHQSDVWSYGVTVWELMTFgSKPYDgIPASEISSILEKGE iinlkarnvllslphknkvpwnrLEPNADSKALDLLDKMLTENPHKRIEVEOALAHpVLE	232 213 292
Query ident Sbjct Query ident	PEIMLN3KGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILgspsqedinc I IIII LESILH-RIYTHQSDVWSYGVTVWELMTFgSKPYDgIPASEISSILEKGE iinlkarnyllslphknkvpwnrLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHpYLE	232 213 292
Query ident Sbjct Query ident Sbjct	PEIMLN3KGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILgspsqedinc I IIII LESILH-RIYTHQSDVWSYGVTVWELMTFgSKPYDgIPASEISSILEKGE iinlkarnyllslphknkvpwnrLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHpYLE I I	232 213 292 252
Query Sbjct Query ident Sbjct	PEIMLN3KGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILG3psqedInc LESILH-RIYTHQSDVWSYGVTVWELMTFgSKPYDgIPASEISSILEKGE iinlkarnyllslphknkvpwnrLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHpYLE	232 213 292 252
Query Sbjct Query ident Sbjct	PEIMLN3KGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILG3p3qedInc LESILH-RIYTHQSDVWSYGVTVWELMTFgSKPYDgIPASEISSILEKGE iinlkarnyllslphknkvpwnrLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHpYLE rlpQPPICTIDVYMIMVKCWMIDADSRPKFRELIIE-FSK	232 213 292 252
Query Sbjct Query ident Sbjct Ouerv	PEIMLN3KGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILgspsqedinc I I LESILH-RIYTHQSDVWSYGVTVWELMTFgSKPYDgIPASEISSILEKGE iinlkarnyllslphknkvpwnrLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHpYLE I	232 213 292 252
Query ident Sbjct Query ident Sbjct Query ident	PEIMLN3KGYTKSIDIWSVGCILAEMLSN-RPIFPgKHYLDQLNHILGILgspsqedinc I I LESILH-RIYTHQSDVWSYGVTVWELMTFgSKPYDgIPASEISSILEKGE iinlkarnyllslphknkvpwnrLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHpYLE I I	232 213 292 252

How to compute an alignment?

Alignment : $2 \times k$ matrix ($k \ge m, n$)

V = ACCTGGTAAA n = 10

W = ACTGCGTATA m = 10

- 8 matches
- 1 mismatches
- 1 deletions
- 1 insertions

"Goodness" of alignments

Given two sequences, there are many possible alignments

ATTT<mark>-TCC</mark>C ATTT<mark>A-CG</mark>C

ATTTTCCC ATTTACGC

"Goodness" of alignments

Given two sequences, there are many possible alignments

ATTT<mark>-TCC</mark>C ATTT<mark>A-CG</mark>C

ATTTTCCC
ATTTACGC

Edit distance: the total number of substitutions, insertions and deletions needed to transform one sequence to another

"Goodness" of alignments

Given two sequences, there are many possible alignments

ATTTTCCC -ATTTACGC

distance=16

Edit distance: the total number of substitutions, insertions and deletions needed to transform one sequence to another

How to compute the **best** alignment?

Enumeration of all possible alignments

Introduction to dynamic programming A simplified example

Manhattan tourist problem

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid

Problem formulation

<u>Goal</u>: Find a "most weighted" path in a weighted grid. (Weights may not be just 0/1.)

Input: A weighted grid **G** with two distinct vertices, one labeled "source" and the other labeled "sink"

Output: A "most weighted" path in **G** from "source" to "sink"

An example

Would a greedy algorithm work?

How about a recursive solution?

Function MT(n,m)

1.
$$x = MT(n-1,m)+$$

weight of the edge from (n-1,m) to (n,m)

2.
$$y = MT(n,m-1)+$$

weight of the edge from (n,m-1) to (n,m)

3. **return** *max*{*x*,*y*}

MT(x, y) returns the "most weighted" path from point (x, y) to the "sink".

Why this is not efficient?

- MT(n,m) needs MT(n, m-1) and MT(n-1, m)
- Both of these need MT(n-1, m-1)
- So MT(n-1, m-1) will be computed at least twice
- Dynamic programming: the same idea as this recursive algorithm, but keep all intermediate results in a table and reuse