CS447: Natural Language Processing

http://courses.grainger.illinois.edu/cs447

Lecture 27: Intro to Large Language Models

Julia Hockenmaier

juliahmr@illinois.edu

Today's class

Recap: Using RNNs for various NLP tasks

From static to contextual embeddings: ELMO

Recap: Transformers

Subword tokenizations

Early Large Language Models (GPT, BERT)

RNNs for language generation

AKA "autoregressive generation"

An RNN for Machine Translation

RNNs for sequence classification

If we just want to assign **one label** to the entire sequence, we don't need to produce output at each time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the sequence as input to a feedforward net:

Basic RNNs for sequence labeling

Sequence labeling (e.g. POS tagging):
Assign one label to each element in the sequence.

RNN Architecture:

Each time step has a distribution over output classes

Extension: add a CRF layer to capture dependencies among labels of adjacent tokens.

Embeddings from Language Models

Replace static embeddings (lexicon lookup) with **context-dependent embeddings** (produced by a **neural language model**)

- => Each token's representation is a function of the entire input sentence, computed by a deep (multi-layer) bidirectional language model
- => Return for each token a (task-dependent) linear combination of its representation across layers.
- => Different layers capture different information

Peters et al., NAACL 2018

ELMo

Pre-training:

- Train a multi-layer bidirectional language model with character convolutions on raw text
- Each layer of this language model network computes a vector representation for each token.
- Freeze the language model parameters.

Fine-tuning (for each task)

Train task-dependent softmax weights to combine the layer-wise representations into a single vector for each token jointly with a task-specific model that uses those vectors

ELMo's input token representations

The input token representations are purely **character-based:** a character CNN, followed by linear projection to reduce dimensionality

"2048 character n-gram convolutional filters with two highway layers, followed by a linear projection to 512 dimensions"

Advantage over using fixed embeddings: no UNK tokens, any word can be represented

ELMo's bidirectional language models

Forward LM: a deep LSTM that goes over the sequence from start to end to predict token t_k based on the prefix $t_1...t_{k-1}$:

$$p(t_k | t_1, ..., t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s)$$

Parameters: token embeddings Θ_{x} LSTM $\overrightarrow{\Theta}_{LSTM}$, softmax Θ_{s}

Backward LM: a deep LSTM that goes over the sequence from end to start to predict token t_k based on the suffix $t_{k+1}...t_N$:

$$p(t_k | t_{k+1}, ..., t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s)$$

Train these LMs jointly, with the same parameters for the token representations and the softmax layer (but not for the LSTMs)

$$\sum_{k=1}^{N} \left(\log p(t_k | t_1, ..., t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k | t_{k+1}, ..., t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s) \right)$$

ELMo's output token representations

Given an input token representation x_k , each layer j of the LSTM language models computes a vector representation $h_{k,j}$ for every token k.

With L layers, ELMo represents each token as L vectors $\mathbf{h}_{k,l}^{LM}$

$$\begin{split} R_k &= \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\} \\ &= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\}, \\ \text{where } \mathbf{h}_{k,j}^{LM} &= [\overrightarrow{\mathbf{h}}_{k,j}^{LM}; \overleftarrow{\mathbf{h}}_{k,j}^{LM}] \text{ and } \mathbf{h}_{k,0}^{LM} = \mathbf{x}_k \end{split}$$

ELMo learns softmax weights s_j^{task} and a task-specific scalar γ^{task} to collapse these L vectors into a single task-specific token vector:

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}.$$

Results

ELMo gave improvements on a variety of tasks:

- question answering (SQuAD)
- entailment/natural language inference (SNLI)
- semantic role labeling (SRL)
- coreference resolution (Coref)
- named entity recognition (NER)

sentiment analysis (SST-5)

TASK	Previous SOTA		OUR BASELINI	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

ELMo:

ELMo showed that **contextual embeddings** are very useful: it outperformed other models on many tasks ELMo embeddings could also be concatenated with other token-specific features, depending on the task

ELMo requires training a task-specific softmax and scalar to predict how best to combine each layer Not all layers were equally useful for each task

Encoder-Decoder (seq2seq) model

The **decoder** is a language model that generates an output sequence **conditioned on the input** sequence.

