CS 466 Introduction to Bioinformatics

Instructor: Jian Peng

Probability and Statistics

Random Variables and Expectations

Random Variable

Quite commonly, we would like to deal with numbers that are random. We can do so by linking numbers to the outcome of an experiment. We define a random variable:

Definition: 4.1 Discrete random variable

Given a sample space Ω , a set of events \mathcal{F} , a probability function P, and a countable set of real numbers D, a discrete random variable is a function with domain Ω and range D.

Random Possible Random Variable Values Events
$$X = \begin{cases} 0 & \longleftarrow \\ 1 & \longleftarrow \end{cases}$$

Probability distribution

Definition: 4.2 Probability distribution of a discrete random variable

The probability distribution of a discrete random variable is the set of numbers $P(\{X = x\})$ for each value x that X can take. The distribution takes the value 0 at all other numbers. Notice that the distribution is non-negative. Notation warning: probability notation can be quirky. You may encounter p(x) with the meaning "some probability distribution" or p(x) meaning "the value of the probability distribution $P(\{X = x\})$ at the point x" or p(x) with the meaning "the probability distribution $P(\{X = x\})$ ". Context may help disambiguate these uses.

Independent variables

Definition: 4.7 Independent random variables

The random variables X and Y are **independent** if the events $\{X=x\}$ and $\{Y=y\}$ are independent. This means that

$$P(\{X = x\} \cap \{Y = y\}) = P(\{X = x\})P(\{Y = y\}),$$

which we can rewrite as

$$P(x,y) = P(x)P(y)$$

Continuous distribution: density function

 $p(x)dx = P(\{\text{event that } X \text{ takes a value in the range } [x, x + dx]\}).$

Useful Facts: 4.1 Properties of probability density functions

- Probability density functions are non-negative. This follows from the definition; a negative value at some u would imply that P({x ∈ [u, u + du]}) was negative, and this cannot occur.
- For a < b

$$P(\{X \text{ takes a value in the range } [a, b]\}) = \int_a^b p(x)dx.$$

which we obtain by summing p(x)dx over all the infinitesimal intervals between a and b.

We must have that

$$\int_{-\infty}^{\infty} p(x)dx = 1.$$

This is because

$$P(\{X \text{ takes a value in the range } [-\infty, \infty]\}) = 1 = \int_{-\infty}^{\infty} p(x)dx$$

- Probability density functions are usually called pdf's.
- It is quite usual to write all pdf's as lower-case p's. If one specifically wishes to refer to probability (as opposed to probability density), one writes an upper case P, as in the previous points.

Expectation

Definition: 4.9 Expectation

Assume we have a function f that maps a discrete random variable X into a set of numbers \mathcal{D}_f . Then f(X) is a discrete random variable, too, which we write F. The expected value of this random variable is written

$$\mathbb{E}[f] = \sum_{u \in \mathcal{D}_f} u P(F = u) = \sum_{x \in \mathcal{D}} f(x) P(X = x)$$

which is sometimes referred to as "the expectation of f". The process of computing an expected value is sometimes referred to as "taking expectations".

Definition: 4.10 Expected value of a continuous random variable

Given a continuous random variable X which takes values in the set \mathcal{D} and which has probability distribution P, we define the expected value

$$\mathbb{E}[X] = \int_{x \in \mathcal{D}} x p(x) dx.$$

This is sometimes written $\mathbb{E}_p[X]$, to clarify which distribution one has in mind.

Mean, Variance and Covariance

Definition: 4.12 Mean or expected value

The mean or expected value of a random variable X is

$$\mathbb{E}[X]$$

Definition: 4.13 Variance

The variance of a random variable X is

$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Definition: 4.14 Covariance

The covariance of two random variables X and Y is

$$cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Statistics

Mean

One simple and effective summary of a set of data is its **mean**. This is sometimes known as the **average** of the data.

Definition: 1.1 Mean

Assume we have a dataset $\{x\}$ of N data items, x_1, \ldots, x_N . Their mean is

mean
$$({x}) = \frac{1}{N} \sum_{i=1}^{i=N} x_i$$
.

