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What have you learned in this class?
What is challenging about natural language?  

— Natural language is characterized by Zipfian (long-tailed)  
     distributions: most words, constructions, etc. are very rare  
 
— Ambiguity is pervasive
 
— A lot of information that is conveyed (and understood) by    
    human speakers is not stated explicitly,  
    but requires additional knowledge and inference
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What have you learned in this class?
Linguistic phenomena:
– The structure of words
– The structure of sentences
– The structure of discourse
– The structure of dialogue
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What have you learned in this class?
Representations:

— Embeddings that are induced from data
— Symbolic representations that are designed to capture  
     linguistic structure (e.g. POS tags, syntactic dependencies)  
     or linguistic meaning (e.g. NER labels, semantic roles,        
     rhetorical relations), and the importance of  

Models:
— Some statistical NLP and ML models:  
     LMs, HMMs, PCFGs, Naive Bayes
— Various neural architectures 
    (Feed-forward, RNN, LSTM, GRU, CNN, transformers)
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What else we need to discuss
Why do LLMs like GPT-4 etc. work so well?  
(Do they actually work well? How do we know that?)
 
How much attention should you pay to discussions about the 
“sentience” of LLMs or “artificial general intelligence”? 
 
How much attention should you pay to discussions  
about the impact of LLMs on education, work, society?  

Is NLP “solved”? If not, what remains to be done?

What ethical considerations do we need to keep in mind 
when developing or using NLP tools and datasets?
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What can LLMs do?
LLMs can generate very fluent and cohesive text  

ChatGPT, Bard etc. are LLM-powered chatbots
–Multi-turn conversations with human speakers
–Models get updated based on user input (at scale) 

LLMs can be used on various NLP tasks
— Fine-tuning
— Zero-shot, few-shot, etc. prompting
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Why do LLMs work so well?
Size matters:  
Training data, compute, parameters

Caveat for evaluations on tasks with published datasets: 
We don’t always know what models have been trained on

 
Human-in-the-loop training methods are very helpful 
(especially at scale)

But: LLMs are not perfect
There is no mechanism in an LLM to guarantee  
that answers are factually correct
LLMs are prone to confabulations (‘hallucinations’)
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LLM sizes 

https://en.wikipedia.org/wiki/Large_language_model
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Model #params training corpus  
(#words)

BERT (2018) ~0.34B ~3B

GPT 2 (2019) ~1.50B ~10B

GPT 3 (2020) ~175.00B ~499B

LaMDA (2022) ~137.00B ~1,560B

GPT 4 (2023) (???) ~1,000.00B ???

https://en.wikipedia.org/wiki/Large_language_model
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Reinforcement Learning with Human Feedback

Reinforcement Learning:
Different from unsupervised and supervised learning
Assume the model to be trained receives a reward when 
executing an action (or action sequence) during training
Train the model to maximize (expected) reward 

Reinforcement Learning with Human Feedback:
Sample different outputs for the same input from a model (LLM)
Ask humans to rank these outputs (for the same input)
Use these human ratings to train a ranking model that captures 
the raters’ preferences (supervised learning)
Use the ranking model to compute the reward for the model 
that is being trained to predict outputs (e.g. the LLM) 

11



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

InstructGPT (Ouyang et al. 2022)

1.3B parameter GPT-3 fine-tuned with RLHF 
(outperforms 175B parameter GPT-3)

Prompt types used to generate samples for RLHF
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Table 1: Distribution of use
case categories from our API
prompt dataset.

Use-case (%)
Generation 45.6%
Open QA 12.4%
Brainstorming 11.2%
Chat 8.4%
Rewrite 6.6%
Summarization 4.2%
Classification 3.5%
Other 3.5%
Closed QA 2.6%
Extract 1.9%

Table 2: Illustrative prompts from our API prompt dataset. These
are fictional examples inspired by real usage—see more examples
in Appendix A.2.1.

Use-case Prompt
Brainstorming List five ideas for how to regain enthusiasm for my

career

Generation Write a short story where a bear goes to the beach,
makes friends with a seal, and then returns home.

