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Probability and Statistics

Random Variables and Expectations




Random Variable

Quite commonly, we would like to deal with numbers that are random. We can
do so by linking numbers to the outcome of an experiment. We define a random

variable:

Definition: 4.1 Discrete random variable

Given a sample space (), a set of events F, a probability function P,
and a countable set of of real numbers D, a discrete random variable 1s

a function with domain {2 and range D.
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Random Variable

Quite commonly, we would like to deal with numbers that are random. We can
do so by linking numbers to the outcome of an experiment. We define a random
variable:

Definition: 4.1 Discrete random variable

Given a sample space (), a set of events F, a probability function P,
and a countable set of of real numbers D, a discrete random variable 1s

a function with domain {2 and range D.

Example: 4.1 Numbers from coins

We flip a coin. Whenever the coin comes up heads, we report 1; when
1t comes up tails, we report 0. This i1s a random variable.

Example: 4.2 Numbers from coins I1

We flip a coin 32 times. We record a 1 when it comes up heads, and
when 1t comes up tails, we record a 0. This produces a 32 bit random

number, which is a random variable.




Probability distribution

Definition: 4.2 Probability distribution of a discrete random variable

The probability distribution of a discrete random variable 1s the set of
numbers P({X = z}) for each value x that X can take. The distribu-
tion takes the value 0 at all other numbers. Notice that the distribu-
tion 1s non-negative. Notation warning: probability notation can be
quirky. You may encounter p(z) with the meaning “some probability
distribution” or p(z) meaning “the value of the probability distribution
P({X = z}) at the point z” or p(z) with the meaning “the probability
distribution P({X = z})”. Context may help disambiguate these uses.

Worked example 4.1 Numbers from coins II1

We flip a biased coin 2 times. The flips are independent. The coin has P(H) =
p, P(T') =1 —p. We record a 1 when it comes up heads, and when it comes up
tails, we record a 0. This produces a 2 bit random number, which 1s a random

variable taking the values 0, 1, 2, 3. What 1s the probability distribution and
cumulative distribution of this random variable?

Solution: Probability distribution: P(0) = (1 —p)?; P(1) = (1 —p)p; P(2) =
p(1 — p); P(3) = p%. Cumulative distribution: f(0) = (1 —p)?; f(1) = (1 — p);
f2)=p(l-p)+(1—-p)=01-p%; f3)=1.




Joint distribution

Definition: 4.4 Joint probability distribution of two discrete random
variables

Assume we have two random variables X and Y. The probability
that X takes the value x and Y takes the value y could be written
as P{X =z} N{Y =y}). It is more usual to write it as

P(z,y).

This 1s referred to as the joint probability distribution of the two
random variables (or, quite commonly, the joint). You can think of
this as a table of probabilities, one for each possible pair of x and y
values.




Marginal distribution

Definition: 4.6 The marginal probability of a random variable

Write P(z,y) for the joint probability distribution of two random vari-
ables X and Y. Then

P(z) =) P(z,y) =) P{X =2z}n{Y =y}) = P{X =2}

1s referred to as the marginal probability distribution of X.




Independent variables

Definition: 4.7 Independent random variables

The random variables X and Y are independent if the events {X = z}
and {Y = y} are independent. This means that

P{X =z} n{Y =y}) = P({X =z})P{Y =y}),
which we can rewrite as

P(z,y) = P(z)P(y)




Continuous probability distribution
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Continuous distribution: density function

p(z)dx = P({event that X takes a value in the range [z, z + dz]|}).

Useful Facts: 4.1 Properties of probability density functions

e Probability density functions are non-negative. This follows from
the definition; a negative value at some u would imply that P({z €
[u, u + du]}) was negative, and this cannot occur.

e Fora<b
b
P({X takes a value in the range [a,b]}) = / p(z)dz.

which we obtain by summing p(z)dzr over all the infinitesimal
intervals between a and b.

e We must have that

/ p(z)dz = 1.
This is because
P({X takes a value in the range [—o0,00|}) =1 = / p(z)dz

e Probability density functions are usually called pdf’s.

e It is quite usual to write all pdf’s as lower-case p’s. If one specif-
ically wishes to refer to probability (as opposed to probability
density), one writes an upper case P, as in the previous points.




Joint distribution

Joint density function: Canada 1994




Marginal distribution
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Expected value

Definition: 4.8 FExzxpected value

Given a discrete random variable X which takes values in the set D and
which has probability distribution P, we define the expected value

EX]=) zP(X =z).
xzeD

This is sometimes written Ep[X], to clarify which distribution one has
in mind

Example: 4.5 Betting on coins

We agree to play the following game. I flip a fair coin (i.e. P(H) =
P(T) = 1/2). If the coin comes up heads, you pay me 1; if the coin
comes up tails, I pay you 1. The expected value of my income is 0, even
though the random variable never takes that value.




Expectation

Definition: 4.9 Ezpectation

Assume we have a function f that maps a discrete random variable X
into a set of numbers Ds. Then f(X) is a discrete random variable,
too, which we write F'. The expected value of this random variable is

written
E[f]= ) uP(F=u)=)_ f(z)P(X =x)

u€Dy zeD

which is sometimes referred to as “the expectation of f”. The process
of computing an expected value is sometimes referred to as “taking

expectations”.

Definition: 4.10 Ezxpected value of a continuous random variable

Given a continuous random variable X which takes values in the set D
and which has probability distribution P, we define the expected value

E[X] = / _ap(a)dz

This is sometimes written E,[X], to clarify which distribution one has
in mind.