Standard deviation and Variance

Definition: 1.2 Standard deviation

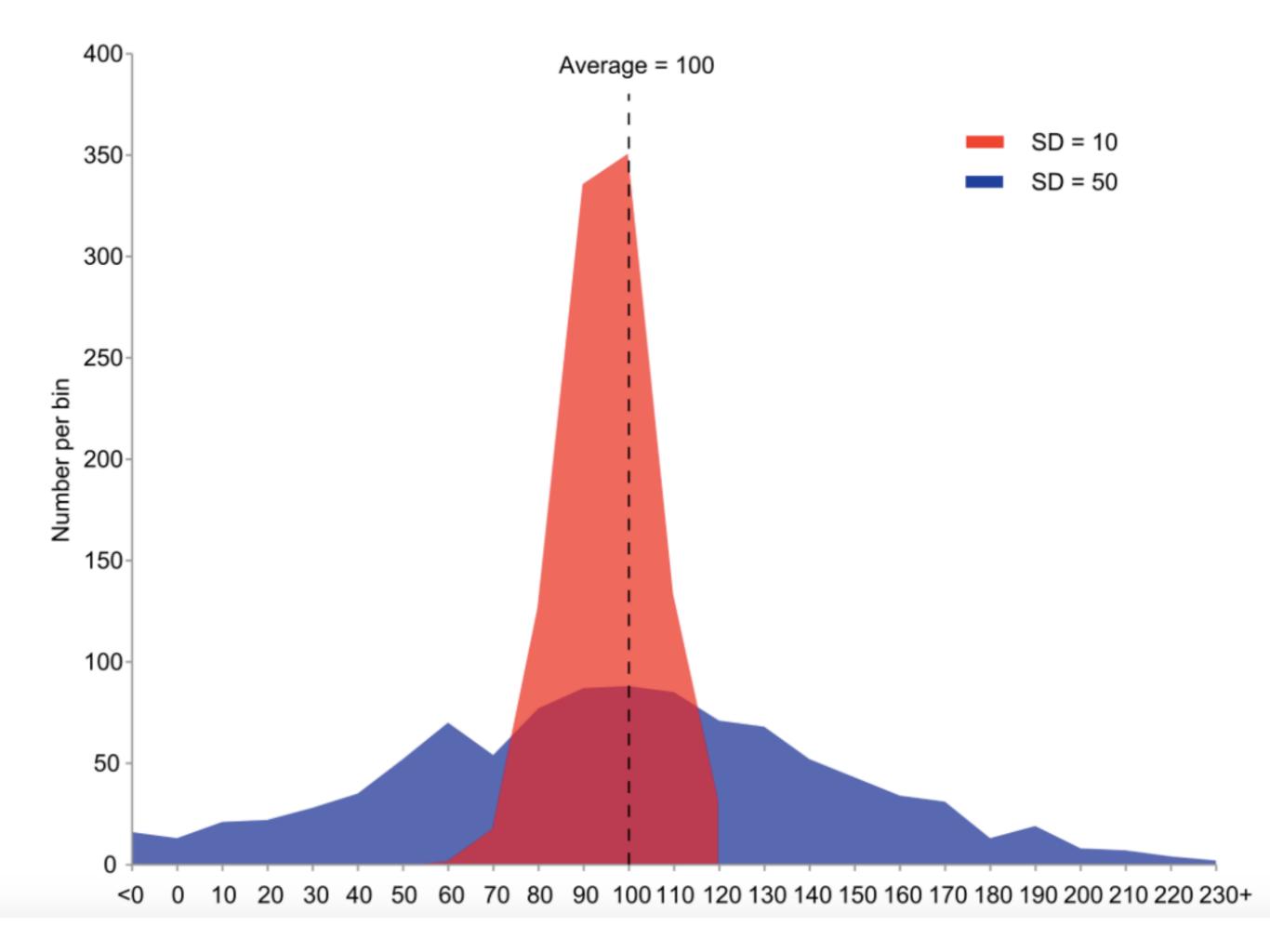
Assume we have a dataset $\{x\}$ of N data items, x_1, \ldots, x_N . The standard deviation of this dataset is is:

$$\operatorname{std}\left(\{x_i\}\right) = \sqrt{\frac{1}{N}\sum_{i=1}^{i=N}(x_i - \operatorname{mean}\left(\{x\}\right))^2} = \sqrt{\operatorname{mean}\left(\{(x_i - \operatorname{mean}\left(\{x\}\right))^2\}\right)}.$$

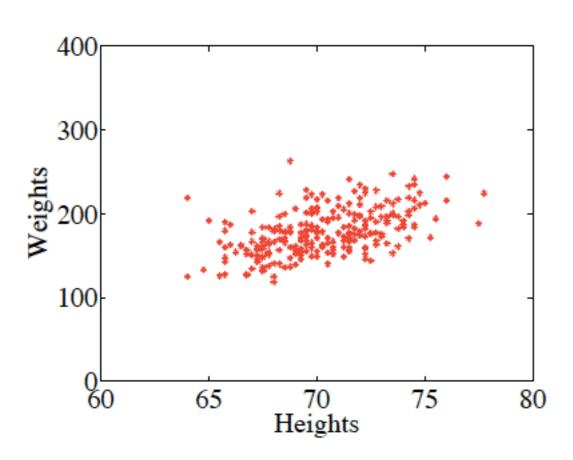
Definition: 1.3 Variance

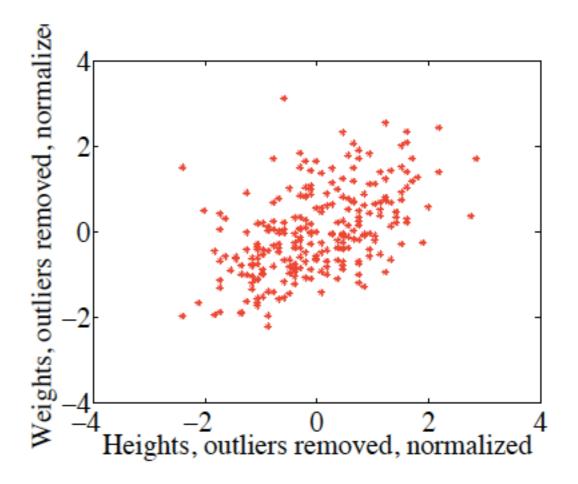
Assume we have a dataset $\{x\}$ of N data items, x_1, \ldots, x_N . where N > 1. Their variance is:

$$\operatorname{var}\left(\{x\}\right) = \frac{1}{N} \left(\sum_{i=1}^{i=N} (x_i - \operatorname{mean}\left(\{x\}\right))^2 \right) = \operatorname{mean}\left(\left\{(x_i - \operatorname{mean}\left(\{x\}\right))^2\right\}\right).$$



Normalization





$$\hat{x}_i = \frac{(x_i - \text{mean}(\{x\}))}{\text{std}(\{x\})}.$$

Correlation



FIGURE 2.16: The three kinds of scatter plot are less clean for real data than for our idealized examples. Here I used the body temperature vs heart rate data for the zero correlation; the height-weight data for positive correlation; and the lynx data for negative correlation. The pictures aren't idealized — real data tends to be messy — but you can still see the basic structures.