Rewrite This is the summary of a Broadway play:
"""
{summary}
"""
This is the outline of the commercial for that play:
"""

3 Methods and experimental details

3.1 High-level methodology

Our methodology follows that of Ziegler et al. (2019) and Stiennon et al. (2020), who applied
it in the stylistic continuation and summarization domains. We start with a pretrained language
model (Radford et al., 2019; Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021; Thoppilan et al.,
2022), a distribution of prompts on which we want our model to produce aligned outputs, and a team
of trained human labelers (see Sections 3.4 for details). We then apply the following three steps
(Figure 2).

Step 1: Collect demonstration data, and train a supervised policy. Our labelers provide demon-
strations of the desired behavior on the input prompt distribution (see Section 3.2 for details on this
distribution). We then fine-tune a pretrained GPT-3 model on this data using supervised learning.

Step 2: Collect comparison data, and train a reward model. We collect a dataset of comparisons
between model outputs, where labelers indicate which output they prefer for a given input. We then
train a reward model to predict the human-preferred output.

Step 3: Optimize a policy against the reward model using PPO. We use the output of the
RM as a scalar reward. We fine-tune the supervised policy to optimize this reward using the PPO
algorithm (Schulman et al., 2017).

Steps 2 and 3 can be iterated continuously; more comparison data is collected on the current best
policy, which is used to train a new RM and then a new policy. In practice, most of our comparison
data comes from our supervised policies, with some coming from our PPO policies.

3.2 Dataset

Our prompt dataset consists primarily of text prompts submitted to the OpenAI API, specifically
those using an earlier version of the InstructGPT models (trained via supervised learning on a subset
of our demonstration data) on the Playground interface.4 Customers using the Playground were
informed that their data could be used to train further models via a recurring notification any time
InstructGPT models were used. In this paper we do not use data from customers using the API in
production. We heuristically deduplicate prompts by checking for prompts that share a long common
prefix, and we limit the number of prompts to 200 per user ID. We also create our train, validation,
and test splits based on user ID, so that the validation and test sets contain no data from users whose
data is in the training set. To avoid the models learning potentially sensitive customer details, we
filter all prompts in the training split for personally identifiable information (PII).

4This is an interface hosted by OpenAI to interact directly with models on our API; see https://beta.
openai.com/playground.
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Zero/One/Few-shot Prompting
Zero-Shot prompting:
Give the LLM a prompt for a task it has never seen 
before.  
One-Shot prompting:
Give the LLM a prompt for a task it has never seen 
before, and one example of inputs and desired 
outputs for this task.
Few-Shot prompting:  
Give the LLM a prompt for a task it has never seen 
before, and a few examples of inputs and desired 
outputs for this task. 

14
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Zero/One/Few-shot Learning
Zero-Shot learning:
Give the LLM a prompt for a task it has never seen 
before.  
 
One-Shot  and Few-Shot learning:
Give the LLM a prompt for a task it has never seen 
before, and allow it to update its parameters based on 
one (or a small number of) example(s) of an input and 
a desired output for this task.
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Chain-of-Thought Prompting (Wei et al NeurIPS 2022)

Providing prompts that contain reasoning steps that 
justify the answer can enable LLMs to return output 
that also describes reasoning steps. 
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Instruction Tuning (Wei et al. NeurIPS 2022)

(Relatively large) LLMs can be fine-tuned on 
datasets that contain instructions for a variety of NLP 
tasks to perform well on unseen NLP tasks
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FINETUNED LANGUAGE MODELS ARE ZERO-SHOT
LEARNERS

Jason Wei⇤, Maarten Bosma⇤, Vincent Y. Zhao⇤, Kelvin Guu⇤, Adams Wei Yu,
Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le
Google Research

ABSTRACT

This paper explores a simple method for improving the zero-shot learning abilities
of language models. We show that instruction tuning—finetuning language models
on a collection of datasets described via instructions—substantially improves zero-
shot performance on unseen tasks.