- Vanilla RNN: condition on the last hidden state
- Attention: condition on all hidden states

Transformers use Self-Attention

Attention so far (in seq2seq architectures):

In the *decoder* (which has access to the complete input sequence), compute attention weights over *encoder* positions that depend on each *decoder* position

Self-attention:

If the *encoder* has access to the complete input sequence, we can also compute attention weights over *encoder* positions that depend on each *encoder* position

self-attention:

For each *decoder* position *t...*,

- ...Compute an attention weight for each *encoder* position s
- ...Renormalize these weights (that depend on *t*) w/ softmax to get a new weighted avg. of the input sequence vectors

Transformer Architecture

Non-Recurrent Encoder-Decoder architecture

- No hidden states
- Context information captured via attention and positional encodings
- Consists of stacks of layers with various sublayers

Feed **Forward** Add & Norm Add & Norm Multi-Head Feed Attention Forward $N \times$ Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional **Encoding Encoding** Input Output Embedding **Embedding** Inputs **Outputs** (shifted right)

Output Probabilities

Softmax

Linear

Add & Norm

Vaswani et al, NIPS 2017

Encoder Vaswani et al, NIPS 2017

A stack of **N=6 identical layers**

All layers and sublayers are 512-dimensional

Each layer consists of two sublayers

- one multi-head self attention layer
- one position-wise feed forward layer

Each sublayer is followed by an "Add & Norm" layer:

- ... a **residual connection** x + Sublayer(x) (the input x is added to the output of the sublayer)
- ... followed by a **normalization step**(using the mean and standard deviation of its activations)

LayerNorm(x + Sublayer(x))

Decoder Vaswani et al, NIPS 2017

A stack of N=6 identical layers All layers and sublayers are 512-dimensional

Each layer consists of three sublayers

- one masked multi-head self attention layer
 over decoder output
 (masked, i.e. ignoring future tokens)
- one multi-headed attention layer over encoder output
- one position-wise feed forward layer

Each sublayer has a residual connection and is normalized: LayerNorm(x + Sublayer(x))

BPE Tokenization

(Sennrich et al, ACL 2016)

BytePair Encoding (Gage 1994): a compression algorithm that iteratively replaces the most common pair of adjacent bytes with a single, unused byte

BPE tokenization: introduce new tokens by merging the most common adjacent pairs of tokens

Start with all characters, plus a special end-of-word character Introduce new token by merging the most common pair of adjacent tokens.

(Assumption: each individual token will still occur in a different context, so we will also keep both tokens in the vocabulary)

Machine translation: train one tokenizer across both languages (better generalization for related languages)

Wordpiece tokenization (Wu et al, 2016)

Part of Google's LSTM-based Neural Machine Translation system (https://arxiv.org/pdf/1609.08144.pdf)

Segment words into **subtokens** (with special word boundary symbols to recover original tokenization)

Input: Jet makers feud over seat width with big orders at stake

Output: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

Training of Wordpiece:

Specify desired number of tokens, D

Add word boundary token (at beginning of words)

Optimization task: greedily merge adjacent characters to improve log-likelihood of data until the vocabulary has size D.

Subword Regularization (Kudo, ACL 2018)

Observation: Subword tokenization can be ambiguous Can this be harnessed?

Approach: Train a (translation) model with (multiple) subword segmentations that are sampled from a character-based **unigram language model**

Training the unigram model:

Start with an overly large seed vocabulary V (all possible single-character tokens and many multi-character tokens)
Randomly sample a segmentation from the unigram model
Decide which multi-character words to remove from V based on how the likelihood decreases by removing them
Stop when the vocabulary is small enough.

Generative Pre-Training (Radford et al, 2018)

Auto-regressive 12-layer transformer decoder

Each token only conditioned on preceding context BPE tokenization (IVI = 40K), 768 hidden size, 12 attention heads

Pre-trained on raw text as a language model (Maximize the probability of predicting the next word)

Fine-tuned on labeled data (and language modeling) Include new start, delimiter and end tokens, plus linear layer added to last layer of end token output.