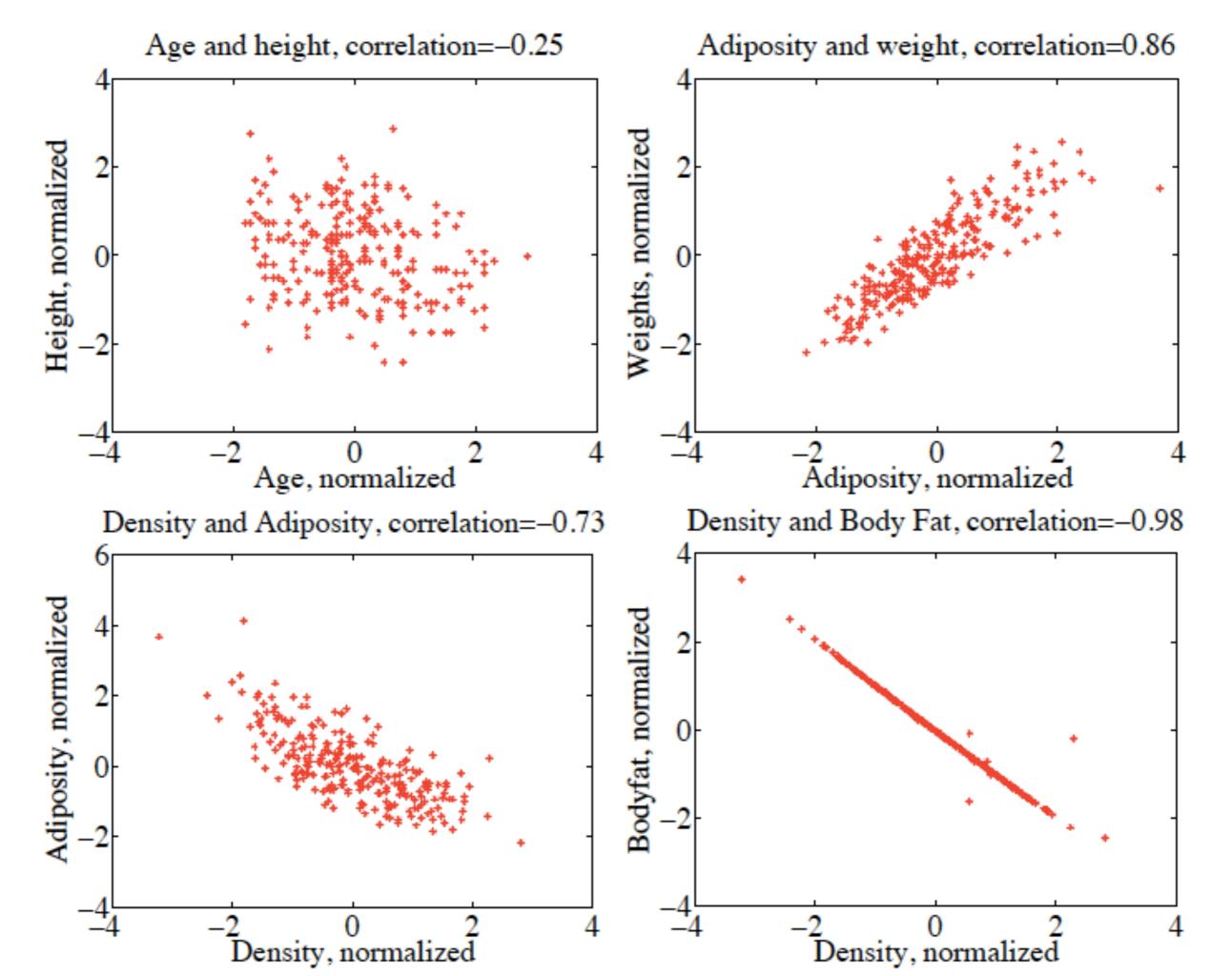
Correlation coefficient

Definition: 2.1 Correlation coefficient

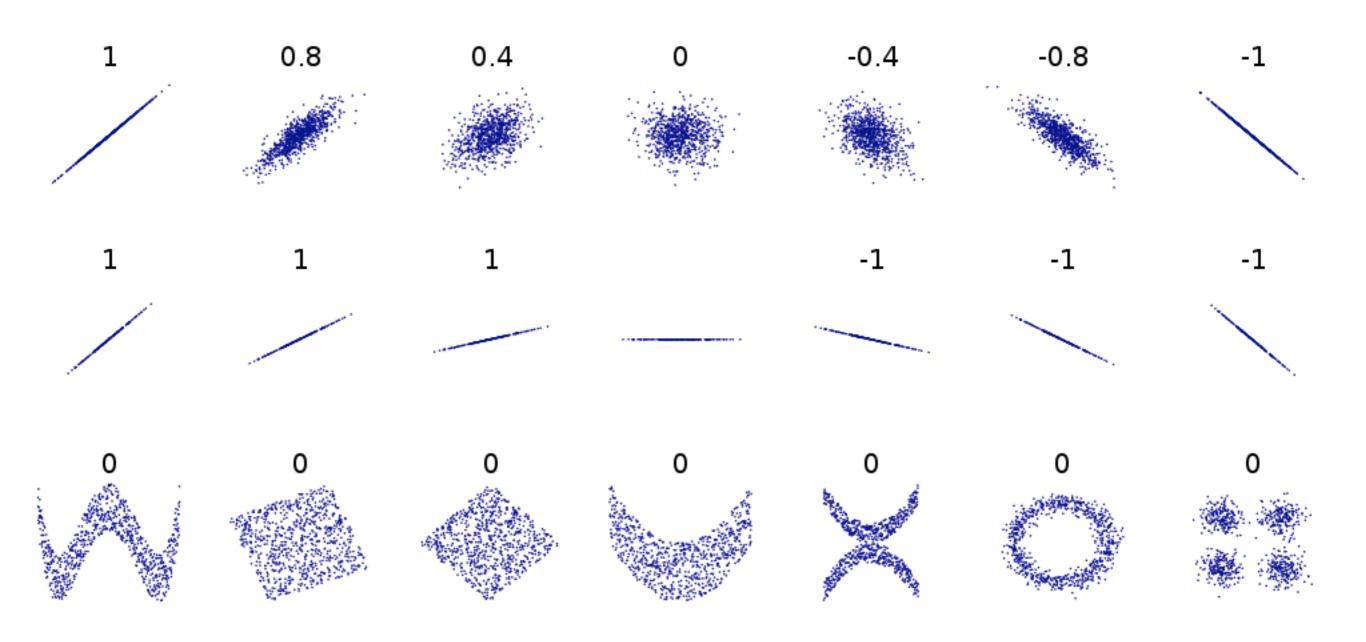
Assume we have N data items which are 2-vectors $(x_1, y_1), \ldots, (x_N, y_N)$, where N > 1. These could be obtained, for example, by extracting components from larger vectors. We compute the correlation coefficient by first normalizing the x and y coordinates to obtain $\hat{x}_i = \frac{(x_i - \mathsf{mean}(\{x\}))}{\mathsf{std}(x)}$, $\hat{y}_i = \frac{(y_i - \mathsf{mean}(\{y\}))}{\mathsf{std}(y)}$. The correlation coefficient is the mean value of $\hat{x}\hat{y}$, and can be computed as:

