CS 466 Introduction to Bioinformatics

Instructor: Jian Peng

Important Biological Questions?

"Why do humans have so few genes?"

"Can we understand DNA code?"

"Can we understand gene function?"

"How did cooperative behavior evolve?"

"Can we cure cancer?"

.

Reading assignment

Please read "Molecular Biology for Computer Scientists" by Lawrence Hunter

Heredity and DNA

- DNA discovered as the physical (molecular) carrier of hereditary information
- DNA is a molecule: deoxyribonucleic acid
- Double helical structure (discovered by Watson, Crick & Franklin)
- Chromosomes are densely coiled and packed DNA
 - DNA is a very "long" molecule
 - DNA in human has 3 billion base-pairs
 - String of 3 billion characters! (about 6 feet long)
 - DNA harbors "genes"
 - A gene is a substring of the DNA string
 - A gene "codes" for a protein

DNA

Copyright @ Pearson Education, Inc., publishin

Base pairing

DNA to chromosome

What information does DNA encode?

What is RNA?

RNA = ribonucleic acid

- "U" instead of "T"
- Usually single stranded
- Has base-pairing capability
 - Can form simple non-linear structures
- Life may have started with RNA

Transcription

- Process of making a single stranded mRNA using double stranded DNA as template
- Only genes are transcribed, not all DNA
- Gene has a transcription "start site" and a transcription "stop site"

Translation

- Process of making an amino acid sequence from (single stranded) mRNA
- Each triplet of bases translates into one amino acid
- Each such triplet is called "codon"
- The translation is basically a table lookup

Protein sequence

Amino acids

Genetic code: lookup table

Second letter

		U	С	A	G	
	U	UUU Phenylalanine (Phe) UUA Leucine UUG (Leu)	UCU UCC Serine (Ser)	UAU Tyrosine UAC (Tyr) UAA Stop UAG Stop	UGU Cysteine UGC (Cys) UGA Stop UGG Tryptophan (Trp)	U C A G
etter	С	CUU CUC Leucine (Leu)	CCU CCC Proline (Pro)	CAU Histidine (His) CAA Glutamine (Gln)	CGU Arginine (Arg) CGG	UCAG
First letter	A	AUU Isoleucine (Ile) Methionine (Met)	ACU ACC Threonine (Thr)	AAU Asparagine (Asn) AAA Lysine (Lys)	AGU Serine (Ser) AGA Arginine (Arg)	U C A G
	O	GUU GUC Valine (Val)	GCU GCC Alanine GCA (Ala)	GAU Aspartic acid (Asp) GAA Glutamic acid (Glu)	GGU Glycine (Gly)	U C A G

[©] Copyright. 2014. University of Waikato. All rights reserved. www.biotechlearn.org.nz

A short summary: string transformation

- DNA = nucleotide sequence
 - Alphabet size = 4 (A,C,G,T)
- DNA to mRNA (single stranded)
 - Alphabet size = 4 (A,C,G,U)
- mRNA to amino acid sequence
 - Alphabet size = 20
- Amino acid sequence "folds" into 3-dimensional protein

Protein folding

Secondary structure

α helix

β sheet

Tertiary structure

Protein function

Molecular switch

Enzyme

Signaling transduction

Protein domains

Gene structure

One gene can be translated into multiple different proteins

Gene expression

- Process of making a protein from a gene as template
- Transcription, then translation
- Can be regulated

Gene regulation

- Chromosomal activation/deactivation
- Transcriptional regulation
- Splicing regulation
- mRNA degradation
- mRNA transport regulation
- Control of translation initiation
- Post-translational modification

That is a "circuit" responsible for controlling gene expression

Genome

- The entire sequence of DNA in a cell
- All cells have the same genome
 - All cells came from repeated duplications starting from initial cell (zygote)
- Human genome is 99.9% identical among individuals
- Human genome is 3 billion base-pairs (bp) long
- Genes and regulatory sequences make up 5% of human genome
- What's the rest doing?
 - We don't know for sure