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Today’s class
Recap: Using RNNs for various NLP tasks 
 
From static to contextual embeddings: ELMO

Recap: Transformers
 
Subword tokenizations
 
Early Large Language Models (GPT, BERT)
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RNNs for language generation
AKA “autoregressive generation”
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10 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

In a

<s>

RNN

hole

In a hole

?Sampled Word

Softmax

Embedding

Input Word

Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.
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An RNN for Machine Translation

5

10.1 • NEURAL LANGUAGE MODELS AND GENERATION REVISITED 3

associated with this part of the process until we reach the end of the prefix.
Now, consider an ingenious extension of this idea from the world of machine

translation (MT), the task of automatically translating sentences from one language
into another. The primary resources used to train modern translation systems are
known as parallel texts, or bitexts. These are large text collections consisting of pairsbitexts
of sentences from different languages that are translations of one another. Tradition-
ally in MT, the text being translated is referred to as the source and the translation
output is called the target.

To extend language models and autoregressive generation to machine transla-
tion, we’ll first add an end-of-sentence marker at the end of each bitext’s source
sentence and then simply concatenate the corresponding target to it. These concate-
nated source-target pairs can now serve as training data for a combined language
model. Training proceeds as with any RNN-based language model. The network is
trained autoregressively to predict the next word in a set of sequences comprised of
the concatenated source-target bitexts, as shown in Fig. 10.2.

To translate a source text using the trained model, we run it through the network
performing forward inference to generate hidden states until we get to the end of the
source. Then we begin autoregressive generation, asking for a word in the context
of the hidden layer from the end of the source input as well as the end-of-sentence
marker. Subsequent words are conditioned on the previous hidden state and the
embedding for the last word generated.

vivait un

</s>

hobbit

vivait un hobbit

</s>

Source

hobbita livedthere

Target

</s>lived hobbita

Figure 10.2 Training setup for a neural language model approach to machine translation. Source-target bi-
texts are concatenated and used to train a language model.

Early efforts using this clever approach demonstrated surprisingly good results
on standard datasets and led to a series of innovations that were the basis for net-
works discussed in the remainder of this chapter. Chapter 11 provides an in-depth
discussion of the fundamental issues in translation as well as the current state-of-
the-art approaches to MT. Here, we’ll focus on the powerful models that arose from
these early efforts.
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RNNs for sequence classification
If we just want to assign one label to the entire 
sequence, we don’t need to produce output at each 
time step, so we can use a simpler architecture.

We can use the hidden state of the last word 
in the sequence as input to a feedforward net:

6
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Basic RNNs for sequence labeling
Sequence labeling (e.g. POS tagging):  
Assign one label to each element in the sequence.
 
RNN Architecture: 
Each time step has a distribution over output classes 
 
 
 
 
 
 

Extension: add a CRF layer to capture dependencies among labels of adjacent tokens.
7

10 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output
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Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.
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Embeddings from Language Models
Replace static embeddings (lexicon lookup)  
with context-dependent embeddings  
(produced by a neural language model) 

=> Each token’s representation is a function of  
the entire input sentence, computed by a deep  
(multi-layer) bidirectional language model
=> Return for each token a (task-dependent) linear 
combination of its representation across layers.
=> Different layers capture different information

Peters et al., NAACL 2018

9
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ELMo
Pre-training:
— Train a multi-layer bidirectional language model 
     with character convolutions on raw text
— Each layer of this language model network 
     computes a vector representation for each token.  
— Freeze the language model parameters. 