$$\operatorname{corr}\left(\{(x,y)\}\right) = \frac{\sum_i \hat{x}_i \hat{y}_i}{N}$$

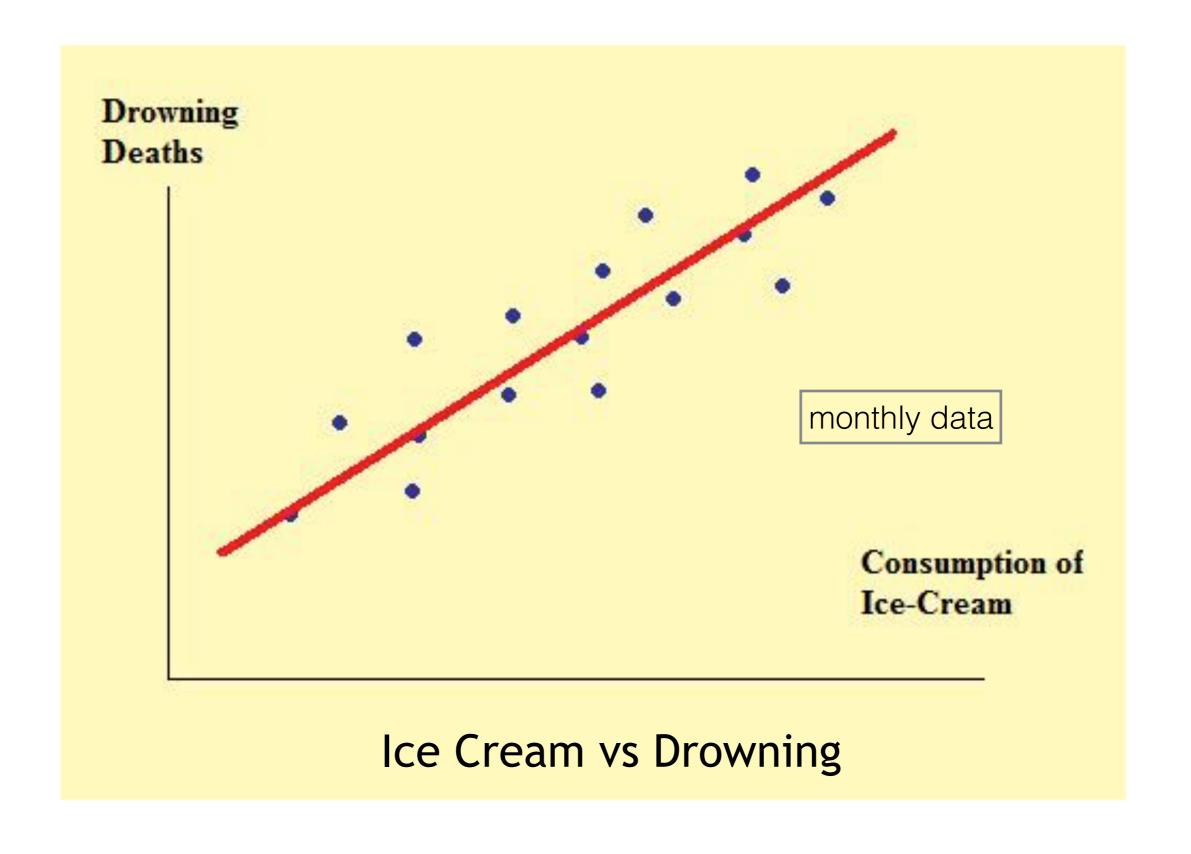
Also called **Pearson Correlation Coefficient**