We take a 137B parameter pretrained language model and instruction tune it on
over 60 NLP datasets verbalized via natural language instruction templates. We
evaluate this instruction-tuned model, which we call FLAN, on unseen task types.
FLAN substantially improves the performance of its unmodified counterpart and
surpasses zero-shot 175B GPT-3 on 20 of 25 datasets that we evaluate. FLAN even
outperforms few-shot GPT-3 by a large margin on ANLI, RTE, BoolQ, AI2-ARC,
OpenbookQA, and StoryCloze. Ablation studies reveal that number of finetuning
datasets, model scale, and natural language instructions are key to the success of
instruction tuning.

Target

Input (Commonsense Reasoning)

keep stack of pillow cases in fridge

Inference on unseen task type

Finetune on many tasks (“instruction-tuning”)

…

Translate this sentence to 
Spanish: 
The new office building 
was built in less than three 
months.

Input (Translation)

El nuevo edificio de oficinas 
se construyó en tres meses.

Target

Input (Natural Language Inference)

It is not possible to tell
FLAN Response

Coreference resolution tasks

Sentiment analysis tasks

GPT-3 175B zero shot GPT-3 175B few-shot FLAN 137B zero-shot

Performance 
on unseen 
task types

Natural language inference

42.9
53.2 56.2

Reading Comprehension

63.7
72.6

77.4

Closed-Book QA

49.8
55.7 56.6

Here is a goal: Get a cool sleep on 
summer days. 
How would you accomplish this goal? 
OPTIONS: 
-Keep stack of pillow cases in fridge. 
-Keep stack of pillow cases in oven.

Premise: At my age you will probably 
have learnt one lesson. 
Hypothesis: It's not certain how many 
lessons you'll learn by your thirties. 
Does the premise entail the hypothesis? 
OPTIONS: 
-yes     -it is not possible to tell      -no

Figure 1: Top: overview of instruction tuning and FLAN. Instruction tuning finetunes a pretrained
language model on a mixture of tasks phrased as instructions. At inference time, we evaluate on
an unseen task type; for instance, we could evaluate the model on natural language inference (NLI)
when no NLI tasks were seen during instruction tuning. Bottom: performance of zero-shot FLAN,
compared with zero-shot and few-shot GPT-3, on three unseen task types where instruction tuning
improved performance substantially out of ten we evaluate. NLI datasets: ANLI R1–R3, CB, RTE.
Reading comprehension datasets: BoolQ, MultiRC, OBQA. Closed-book QA datasets: ARC-easy,
ARC-challenge, NQ, TriviaQA.

⇤Lead contributors. Author contributions listed at end of paper.
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Instruction Tuning (Wei et al. NeurIPS 2022)
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Published as a conference paper at ICLR 2022

1 INTRODUCTION

Language models (LMs) at scale, such as GPT-3 (Brown et al., 2020), have been shown to perform
few-shot learning remarkably well. They are less successful at zero-shot learning, however. For
example, GPT-3’s zero-shot performance is much worse than few-shot performance on tasks such as
reading comprehension, question answering, and natural language inference. One potential reason
is that, without few-shot exemplars, it is harder for models to perform well on prompts that are not
similar to the format of the pretraining data.

In this paper, we explore a simple method to improve the zero-shot performance of large language
models, which would expand their reach to a broader audience. We leverage the intuition that NLP
tasks can be described via natural language instructions, such as “Is the sentiment of this movie review
positive or negative?” or “Translate ‘how are you’ into Chinese.” We take a pretrained language
model of 137B parameters and perform instruction tuning—finetuning the model on a mixture of
more than 60 NLP datasets expressed via natural language instructions. We refer to this resulting
model as FLAN, for Finetuned Language Net.

To evaluate the zero-shot performance of FLAN on unseen tasks, we group NLP datasets into clusters
based on their task types and hold out each cluster for evaluation while instruction tuning FLAN
on all other clusters. For example, as shown in Figure 1, to evaluate FLAN’s ability to perform
natural language inference, we instruction tune the model on a range of other NLP tasks such as
commonsense reasoning, translation, and sentiment analysis. As this setup ensures that FLAN has
not seen any natural language inference tasks in instruction tuning, we then evaluate its ability to
perform zero-shot natural language inference.