Fine-tuning (for each task)
Train task-dependent softmax weights to combine 
the layer-wise representations into a single vector 
for each token jointly with a task-specific model 
that uses those vectors

10
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ELMo’s input token representations
The input token representations are purely character-
based: a character CNN, followed by linear projection 
to reduce dimensionality  

“2048 character n-gram convolutional filters
with two highway layers, followed by a linear 
projection to 512 dimensions”

Advantage over using fixed embeddings:  
no UNK tokens, any word can be represented

11
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ELMo’s bidirectional language models
Forward LM: a deep LSTM that goes over the sequence from 
start to end to predict token tk based on the prefix t1…tk-1: 

 
Parameters: token embeddings  LSTM   , softmax  

Backward LM: a deep LSTM that goes over the sequence 
from end to start to predict token tk based on the suffix tk+1…tN:
  

Train these LMs jointly, with the same parameters for the token 
representations and the softmax layer (but not for the LSTMs)

p(tk | t1, …, tk−1; Θx, ΘLSTM, Θs)
Θx ΘLSTM Θs

p(tk | tk+1, …, tN; Θx, ΘLSTM, Θs)

N

∑
k=1

(log p(tk | t1, …, tk−1; Θx, ΘLSTM, Θs) + log p(tk | tk+1, …, tN; Θx, ΘLSTM, Θs))
12
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ELMo’s output token representations
Given an input token representation xk,  
each layer j of the LSTM language models computes  
a vector representation hk,j for every token k. 

With L layers, ELMo represents each token as L vectors 

where  and 

ELMo learns softmax weights   and a task-specific scalar  
to collapse these L vectors into a single task-specific token vector:

hLM
k,l

ken tk given the history (t1, ..., tk�1):

p(t1, t2, . . . , tN ) =
N�

k=1

p(tk | t1, t2, . . . , tk�1).

Recent state-of-the-art neural language models
(Józefowicz et al., 2016; Melis et al., 2017; Mer-
ity et al., 2017) compute a context-independent to-
ken representation xLM

k (via token embeddings or
a CNN over characters) then pass it through L lay-
ers of forward LSTMs. At each position k, each
LSTM layer outputs a context-dependent repre-
sentation

��
h LM

k,j where j = 1, . . . , L. The top layer

LSTM output,
��
h LM

k,L , is used to predict the next
token tk+1 with a Softmax layer.

A backward LM is similar to a forward LM, ex-
cept it runs over the sequence in reverse, predict-
ing the previous token given the future context:

p(t1, t2, . . . , tN ) =
N�

k=1

p(tk | tk+1, tk+2, . . . , tN ).

It can be implemented in an analogous way to a
forward LM, with each backward LSTM layer j
in a L layer deep model producing representations��
h LM

k,j of tk given (tk+1, . . . , tN ).
A biLM combines both a forward and backward

LM. Our formulation jointly maximizes the log
likelihood of the forward and backward directions:

N�

k=1

( log p(tk | t1, . . . , tk�1; �x,
��
�LSTM , �s)

+ log p(tk | tk+1, . . . , tN ; �x,
��
�LSTM , �s) ) .

We tie the parameters for both the token represen-
tation (�x) and Softmax layer (�s) in the forward
and backward direction while maintaining sepa-
rate parameters for the LSTMs in each direction.
Overall, this formulation is similar to the approach
of Peters et al. (2017), with the exception that we
share some weights between directions instead of
using completely independent parameters. In the
next section, we depart from previous work by in-
troducing a new approach for learning word rep-
resentations that are a linear combination of the
biLM layers.

3.2 ELMo
ELMo is a task specific combination of the in-
termediate layer representations in the biLM. For

each token tk, a L-layer biLM computes a set of
2L + 1 representations

Rk = {xLM
k ,

��
h LM

k,j ,
��
h LM

k,j | j = 1, . . . , L}
= {hLM

k,j | j = 0, . . . , L},

where hLM
k,0 is the token layer and hLM

k,j =

[
��
h LM

k,j ;
��
h LM

k,j ], for each biLSTM layer.
For inclusion in a downstream model, ELMo

collapses all layers in R into a single vector,
ELMok = E(Rk;�e). In the simplest case,
ELMo just selects the top layer, E(Rk) = hLM

k,L ,
as in TagLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a
task specific weighting of all biLM layers:

ELMotask
k = E(Rk; �

task) = �task
L�

j=0

stask
j hLM

k,j .