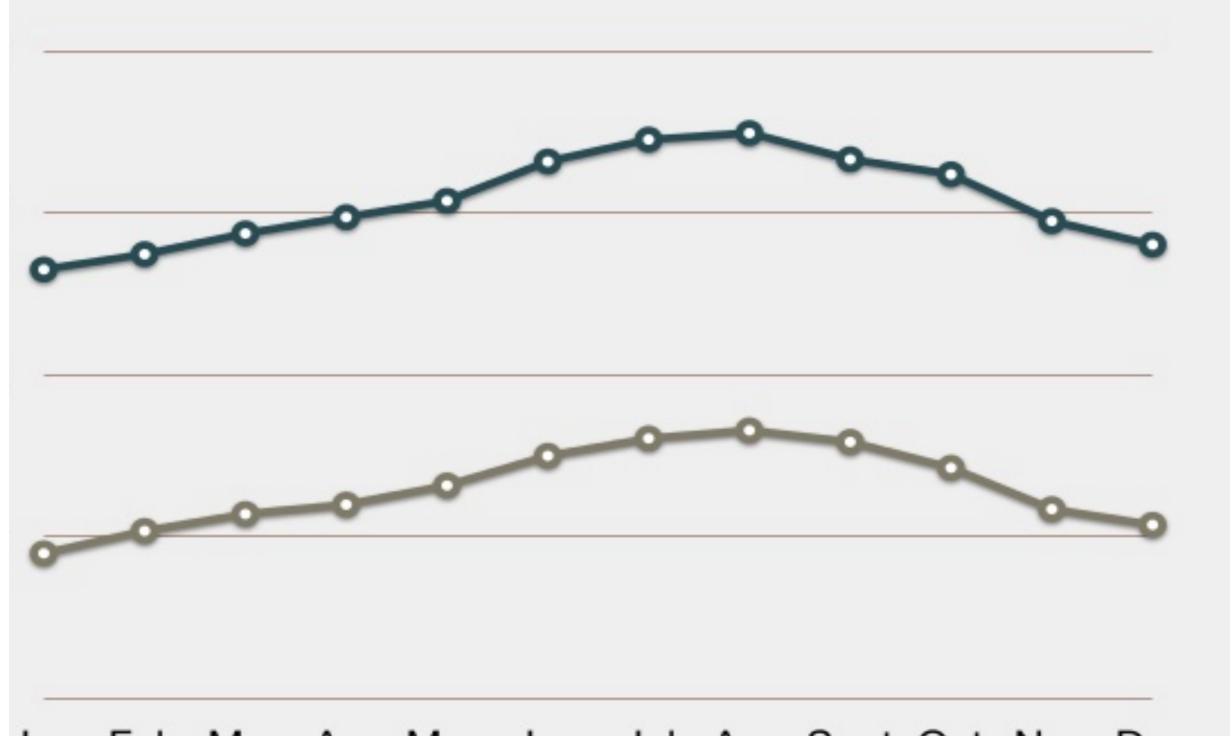
Correlation coefficient vs Relationship



Correlation and Causality



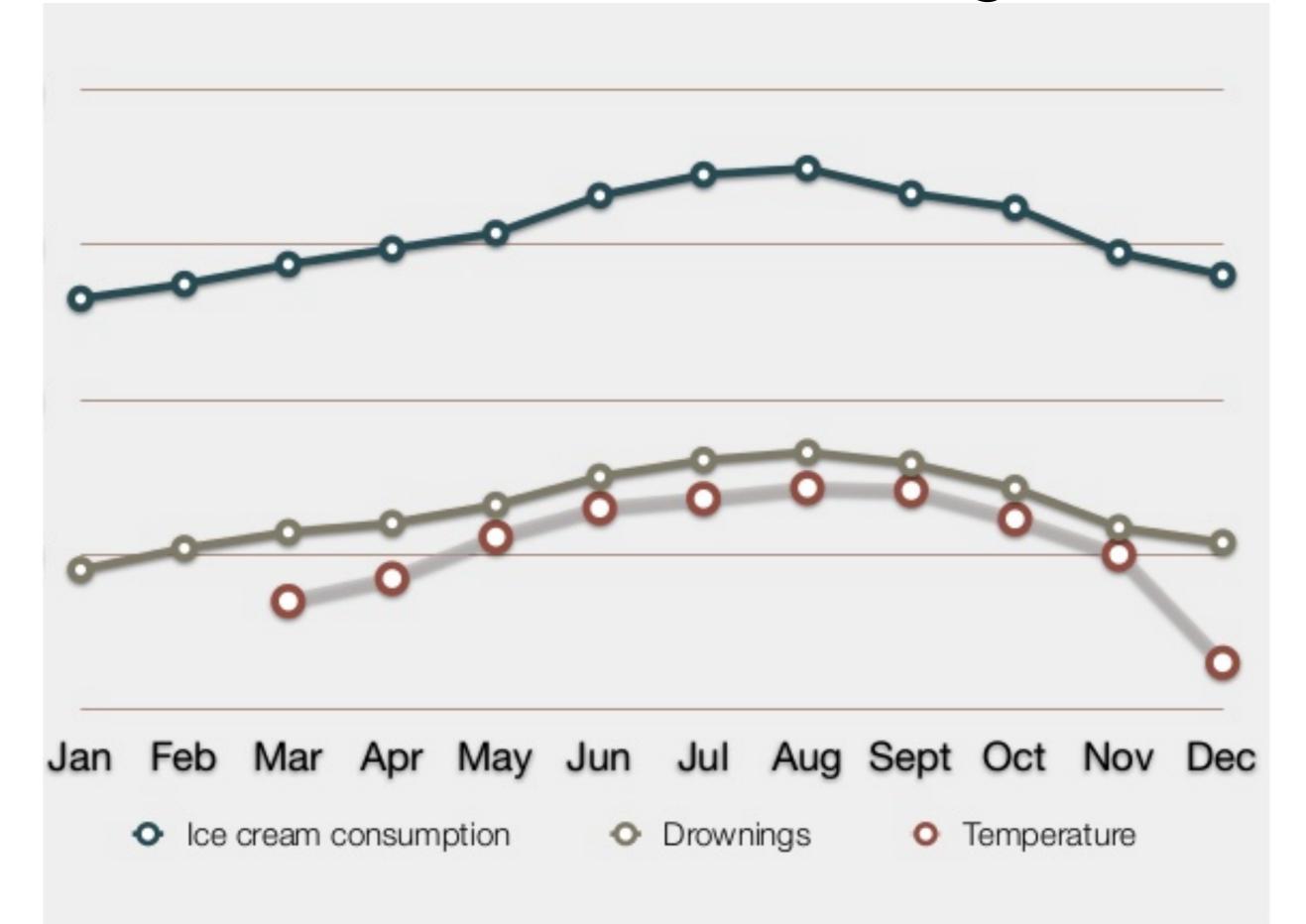
Ice Cream vs Drowning



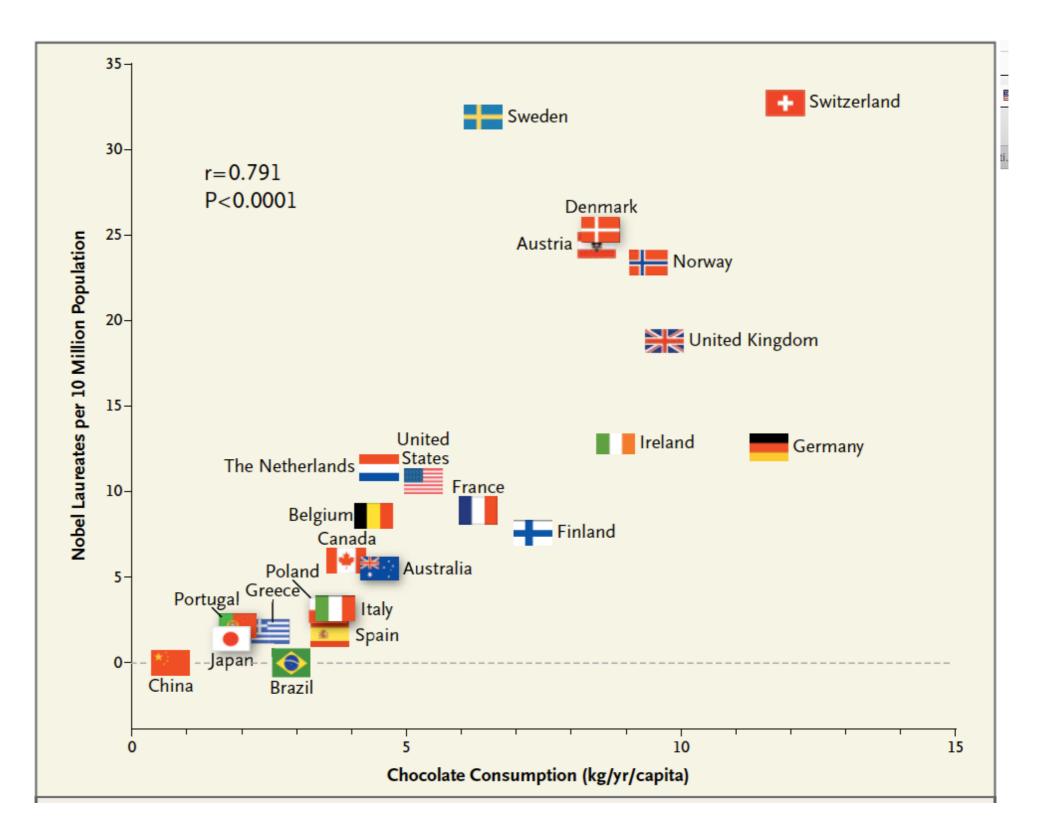
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Ice cream consumption

