CS 466
Introduction to Bioinformatics

Instructor: Jian Peng
Teaching Assistant: Baqiao Liu & Shayan Tabe Bordbar
Introduction

Instructor:
- Jian Peng
 Office hour: Mon, 3:00pm-4:00pm
 Zoom link: Same as the class link
 Email: jianpeng@illinois.edu
- My own research:
 Computational Biology and Machine Learning

Teaching Assistants:
- Baqiao Liu, PhD student
 Office hour: TBD
 Email: baqiaol2@illinois.edu
- Shayan Tabe Bordbar, PhD student
 Office hour: TBD
 Email: tabebor2@illinois.edu
Prerequisites

- Programming skills (equivalent to CS 225) for doing the mini-project.
- Knowledge of basic probability and statistics for understanding several lectures.
- No biology background is necessary.
Course logistics

- Course website: https://courses.engr.illinois.edu/cs466/sp2021/
- Piazza website: https://piazza.com/illinois/spring2021/cs466/home

- Lecture slides will be released before each class.
- Participation is encouraged.
- Come to class having read the day’s lecture slides and reading assignments, if any.
Course Objectives

Introduction to bioinformatics

- Basic problems in computational biology
- Statistics and machine learning for data analysis
- Algorithms for data processing
- Advanced applications to biology
Assignments

• See the University Policy on Academic Integrity, especially the section on plagiarism.
• Late submission within 3 days (72 hours) is worth 80% credit.
• A student may request an extension of 3 days at most once in the semester.
Grading

- Five problem sets (30%)
- Midterm (30%)
- Final (40%)

Approximate data from a recent offering:
- Enrollment (who completed course): 43
- 27 A grades (2 A+, 23 A, 2 A-)
- 16 B grades (10 B+, 6 B)

This is not a statement about what the distribution this semester will be.
Questions about the course logistics?
Introduce yourself
Bioinformatics

• Is not about one problem (e.g., designing better computer chips, better compilers, better graphics, better networks, better operating systems, etc.)

• Is about a family of very different problems, all related to biology, all related to each other

• How can computers help solve any of this family of problems?
• You can learn the tools of bioinformatics
• These tools owe their origin to computer science, information theory, probability theory, statistics, etc.
• You can learn the language of biology, enough to understand what the problems are
• You can apply the tools to these problems and contribute to science
Important Biological Questions?

“Why do humans have so few genes?”

“Can we understand DNA code?”

“Can we understand gene function?”

“How did cooperative behavior evolve?”

“Can we cure cancer?”

……
What does biological data look like?

Sequence data

- Protein/DNA sequence
- Probabilistic models for sequences
- Dynamic programming

Matrix data

- Gene expression
- Dimensionality reduction and feature selection
- PCA and clustering
Biological Data

Graph data

• Molecular interaction networks
• Graph algorithms

Heterogeneous data

• Dimensionality reduction
• Probabilistic models for data integration
• Network-based data integration
TODO after this class

Please read “Molecular Biology for Computer Scientists” by Lawrence Hunter
Examples of my research projects
Recent research

Cell Systems, 2016

Cell Systems, 2017

Nature Communications, 2017

Cell Systems, 2018
Protein sequence, structure and function

sequence

ACDEEEEFGHIKL----MPQRSTVWY

ACDE----FGHILRMPQ---STVWY

structure

function
Network analysis for disease modeling

Control or α-Syn

Arrayed Deletions

Diploids

Sporulate

Haploids

Toxicity Screen

Yeast Screen Hits

network analysis

new disease biology (potential drug targets)

human disease network

Validation: Q-PCR & Bioscreen

ATP13A2 PARK9

RAB6A

SORL1

SYNJ1

VPS35

PARK17

ATXN2

RPS6

RS6KB1

EIF4G1

PABPC1

Network analysis for disease modeling

Human disease network

New disease biology (potential drug targets)
Pharmacogenomics and cancer genomics

Gene expression after treatment (3 replicates):
- 3 time points: 12 h, 24 h, 48 h
- 14 compounds

Gene expression without treatment:
- 3 time points: 12 h, 24 h
- DMSO (8 repl.), Media (2 repl.)

Plated cell line:
- OCI-LY3

Adding drug:
- 12 h
- 24/48 h

Viability:
- IC_{20}

<table>
<thead>
<tr>
<th>Compound combinations</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1 & C_{11}</td>
<td>1</td>
</tr>
<tr>
<td>C_1 & C_{12}</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>C_4 & C_7</td>
<td>90</td>
</tr>
<tr>
<td>C_3 & C_9</td>
<td>91</td>
</tr>
</tbody>
</table>

Figure from the DREAM challenge website