(1)
In (1), stask are softmax-normalized weights and
the scalar parameter �task allows the task model to
scale the entire ELMo vector. � is of practical im-
portance to aid the optimization process (see sup-
plemental material for details). Considering that
the activations of each biLM layer have a different
distribution, in some cases it also helped to apply
layer normalization (Ba et al., 2016) to each biLM
layer before weighting.

3.3 Using biLMs for supervised NLP tasks
Given a pre-trained biLM and a supervised archi-
tecture for a target NLP task, it is a simple process
to use the biLM to improve the task model. We
simply run the biLM and record all of the layer
representations for each word. Then, we let the
end task model learn a linear combination of these
representations, as described below.

First consider the lowest layers of the super-
vised model without the biLM. Most supervised
NLP models share a common architecture at the
lowest layers, allowing us to add ELMo in a
consistent, unified manner. Given a sequence
of tokens (t1, . . . , tN ), it is standard to form a
context-independent token representation xk for
each token position using pre-trained word em-
beddings and optionally character-based represen-
tations. Then, the model forms a context-sensitive
representation hk, typically using either bidirec-
tional RNNs, CNNs, or feed forward networks.

To add ELMo to the supervised model, we
first freeze the weights of the biLM and then
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NLP models share a common architecture at the
lowest layers, allowing us to add ELMo in a
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Results
ELMo gave improvements on a variety of tasks:
— question answering (SQuAD)
— entailment/natural language inference (SNLI)
— semantic role labeling (SRL)
— coreference resolution (Coref)
— named entity recognition (NER)
— sentiment analysis (SST-5) 

14

TASK PREVIOUS SOTA OUR
BASELINE

ELMO +
BASELINE

INCREASE
(ABSOLUTE/
RELATIVE)

SQuAD Liu et al. (2017) 84.4 81.1 85.8 4.7 / 24.9%
SNLI Chen et al. (2017) 88.6 88.0 88.7 ± 0.17 0.7 / 5.8%
SRL He et al. (2017) 81.7 81.4 84.6 3.2 / 17.2%
Coref Lee et al. (2017) 67.2 67.2 70.4 3.2 / 9.8%
NER Peters et al. (2017) 91.93 ± 0.19 90.15 92.22 ± 0.10 2.06 / 21%
SST-5 McCann et al. (2017) 53.7 51.4 54.7 ± 0.5 3.3 / 6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks – accuracy for SNLI and SST-5; F1 for
SQuAD, SRL and NER; average F1 for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.

Textual entailment Textual entailment is the
task of determining whether a “hypothesis” is
true, given a “premise”. The Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015) provides approximately 550K hypoth-
esis/premise pairs. Our baseline, the ESIM se-
quence model from Chen et al. (2017), uses a biL-
STM to encode the premise and hypothesis, fol-
lowed by a matrix attention layer, a local infer-
ence layer, another biLSTM inference composi-
tion layer, and finally a pooling operation before
the output layer. Overall, adding ELMo to the
ESIM model improves accuracy by an average of
0.7% across five random seeds. A five member
ensemble pushes the overall accuracy to 89.3%,
exceeding the previous ensemble best of 88.9%
(Gong et al., 2018).

Semantic role labeling A semantic role label-
ing (SRL) system models the predicate-argument
structure of a sentence, and is often described as
answering “Who did what to whom”. He et al.
(2017) modeled SRL as a BIO tagging problem
and used an 8-layer deep biLSTM with forward
and backward directions interleaved, following
Zhou and Xu (2015). As shown in Table 1, when
adding ELMo to a re-implementation of He et al.
(2017) the single model test set F1 jumped 3.2%
from 81.4% to 84.6% – a new state-of-the-art on
the OntoNotes benchmark (Pradhan et al., 2013),
even improving over the previous best ensemble
result by 1.2%.

