Suffix tree

- Build a tree from the text
- Used if the text is expected to be the same during several pattern queries
- Tree building is $O(m)$ where m is the size of the text. This is preprocessing.
- Given any pattern of length n, we can answer if it occurs in text in $O(n)$ time
- Suffix tree = “modified” keyword tree of all suffixes of text
Construct a suffix tree

Text: ATCATG

suffixes

ATCATG
TCATG
CATG
ATG
TG
G

Keyword Tree

Suffix Tree
Similar to keyword trees, except edges that form paths are collapsed

- Each edge is labeled with a *substring* of a text for less space
- All internal edges have at least two outgoing edges
- Leaves labeled by the location of the suffix on the text.

Text: **ATCATG**
All suffixes of text T
Example: suffix keyword tree

- **Add special terminal character $** to the end of T

- T: abaaba
 - T: abaaba$

- Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf.

- Would this still be the case if we hadn’t added $\$ $?

- Shortest (non-empty) suffix

- Longest suffix
Example: suffix keyword tree

T: abaaba

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf.

Would this still be the case if we hadn’t added $\$?$? **No**
Example: suffix keyword tree

How do we check whether a string S is a substring of T?

Note: Each of T's substrings is spelled out along a path from the root. I.e., every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of S

If we “fall off” the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T

If we exhaust S without falling off, S is a substring of T
Example: suffix keyword tree

How do we check whether a string S is a substring of T?

Note: Each of T's substrings is spelled out along a path from the root. I.e., every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of S

If we “fall off” the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T

If we exhaust S without falling off, S is a substring of T

$S = abaaba$

Yes, it's a substring
Example: suffix keyword tree

How do we check whether a string S is a substring of T?

Note: Each of T's substrings is spelled out along a path from the root. I.e., every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of S

If we "fall off" the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T

If we exhaust S without falling off, S is a substring of T
Example: suffix keyword tree

How do we check whether a string S is a suffix of T?

Same procedure as for substring, but additionally check whether the final node in the walk has an outgoing edge labeled $\$$.

$S = \text{baa}$

\textbf{Not a suffix}
Example: suffix keyword tree

How do we check whether a string S is a suffix of T?

Same procedure as for substring, but additionally check whether the final node in the walk has an outgoing edge labeled $\$$.

$S = aba$ is a suffix
Example: suffix keyword tree

How do we count the **number of times** a string S occurs as a substring of T?

Follow path corresponding to S. Either we fall off, in which case answer is 0, or we end up at node n and the answer = # of leaf nodes in the subtree rooted at n.

Leaves can be counted with depth-first traversal.

$S = aba$ 2 occurrences
Example: suffix keyword tree

How do we find the **longest repeated substring** of T?

Find the deepest node with more than one child
How many nodes does a suffix keyword tree have?

- 1 Root
- m nodes with incoming a edge
- $m + 1$ nodes with incoming $\$ edge
- $2m + 2$ nodes
How many nodes does a suffix keyword tree have?
How many nodes does a suffix keyword tree have?

Is there a class of string where the number of nodes grows with \(m^2 \)?

Yes: \(a^n b^n \)

- 1 root
- \(n \) nodes along “b chain,” right
- \(n \) nodes along “a chain,” middle
- \(n \) chains of \(n \) “b” nodes hanging off each “a chain” node
- \(2n + 1 \) $ leaves (not shown)

\[n^2 + 4n + 2 \text{ nodes, where } m = 2n \]
How many nodes does a suffix keyword tree have?

Could worst-case # nodes be worse than $O(m^2)$?

- Max # nodes from top to bottom
 - $= \text{length of longest suffix} + 1$
 - $= m + 1$

- Max # nodes from left to right
 - $= \text{max # distinct substrings of any length} \leq m$

$O(m^2)$ is worst case
Actual growth: an example

Trees built using the first 500 prefixes of the lambda phage virus genome
How to compress these trees?
Similar to keyword trees, except edges that form paths are collapsed:

- Each edge is labeled with a *substring* of a text for less space.
- All internal edges have at least two outgoing edges.
- Leaves labeled by the location of the suffix on the text.

Text: ATCATG

Suffix tree = Collapsed Keyword Tree on Suffixes
Compression

$T = \text{abaaba}$$

Idea 1: Coalesce non-branching paths into a single edge with a string label.

Reduces # nodes, edges, guarantees internal nodes have >1 child.
How many nodes does a suffix tree have?

Let $T = \text{abaaba}\$.

L leaves, I internal nodes, E edges

$$E = L + I - 1$$

$$E \geq 2I \text{ (each internal node branches)}$$

$$L + I - 1 \geq 2I \Rightarrow I \leq L - 1$$

but

$L \leq m$ (at most m suffixes)

$I \leq m - 1$

$$E = L + I - 1 \leq 2m - 2$$

$$E + L + I \leq 4m - 3 \in O(m)$$
Compression

L leaves, I internal nodes, E edges

- $E = L + I - 1$
- $E \geq 2I$ (each internal node branches)

$L + I - 1 \geq 2I \Rightarrow I \leq L - 1$

but

$L \leq m$ (at most m suffixes)

$I \leq m - 1$

- $E = L + I - 1 \leq 2m - 2$
- $E + L + I \leq 4m - 3 \in O(m)$

Is the total size $O(m)$ now?
Compression

L leaves, I internal nodes, E edges

$E = L + I - 1$

$E \geq 2I$ (each internal node branches)

$L + I - 1 \geq 2I \Rightarrow I \leq L - 1$

but

$L \leq m$ (at most m suffixes)

$I \leq m - 1$

$E = L + I - 1 \leq 2m - 2$

$E + L + I \leq 4m - 3 \in O(m)$

Is the total size $O(m)$ now? **No**: total length of edge labels is quadratic in m
Space complexity

$Idea 2$: Store T itself in addition to the tree. Convert tree’s edge labels to (offset, length) pairs with respect to T.

$T = \text{abaaba}\$ \rightarrow $T = \text{abaaba}\$

Space required for suffix tree is now $O(m)$
Add starting location/offset at each leaf node
Retrieve substrings

\[T = \text{abaaba}\$ \]

Again, each node’s label equals the concatenated edge labels from the root to the node. These aren’t stored explicitly.

Label = “ba”

Label = “aaba\$”
Actual growth: comparison

Trees built using the first 500 prefixes of the lambda phage virus genome

suffix tree

keyword tree
Summary

• Keyword and suffix trees are used to find patterns in a text

• Keyword trees:
 • Build keyword tree of patterns, and thread text through it
 • Usage: checking a set of patterns within various texts

• Suffix trees:
 • Build suffix tree of text, and thread patterns through it
 • Usage: checking various patterns in the same text