Our evaluations show that FLAN substantially improves the zero-shot performance of the base
137B-parameter model. FLAN’s zero-shot also outperforms 175B-parameter GPT-3’s zero-shot on 20
of 25 datasets that we evaluate, and even outperforms GPT-3’s few-shot by a large margin on ANLI,
RTE, BoolQ, AI2-ARC, OpenbookQA, and StoryCloze. In ablation studies, we find that increasing
the number of task clusters in instruction tuning improves performance on unseen tasks and that the
benefits of instruction tuning emerge only with sufficient model scale.

Instruction tuning is a simple method that, as depicted in Figure 2, combines appealing aspects
of both the pretrain–finetune and prompting paradigms by using supervision via finetuning to
improve language model’s responses to inference-time text interactions. Our empirical results
demonstrate promising abilities of language models to perform tasks described purely via instructions.
Source code for loading the instruction tuning dataset used for FLAN is publicly available at
https://github.com/google-research/flan.

(A) Pretrain–finetune (BERT, T5)

Finetune on 
task A

Inference 
on task A

Pretrained 
LM

• Typically requires many 
task-specific examples 

• One specialized model 
for each task

(B) Prompting (GPT-3)

Inference 
on task A

Pretrained 
LM

Improve performance 
via few-shot prompting 
or prompt engineering

Pretrained  
LM

(C) Instruction tuning (FLAN)

Instruction-tune on 
many tasks:  
B, C, D, …

Inference 
on task A

Inference on 
unseen task

Model learns to perform 
many tasks via natural 
language instructions

Figure 2: Comparing instruction tuning with pretrain–finetune and prompting.

2 FLAN: INSTRUCTION TUNING IMPROVES ZERO-SHOT LEARNING

The motivation of instruction tuning is to improve the ability of language models to respond to NLP
instructions. The idea is that by using supervision to teach an LM to perform tasks described via
instructions, the LM will learn to follow instructions and do so even for unseen tasks. To evaluate
performance on unseen tasks, we group datasets into clusters by task type and hold out each task
cluster for evaluation while instruction tuning on all remaining clusters.
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“Emergent abilities” of LLMs
The performance of increasingly larger LLMs  
(size = #parameters, #compute, #training data)  
can often not be predicted by simple scaling laws

Performance often “jumps” as model size increases
e.g. Wei et al, 2022 https://arxiv.org/abs/2206.07682
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Open questions
How well can LLMs reason?

How can we address/identify/prevent LLM 
hallucinations/confabulations?  

How can we prevent LLMs from generating output 
that is harmful/toxic?
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Sentience and AGI
Nothing in an LLM is “sentient” (capable of 
experiencing feelings/sensations) or “conscious” 
(aware of its own existence. 

There is a lot of hype in public discourse, e.g.
Are LLMs a version of Artificial General Intelligence?
Will LLMs replace humans?

Be aware: Some of this is rooted in transhumanism/
longtermism (a school of philosophy with roots in eugenics 
etc.)  — see e.g. the writings of AI ethicist Timnit Gebru
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With a lot of material taken from Bender/Hovy/Schofield’s ACL 2020 tutorial,  
https://www.cs.hmc.edu/~xanda/files/acl2020tutorial_teachingethicsinnlp.pdf
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Ethics and NLP
NLP touches on ethics in numerous ways:  

— The data we work with, natural language,  
     is produced by (and may talk about) real people. 

Do we respect the rights of the individuals that produced or 
are mentioned in the data? (privacy, anonymity, etc.)
Do we understand how the population of individuals that 
produced our data differs from the general population?
Do we understand what biases are inherent in this data?

— The applications we develop have more and more  
     real-world uses and (unintended) consequences.

   We need to be aware of the potential for benefit and abuse 

24
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ACM Code of Ethics
Computing professionals should…
… contribute to society and to human well-being,        
     acknowledging that all people are stakeholders in computing

This includes obligations to promote fundamental human rights,  
and to minimize negative consequences of computing;  and to strive for 
environmental sustainability. 