Fully bidirectional transformer encoder

BERT_{base}: 12 layers, hidden size=768, 12 att'n heads (110M parameters)

BERT_{large}: 24 layers, hidden size=1024, 16 attention heads (340M parameters)

Input: sum of token, positional, segment embeddings **Segment embeddings** (A and B): is this token part of sentence A (before SEP) or sentence B (after SEP)?

[CLS] and [SEP] tokens: added during pre-training

Pre-training tasks:

- Masked language modeling
- Next sentence prediction

BERT Input

Pre-training tasks

BERT is jointly pre-trained on two tasks:

Next-sentence prediction: [based on CLS token] Does sentence B follow sentence A in a real document?

Masked language modeling:

15% of tokens are randomly chosen as masking tokens
10% of the time, a masking token remains unchanged
10% of the time, a masking token is replaced by a random token
80% of the time, a masking token is replaced by [MASK],
and the output layer has to predict the original token

Using BERT for classification

Sentence Pair Classification

Single Sentence Classification

Add a softmax classifier on final layer of [CLS] token

Using BERT for Question-Answering

Input: [CLS] question [SEP] answer passage [SEP]

Learn to predict a **START** and an **END token** on answer tokens

Represent START and END as H-dimensional vectors S, E

Find the most likely start and end tokens in the answer by computing a softmax over the dot product of all token embeddings T_i and S (or E)

$$P(T_i \text{ is start}) = \frac{\exp(T_i \cdot S)}{\sum_j \exp(T_j \cdot S)}$$

Using BERT for Sequence Labeling

Add a softmax classifier to the tokens in the sequence

Fine-tuning BERT

To use BERT on any task, it needs to be fine-tuned:

- Add any new parts to the model
 (e.g. classifier layers)
 This will add new parameters (initialized randomly)
- Retrain the entire model (update all parameters)

More compact BERT models

Turc et al., 2019

Pre-training and fine-tuning works well on much smaller BERT variants

https://arxiv.org/abs/1908.08962

Additional improvements through knowledge distillation:

- Pre-train a compact model ('student') in the standard way
- Train/Fine-tune a large model ('teacher') on the target task
- Knowledge distillation step:
 Train the student on noisy task predictions made by teacher
- Fine-tune student on actual task data

Students can have more layers (but smaller embeddings) than models trained in the standard way

Roberta (Liu et al. 2019)

Investigates **better pre-training** for BERT Found that BERT was undertrained.

Optimizes hyperparameter choice.

Evaluates next-sentence prediction task
RoBERTA outperforms BERT on several tasks.

Pre-training improvements:

Dynamic masking: randomly change which tokens in a sentence get masked (BERT: same tokens in each epoch)

Much larger batch sizes (2K sentences instead of 256)

Use byte-level BPE, not character level BPE

BART (Lewis et al., ACL 2020)

Combines bidirectional encoder (like BERT) with auto-regressive (unidirectional) decoder (like GPT) Used for classification, generation, translation

Uses final token of decoder sequence for classification tasks.

Pre-training: corrupts (encoder) input with **masking**, **deletion**, **rotation**, **permutation**, **infilling**.

Decoder needs to recover original input

SentenceBERT (Reimers & Gurevych, EMNLP 2019)

For tasks that require scoring of **sentence pairs**

(e.g. semantic textual similarity, or entailment recognition)

Motivation: BERT treats sequence pairs as one (long) sequence, but cross-attention across O(2n) words is very slow.

SentenceBERT Solution: Siamese network

Run BERT over each sentence independently

Compute **one vector** (**u** and **v**) for each sentence by (mean or max) pooling over word embeddings or by using CLS token

Classification tasks:

concatenate **u**, **v**, and **u-v**, use as input to softmax

Similarity tasks:

use the cosine similarity of **u** and **v** as similarity score

Training: start with BERT, fine-tune Siamese model on task-specific data

