Aho-Corasick algorithm

A keyword tree for $\mathcal{P} = \{\text{he, she, his, hers}\}$:
Aho-Corasick algorithm

Add pattern labels
Adding failing edges

• If currently at node q representing word L(q), find the longest proper suffix of L(q) that is a prefix of some pattern, and go to the node representing that prefix. Insert the labels of the pointed node (if there is any) to node q’s set of labels.

• Example: node q = 5, L(q) = she; longest proper suffix that is a prefix of some pattern: “he”. Dashed edge to node q’=2

![Diagram of a failing edge addition process]
Aho-Corasick Algorithm

Add Failing Edges and Labels
Aho-Corasick Algorithm: Construction

What about a naive algorithm?
A better algorithm: intuition

Suppose we already know the failing edge from a node w to x. If we follow a solid edge with label a, there are two possibilities:

- **Case 1:** xa exists.
A better algorithm: intuition

Suppose we already know the failing edge from a node \(w \) to \(x \). If we follow a solid edge with label \(a \), there are two possibilities:

- **Case 2**: \(xa \) does not exist.
A better algorithm: intuition

Suppose we already know the failing edge from a node w to x. If we follow a solid edge with label a, there are two possibilities:

- **Case 2:** xa does not exist.
Constructing failing edge for a node

- To construct the failing edge for a node \texttt{wa}:
 - Follow \texttt{w}'s failing edge to node \texttt{x}.
 - If node \texttt{xa} exists, \texttt{wa} has a failing edge to \texttt{xa}.
 - Otherwise, follow \texttt{x}'s failing edge and repeat.
 - If you need to follow all the way back to the root, then \texttt{wa}'s failing edge points to the root.

\textbf{Observation 1}: Failing edges point from longer strings to shorter strings.

\textbf{Observation 2}: If we precompute failing edges for nodes in ascending order of string length, all of the information needed for the above approach will be available at the time we need it.
Complexity

- Focus on the time to fill in the failing edges for a single pattern of length \(n \).
 - The failing edges moves one-step backward because it always points to a shorter string.
 - The solid edges moves one-step forward.
 - We cannot take more steps backward than forward. Therefore, across the entire construction, we can take at most \(n \) steps backward for this pattern.

- Total time required to construct failing edges for a pattern of length \(n \): \(O(n) \).
- Total time required to construct failing edges for all \(k \) patterns: \(O(kn) \).
A different approach: suffix tree

• Build a tree from the text

• Used if the text is expected to be the same during several pattern queries

• Tree building is $O(m)$ where m is the size of the text. This is preprocessing.

• Given any pattern of length n, we can answer if it occurs in text in $O(n)$ time

• Suffix tree = “modified” keyword tree of all suffixes of text
Construct a suffix tree

Text: ATCATG

ATCATG
TCATG
CATG
ATG
TG
G

Keyword Tree

Suffix Tree

suffixes
Similar to keyword trees, except edges that form paths are collapsed

- Each edge is labeled with a **substring** of a text for less space
- All internal edges have at least two outgoing edges
- Leaves labeled by the location of the suffix on the text.

Text: AATCGATC

(a) Keyword tree
(b) Suffix tree
Example: suffix keyword tree

add special *terminal character* $ to the end of T

T: abaaba $T\$: abaaba$

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf.

Would this still be the case if we hadn’t added $\$?$

Shortest (non-empty) suffix

Longest suffix
Example: suffix keyword tree

T: abaaba

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf.

Would this still be the case if we hadn’t added $\$?$ \textbf{No}
Example: suffix keyword tree

How do we check whether a string S is a substring of T?

Note: Each of T's substrings is spelled out along a path from the root. I.e., every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of S

If we “fall off” the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T

If we exhaust S without falling off, S is a substring of T
Example: suffix keyword tree

How do we check whether a string S is a substring of T?

Note: Each of T's substrings is spelled out along a path from the root. I.e., every \textit{substring} is a \textit{prefix} of some \textit{suffix} of T.

Start at the root and follow the edges labeled with the characters of S

If we “fall off” the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T

If we exhaust S without falling off, S is a substring of T

\begin{itemize}
 \item $S = \text{abaaba}$
 \item Yes, it's a substring
\end{itemize}
Example: suffix keyword tree

How do we check whether a string S is a substring of T?

Note: Each of T's substrings is spelled out along a path from the root. I.e., every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of S.

If we “fall off” the trie -- i.e. there is no outgoing edge for next character of S, then S is not a substring of T.

If we exhaust S without falling off, S is a substring of T.

S = baabb
No, not a substring
Keyword and suffix trees are used to find patterns in a text.

Keyword trees:
- Build keyword tree of patterns, and thread text through it
- Usage: checking a set of patterns within various texts

Suffix trees:
- Build suffix tree of text, and thread patterns through it
- Usage: checking various patterns in the same text