Ice Cream vs Drowning

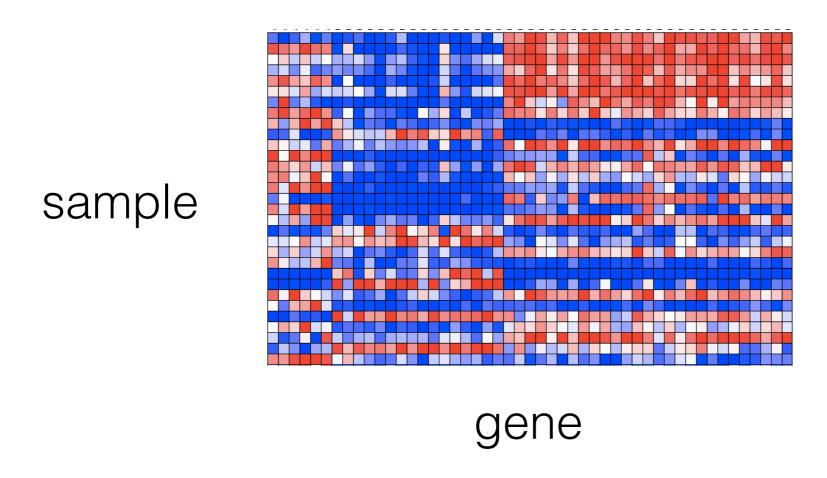


Chocolate vs Nobel Prizes



credit: NEJM, 2012

Gene expression analysis



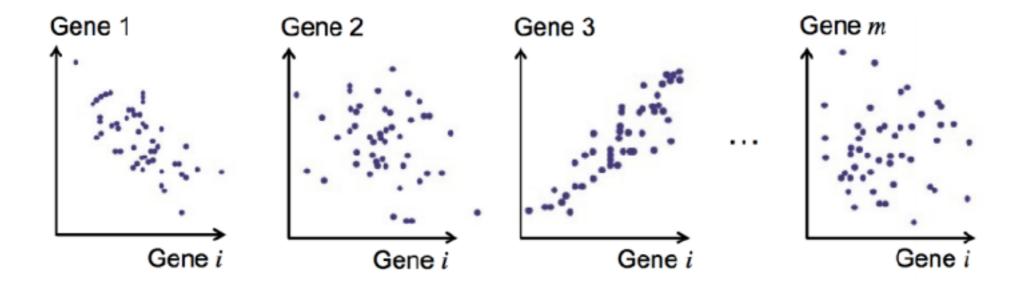
Correlation of genes across experimental conditions