… avoid harm
 Harm includes unjustified disclosure of information

… take action not to discriminate
 Technologies should be inclusive and accessible; the creation of     
  technologies that disenfranchise or oppress people should be avoided

… respect privacy
 Collection and use of private data comes with responsibilities;

… maintain high standards of professional competence,   
     conduct and ethical practice

 This includes awareness of the social context in which work will be used

25
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Privacy and copyright concerns
Copyright concerns and plagiarism

Do companies violate copyright/licensing terms by training 
their models on web data?  Should this be seen as violations?
Does an LLM violate copyright law if it generates copyrighted 
output it has memorized?
Is it plagiarism to use LLMs without attribution?  

Do LLMs leak private or confidential information in 
the training data?  

Do LLMs that are updated based on user input leak 
private or confidential information provided to them?

Can tech companies claim ownership of the data users enter?
26



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Normative vs. descriptive ethics
Normative ethics: what we want the world to be like
Descriptive ethics: what the world is like.

Example: Gender bias in NLP:
A coreference system that cannot attach female pronouns to 
the word “doctor” is both normatively and descriptively wrong.
Racially or gender-based word embeddings are normatively 
wrong (if we don’t want them to be biased), but might be 
descriptively correct (in the sense that they reflect how 
societies talk about race/gender) 
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Social Bias in NLP
“Bias” has a number of technical senses in machine learning/stats:

(biased coins, inductive bias, or the bias—variance tradeoff)
This needs to be distinguished from social bias (e.g. gender/racial/
class bias, …)  that a system’s behavior may exhibit. 
 
Social bias results in…   [Barocas et al, Crawford 2017] 
… Allocational harms: a system allocates resources/opportunities 
(credit scores, job ads, goods to buy) differently to different social groups
… Representational harms: a system represents different social 
groups in a less positive light than others 
Identifying social bias is inherently normative 
Bias in NLP is a “hot” topic, but a lot of NLP work on bias does not engage 
deeply enough with the relevant social science literature, or with the 
communities affected by this bias. 
S.L. Blodgett et al. Language (Technology) is Power: A critical survey of “Bias” in NLP
https://arxiv.org/pdf/2005.14050.pdf 
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Descriptive bias
Garg et al, PNAS April 17 2018 Word embeddings quantify 100 
years of gender and ethnic stereotypes 
https://www.pnas.org/content/115/16/E3635 

Measure the strength of association between words representing 
social groups (women/men, Asians/Caucasians/…) and words 
representing professions, attributes, etc. 

Embeddings reflect real differences (few carpenters are female, 
many nurses are), but also track gender and ethnic stereotypes 
(women are “charming”/“maternal”/…), and their changes over 
time
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Normative bias: NLP performance on AAE
(discussion from https://arxiv.org/pdf/2005.14050.pdf)

Many NLP tools have poor accuracy on “non-standard” varieties 
of English that differ from the varieties in common corpora.

For example, toxicity detectors are less accurate on tweets 
written in African-American English (AAE). 

If AAE tweets are deemed more offensive…
… AAE speakers might be more likely to be blocked 
… AAE speakers might feel the need to communicate  
    differently than how they normally would  
    (or not use social media)
… this stigmatization may exacerbate existing discrimination  
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NLP and Endangered languages
Steven Bird: Decolonising Speech and Language Technologies  
https://www.aclweb.org/anthology/2020.coling-main.313.pdf

Speech/NLP has been used to automate language documentation for 
endangered (indigenous) languages. 

But… 
… there is little evidence that documentation saves dying languages
… documentation and the NLP technology are developed by 
outsiders who don’t engage with the language communities 
(‘colonizers’), and who don’t understand how language is used in the 
community, or what tools would be of use to the community.
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Socially useful NLP applications
Assistive technology (text-to-speech, voice search, 
image description for the blind) helps people with 
disabilities
Machine translation, summarization, better search 
engines all provide unprecedented access to 
information to the general public  

Identifying fake news, trolls, toxic comments can 
prevent harmful information to spread. 
Social media monitoring can also be used to 
assist in disasters, or to identify health issues

But this can also be abused for surveillance.
34
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