Goal: Find all occurrences of a pattern in a text

Input: Pattern $p = p_1 \ldots p_n$ and text $t = t_1 \ldots t_m$

Output: All positions $1 \leq i \leq (m - n + 1)$ such that the n-letter substring of t starting at i matches p

Motivation: Searching database for a known pattern
Pattern Matching: Running Time

- Naïve runtime: $O(nm)$
 - How?

- On average, it should be close to $O(m)$
 - Why?

- Can solve problem in $O(m)$ time?
 - Yes, we’ll see how (in a later lecture)
Goal: Given a set of patterns and a text, find all occurrences of any of patterns in text

Input: k patterns \(p^1, \ldots, p^k \), and text \(t = t_1 \ldots t_m \)

Output: Positions \(1 < i < m \) where substring of \(t \) starting at \(i \) matches \(p_j \) for \(1 < j < k \)

Motivation: Searching database for known multiple patterns
Multiple Pattern Matching

- **Solution:** k “pattern matching problems”: $O(kmn)$

- **Another Solution:**
 - Using “Keyword trees” => $O(kn+nm)$ where n is maximum length of p^i
 - Preprocess all k patterns to construct a “keyword tree”
 - Now, any given text, all occurrences of all patterns can be found in time $O(m)$
Keyword tree approach

- **Keyword tree:**
 - Apple
 - Apropos
 - Banana
 - Bandana
 - Orange
Keyword tree approach: Properties

- Stores a set of keywords in a rooted labeled tree
- Each edge labeled with a letter from an alphabet
- Any two edges coming out of the same vertex have distinct labels
- Every keyword stored can be spelled on a path from root to some leaf
Keyword tree: Construction

Construction for \(\mathcal{P} = \{P_1, \ldots, P_k\} \):

Begin with a root node only;
Insert each pattern \(P_i \), one after the other, as follows:
Starting at the root, follow the path labeled by chars of \(P_i \);

- If the path ends before \(P_i \), continue it by adding new edges and nodes for the remaining characters of \(P_i \);
- Store identifier \(i \) of \(P_i \) at the terminal node of the path;

This takes clearly \(O(|P_1| + \cdots + |P_k|) \).
A keyword tree for \(\mathcal{P} = \{\text{he, she, his, hers}\} \):
Keyword tree: Lookup of a string

Lookup of a string P: Starting at root, follow the path labeled by characters of P as long as possible;

- If the path leads to a node with an identifier, P is a keyword in the dictionary
- If the path terminates before P, the string is not in the dictionary

How to check all occurrences in a text t?
Keyword tree approach: Complexity

- Build keyword tree in $O(kn)$ time; kn is total length of all patterns

- Start “threading” at each position in text; at most n steps tell us if there is a match here to any p_i

- $O(kn + nm)$
 - We’re down from $O(kmn)$ to this

- The next big idea, Aho-Corasick algorithm: $O(kn + m)$
Aho-Corasick algorithm: Key idea

Exploit the redundancy in the patterns

HERSHE

HERS

SHE

HE
Aho-Corasick algorithm: Key idea

Exploit the redundancy in the patterns
Aho-Corasick algorithm

With failing edges and node labels
Rules

- Transition among the different nodes by following edges depending on next character seen (say “h”)
- If outgoing edge with label “h”, follow it
- If no such edge, and are at root, stay
- If no such edge, and at non-root, follow dashes edge (“fail” transition); DO NOT CONSUME THE CHARACTER (say “h”)

Consider text “hershe”
Aho-Corasick algorithm

A keyword tree for $\mathcal{P} = \{\text{he, she, his, hers}\}$:
Aho-Corasick algorithm

Add pattern labels
Adding failing edges

• If currently at node q representing word L(q), find the longest proper suffix of L(q) that is a prefix of some pattern, and go to the node representing that prefix. Insert the labels of the pointed node (if there is any) to node q’s set of labels.

• Example: node q = 5, L(q) = she; longest proper suffix that is a prefix of some pattern: “he”. Dashed edge to node q’=2
Aho-Corasick Algorithm

Add Failing Edges and Labels
Aho-Corasick Algorithm: Construction

What about a naive algorithm?
Suppose we already know the failing edge from a node w to x. If we follow a solid edge with label a, there are two possibilities:

- **Case 1:** xa exists.
A better algorithm: intuition

Suppose we already know the failing edge from a node w to x. If we follow a solid edge with label a, there are two possibilities:

- **Case 2:** xa does not exist.
A better algorithm: intuition

Suppose we already know the failing edge from a node \(w \) to \(x \). If we follow a solid edge with label \(a \), there are two possibilities:

- **Case 2:** \(xa \) does not exist.
Constructing failing edge for a node

• To construct the failing edge for a node \(wa\):
 • Follow \(w\)'s failing edge to node \(x\).
 • If node \(xa\) exists, \(wa\) has a failing edge to \(xa\).
 • Otherwise, follow \(x\)'s failing edge and repeat.
 • If you need to follow all the way back to the root, then \(wa\)'s failing edge points to the root.

• Observation 1: Failing edges point from longer strings to shorter strings.
• Observation 2: If we precompute failing edges for nodes in ascending order of string length, all of the information needed for the above approach will be available at the time we need it.
Complexity

- Focus on the time to fill in the failing edges for a single pattern of length n.
 - The failing edges move one-step backward because it always points to a shorter string.
 - The solid edges move one-step forward.
 - We cannot take more steps backward than forward. Therefore, across the entire construction, we can take at most n steps backward for this pattern.

- Total time required to construct failing edges for a pattern of length n: $O(n)$.
- Total time required to construct failing edges for all k patterns: $O(kn)$.