coregulation of genes

Correlation analysis

	Sample 1	Sample 2	•••	Sample n
Gene 1	<i>X</i> ₁₁	X ₁₂		X_{1n}
Gene 2	X ₂₁	X ₂₂	•••	X_{2n}
:	:	:	:	:
Gene m	X_{m1}	X_{m2}	•••	X_{mn}

$$r = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2} \sqrt{\sum (Y - \overline{Y})^2}}$$



$$r = -0.8$$

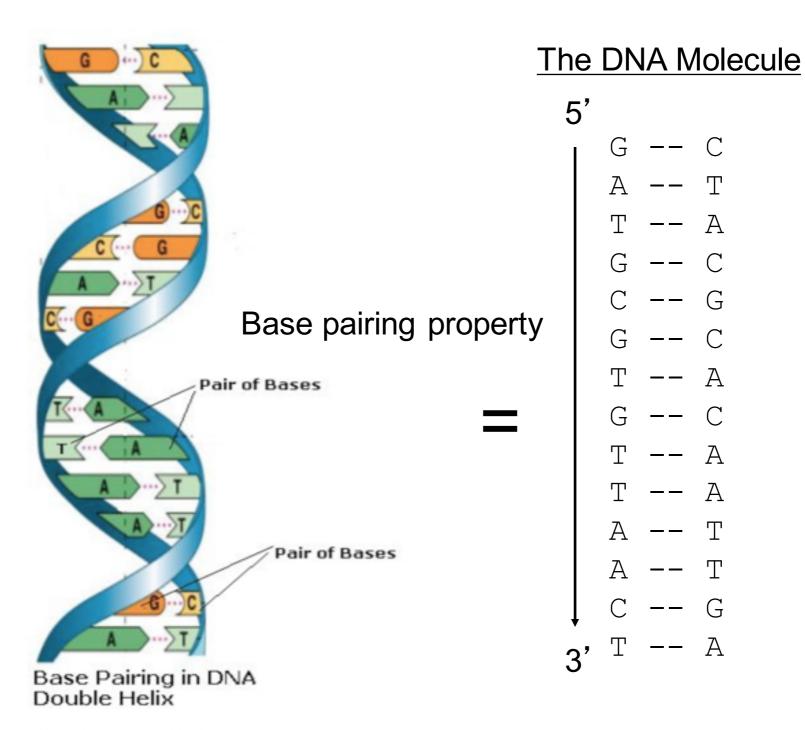
$$r = -0.2$$

$$r = 0.85$$

$$r = -0.15$$

Biological sequences

DNA



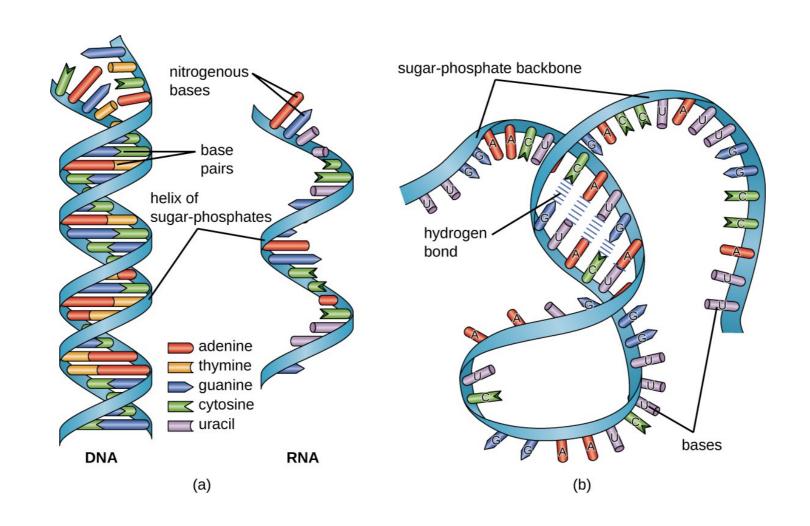
Copyright @ Pearson Education, Inc., publishin

DNA to chromosome

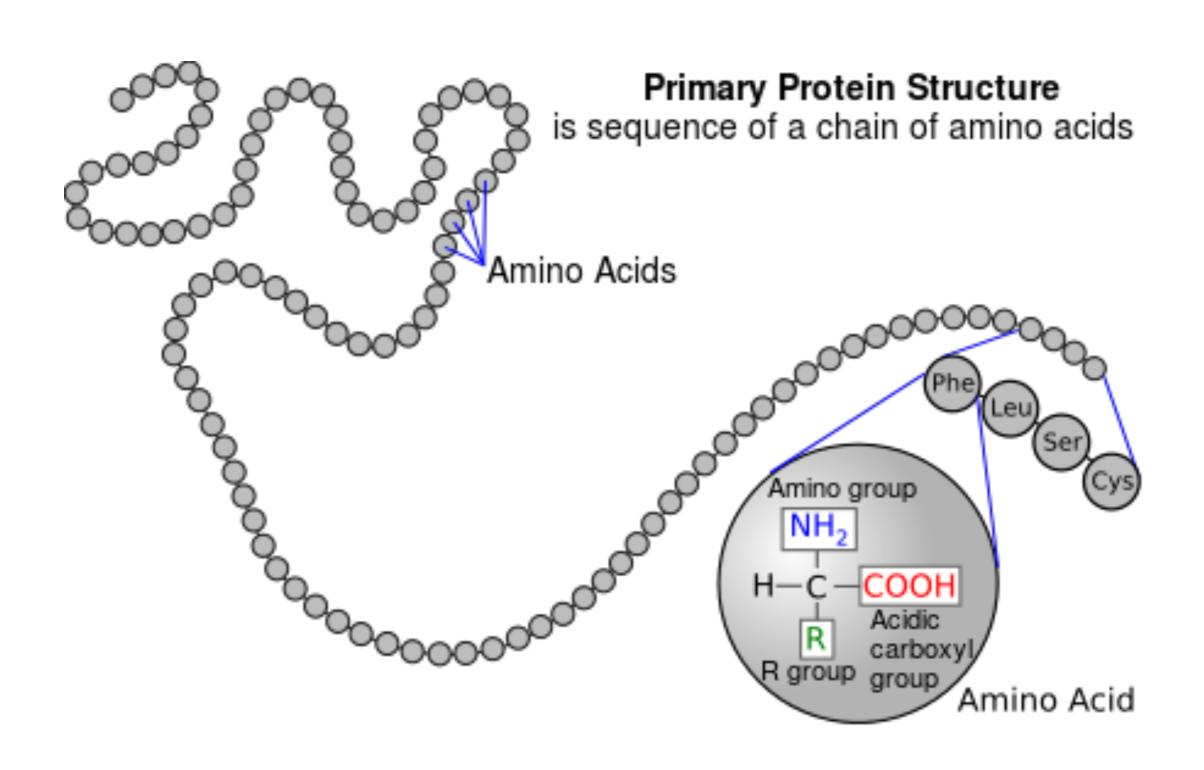
What is RNA?