Some properties of expectation

Useful Facts: 4.2 FExpectations are linear
Write f, g for functions of random variables.
e E[0] =0
e for any constant k, E[k f] = KE|[f]
o E[f +9] =E[f] +Elg].




Mean, Variance and Covariance

Definition: 4.12 Mean or expected value

The mean or expected value of a random variable X is

E[X]

Definition: 4.13 Variance

The variance of a random variable X is

var[X] = E[(X — E[X])’]

Definition: 4.14 Covariance

The covariance of two random variables X and Y is

cov(X,Y) = E[(X — E[X])(Y — E[Y])]




Examples

Worked example 4.9  Mean of a coin flip

We flip a biased coin, with P(H) = p. The random variable X has value 1 if
the coin comes up heads, 0 otherwise. What is the mean of X7 (i.e. E[X]).

Solution: E[X]|=3}" _pzP(X=2)=1p+0(1—-p)=p

Worked example 4.10 Variance of a coin flip

We flip a biased coin, with P(H ) = p. The random variable X has value 1 if the
coin comes up heads, 0 otherwise. What is the variance of X7 (i.e. var[X]).

Solution: var[X] =E[(X — E[X])?] = E[X?]-E[X]* = (1p—0(1—p))—p® =
p(1—p)

Worked example 4.11 Variance

Can a random variable have E[X]| > /E[X?2]?

Solution: No, because that would mean that E[(X — E[X])?] < 0. But this
is the expected value of a non-negative quantity; it must be non-negative.




Properties of variance and covariance

Useful Facts: 4.3 Properties of variance

. For any constant k, var[k] =0

. var[X] >0

. var[kX] = k?var[X]

. if X and Y are independent, then var[X + Y| = var[X]| + var[Y]
. var[X] = cov (X, X).

QU & O N =

1, 2, and 5 are obvious. You will prove 3 and 4 in the exercises.

Useful Facts: 4.6 Independent random variables have zero covariance

1. if X and Y are independent, then E[XY] = E[X]E[Y].
2. if X and Y are independent, then cov (X,Y) = 0.

If 1 is true, then 2 is obviously true (apply the expression of useful
facts[4.5)). I prove 5 below.




Properties

Useful Facts: 4.4 A useful expression for variance

var[X]

|
E & BH E

(X — E[X])?]

(X2 — 2XE[X] + 1E[X]2)]
fX2] — 2E[X|E[X] + E[X]?
X?] - (E[X])?

Useful Facts: 4.5 A useful expression for covariance

cov (X, Y) (X —EX]DY —E[Y])]
(XY — YE[X] — XE[Y] + E[X]E[Y])]
XY] — 2E[Y]E[X] + E[X]E[Y]

XY] - E[X]E[Y].
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Proposition: If X and Y are independent random wvariables, then

E[XY] = E[X]E[Y].

Proof: Recall that E[X] =) _,zP(X = z), so that

E[XY] = Y  yP(X ==Y =y)
(z,y)€Drx D,
= > Y (zyP(X =2zY =y))
x€D; yeD,
= Y Y (zyP(X =2)P(Y =y))
x€D; yeD,

because X and Y are independent

= Y Y (zP(X =2z))(yP(Y =y))

z€D; yeD,
— ( Y zP(X = m)) (Z yP(Y = y))
z€D; yeD,
= (E[X])(E[Y]).

This is certainly not true when X and Y are not independent (try
Y =-X).




Statistics



Mean

One simple and effective summary of a set of data 1s its mean. This 1s sometimes
known as the average of the data.

Definition: 1.1 Mean

Assume we have a dataset {z} of N data items, x1,...,2zn. Their mean
1S

1 i=N
mean ({z}) = ¥ Z T




Standard deviation and Variance

Definition: 1.2 Standard deviation

Assume we have a dataset {z} of N data items, zi,...,zn. The stan-
dard deviation of this dataset is is:

i=N
std ({a:z}) = \ % ;(xz — mean ({;1;}))2 — \/mean ({(:l?, — mean ({x}))Q})

Definition: 1.3 Variance

Assume we have a dataset {z} of N data items, zi,...,zy. where
N > 1. Their variance is:

var ({z}) = % (i(mz — mean ({:1;}))2) = mean ({(z; — mean ({z}))*}).

1=1




400, Average = 100

350- ' mm SD=10

300-

250+

200-

Number per bin

150-

100-

50 -

0
<0 0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170 180 190 200 210 220 230+



Weights

Normalization
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No Correlation
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The three kinds of scatter plot are less clean for real data than for

our idealized examples. Here I used the body temperature vs heart rate data for the

zero correlation; the height-weight data for positive correlation; and the lynz data
for negative correlation. The pictures aren’t idealized — real data tends to be messy
— but you can still see the basic structures.



Correlation coefficient

Definition: 2.1 Correlation coefficient

Assume we have N data 1tems which are 2-vectors
(z1,v1),...,(zN,yn), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. We
compute the correlation coefficient by first normalizing the z and y

(zi—mean({z})) .~ _ (yi—mean({y})) e

coordinates to obtain z; = 5td(z) . Ui 5td(y)
correlation coefficient 1s the mean value of £y, and can be computed

corr ({(a,4))) = =

Also called Pearson Correlation Coefficient
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Correlation and Causality
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lce Cream vs Drowning
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Chocolate vs Nobel Prizes

Nobel Laureates per 10 Million Population
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Gene expression analysis

sample

gene

Correlation of genes across — coregulation
experimental conditions of genes




Correlation analysis
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