CS 466 Introduction to Bioinformatics

Instructor: Jian Peng

Biological sequences

DNA

Copyight 0 Pearson Education, Inc., pubishin

DNA to chromosome

What is RNA?

RNA = ribonucleic acid

- "U" instead of "T"
- Usually single stranded
- Has base-pairing capability
- Can form simple non-linear structures
- Life may have started with RNA

(a)

(b)

Protein sequence

A short summary: string transformation

- DNA = nucleotide sequence
- Alphabet size $=4(\mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T})$
- DNA to mRNA (single stranded)
- Alphabet size $=4(\mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{U})$
- mRNA to amino acid sequence
- Alphabet size = 20
- Amino acid sequence "folds" into 3-dimensional protein

Phylogenetic Tree of Life

Bacteria

Archaea

Eucarya

determined by DNA sequences

Evolution theory

- All organisms share the genetic code
- Similar genes across species
- Probably had a common ancestor
- Genomes are a wonderful resource to trace back the history of life

Evolutionary process of sequences

- Substitutions
- Insertions and Deletions
- Representing an alignment; "gaps"

Evolution direction | ATTTTCCC | |
| :--- | :--- |
| ATTTTACC | substitution: C->A |
| AT TTACC | deletion: T |
| AT TTACGC | insertion: G |

Sequence alignment

Correspondence between bases of two DNA sequences, or between amino acids of two protein sequences

Alignment : $2 \times \mathrm{k}$ matrix $(\mathrm{k} \geq \mathrm{m}, \mathrm{n})$

$$
\begin{array}{lll}
\mathrm{V}=\mathrm{ACCTGGTAAA} & \mathrm{n}=10 & 8 \text { matches } \\
\mathrm{W}=\mathrm{ACTGCGTATA} & \mathrm{~m}=10 & 1 \text { mismatches } \\
& & 1 \text { deletions } \\
& 1 \text { insertions }
\end{array}
$$

V	A	C	C	T	G	-	G	T	A	A
W										
A	A									

Applications of sequence alignment

- Find similarity between two DNA sequences that have evolved from a common ancestor
- Estimate evolutionary "distance" (time) between two related sequences, e.g., phylogeny reconstruction
- Enables inferences about evolutionary process, e.g., A map of recent positive selection in the Human Genome - Voight et al, PLoS Bio, 2006.

Applications of sequence alignment

- Sequence alignments of RNA or amino acid sequences help in structure prediction

Query ${ }^{\mathbf{W}}$ ydpsdepiaeapfkfdmelddlpkeklkelifeetarfqpg 335
ident
Sbjct MA--rdpqrylviqgdermhlpsptdsnfyralmdvvdadeyl 29

How to compute an alignment?

Alignment : $2 \times \mathrm{k}$ matrix $(\mathrm{k} \geq \mathrm{m}, \mathrm{n})$

| $\mathrm{V}=\mathrm{ACCTGGTAAA}$ | $\mathrm{n}=10$ | 8 matches |
| :--- | :--- | :--- | :--- |
| $\mathrm{W}=\mathrm{ACTGCGTATA}$ | $\mathrm{m}=10$ | 1 mismatches |
| | | 1 deletions |
| | | 1 insertions |

V	A	C	C	T	G	-	G	T	A	A
W										
W	A	C	-	T	G	C	G	T	A	T

"Goodness" of alignments

Given two sequences, there are many possible alignments

ATTTTCCC
ATTTACGC

```
ATTT-TCCC
ATTTA-CGC
```


ATTTTCCC

"Goodness" of alignments

Given two sequences, there are many possible alignments

ATTTTCCC
ATTTACGC

```
ATTT-TCCC
ATTTA-CGC
```


ATTTTCCC

ATTTACGC

Edit distance: the total number of substitutions, insertions and deletions needed to transform one sequence to another

"Goodness" of alignments

Given two sequences, there are many possible alignments

ATTTTCCC
ATTTACGC

distance=2

```
ATTT-TCCC
ATTTA-CGC
```

distance=3

ATTTTCCC ATTTACGC

distance=16

Edit distance: the total number of substitutions, insertions and deletions needed to transform one sequence to another

How to compute the best alignment?

Enumeration of all possible alignments

A-GCDEF
AFGCDE-

Introduction to dynamic programming

A simplified example

Manhattan tourist problem

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid

Problem formulation

Goal: Find a "most weighted" path in a weighted grid. (Weights may not be just 0/1.)

Input: A weighted grid \mathbf{G} with two distinct vertices, one labeled "source" and the other labeled "sink"

Output: A "most weighted" path in G from "source" to "sink"

An example

Would a greedy algorithm work?

How about a recursive solution?

Function MT(n, m)

1. $x=M T(n-1, m)+$
weight of the edge from $(n-1, m)$ to (n, m)
2. $\quad y=M T(n, m-1)+$
weight of the edge from $(n, m-1)$ to (n, m)
3. return $\max \{x, y\}$

MT(x, y) returns the "most weighted" path from point (x, y) to the "sink".

Why this is not efficient?

- MT(n,m) needs MT(n, m-1) and MT(n-1, m)
- Both of these need MT(n-1, m-1)
- So MT(n-1, m-1) will be computed at least twice
- Dynamic programming: the same idea as this recursive algorithm, but keep all intermediate results in a table and reuse