RNA = ribonucleic acid

- "U" instead of "T"
- Usually single stranded
- Has base-pairing capability
 - Can form simple non-linear structures
- Life may have started with RNA



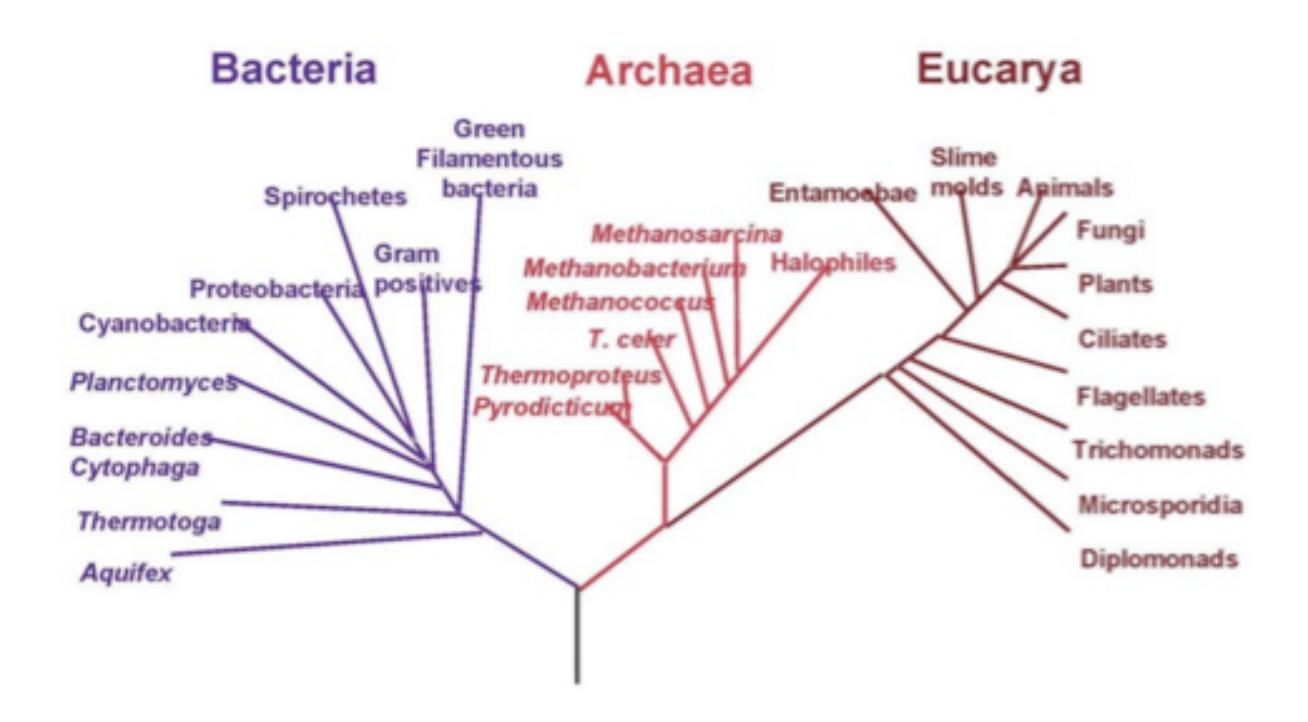
Protein sequence



A short summary: string transformation

- DNA = nucleotide sequence
 - Alphabet size = 4 (A,C,G,T)
- DNA to mRNA (single stranded)
 - Alphabet size = 4 (A,C,G,U)
- mRNA to amino acid sequence
 - Alphabet size = 20
- Amino acid sequence "folds" into 3-dimensional protein

Phylogenetic Tree of Life



determined by DNA sequences

Evolution theory

- All organisms share the genetic code
- Similar genes across species
- Probably had a common ancestor
- Genomes are a wonderful resource to trace back the history of life

Evolutionary process of sequences

- Substitutions
- Insertions and Deletions
- Representing an alignment; "gaps"

Evolution direction

ATTTTCCC

ATTTTACC

AT TTACC

AT TTACGC

substitution: C->A

deletion: T

insertion: G

Sequence alignment

Correspondence between bases of two DNA sequences, or between amino acids of two protein sequences

Alignment: $2 \times k \text{ matrix} (k \ge m, n)$

$$V = ACCTGGTAAA$$
 $n = 10$

$$W = ACTGCGTATA$$
 $m = 10$

8 matches

1 mismatches

1 deletions

1 insertions

V	Α	С	С	Т	G		G	T	Α	Α	Α
W	Α	C		Т	G	C	G	Т	Α	Т	Α