Coreference resolution Coreference resolution
is the task of clustering mentions in text that re-
fer to the same underlying real world entities. Our
baseline model is the end-to-end span-based neu-
ral model of Lee et al. (2017). It uses a biLSTM

and attention mechanism to first compute span
representations and then applies a softmax men-
tion ranking model to find coreference chains. In
our experiments with the OntoNotes coreference
annotations from the CoNLL 2012 shared task
(Pradhan et al., 2012), adding ELMo improved the
average F1 by 3.2% from 67.2 to 70.4, establish-
ing a new state of the art, again improving over the
previous best ensemble result by 1.6% F1.

Named entity extraction The CoNLL 2003
NER task (Sang and Meulder, 2003) consists of
newswire from the Reuters RCV1 corpus tagged
with four different entity types (PER, LOC, ORG,
MISC). Following recent state-of-the-art systems
(Lample et al., 2016; Peters et al., 2017), the base-
line model uses pre-trained word embeddings, a
character-based CNN representation, two biLSTM
layers and a conditional random field (CRF) loss
(Lafferty et al., 2001), similar to Collobert et al.
(2011). As shown in Table 1, our ELMo enhanced
biLSTM-CRF achieves 92.22% F1 averaged over
five runs. The key difference between our system
and the previous state of the art from Peters et al.
(2017) is that we allowed the task model to learn a
weighted average of all biLM layers, whereas Pe-
ters et al. (2017) only use the top biLM layer. As
shown in Sec. 5.1, using all layers instead of just
the last layer improves performance across multi-
ple tasks.

Sentiment analysis The fine-grained sentiment
classification task in the Stanford Sentiment Tree-
bank (SST-5; Socher et al., 2013) involves select-
ing one of five labels (from very negative to very
positive) to describe a sentence from a movie re-
view. The sentences contain diverse linguistic
phenomena such as idioms and complex syntac-
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ELMo: 
ELMo showed that contextual embeddings are very 
useful: it outperformed other models on many tasks

ELMo embeddings could also be concatenated with other 
token-specific features, depending on the task 

ELMo requires training a task-specific softmax and 
scalar to predict how best to combine each layer

Not all layers were equally useful for each task
 

15
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Encoder-Decoder (seq2seq) model
The decoder is a language model that generates an 
output sequence conditioned on the input sequence.

— Vanilla RNN: condition on the last hidden state
— Attention: condition on all hidden states

17

DecoderEncoder

input

hidden

output
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Transformers use Self-Attention
Attention so far (in seq2seq architectures):

In the decoder (which has access to the complete input 
sequence), compute attention weights over encoder positions  
that depend on each decoder position  

Self-attention:
If the encoder has access to the complete input sequence,  
we can also compute attention weights over encoder positions 
that depend on each encoder position

18

For each decoder position t…,  

   …Compute an attention weight for each encoder position s

   …Renormalize these weights (that depend on t) w/ softmax 
       to get a new weighted avg. of the input sequence vectors

self-attention: 
encoder
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Transformer Architecture
Non-Recurrent Encoder-Decoder  
architecture

— No hidden states
— Context information  
    captured via attention
    and positional encodings
— Consists of stacks of layers 
    with various sublayers

19

Vaswani et al, NIPS 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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Encoder Vaswani et al, NIPS 2017

A stack of N=6 identical layers  
All layers and sublayers are 512-dimensional 
  
Each layer consists of two sublayers
— one multi-head self attention layer
— one position-wise feed forward layer

Each sublayer is followed by an “Add & Norm”  layer:
… a residual connection 
      (the input  is added to the output of the sublayer)
… followed by a normalization step  
    (using the mean and standard deviation of its activations)
         

x + Sublayer(x)
x

LayerNorm(x + Sublayer(x))
20

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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Decoder Vaswani et al, NIPS 2017

A stack of N=6 identical layers 
All layers and sublayers are 512-dimensional
  
Each layer consists of three sublayers
— one masked multi-head self attention layer
    over decoder output  
    (masked, i.e. ignoring future tokens)
— one multi-headed attention layer  
     over encoder output
— one position-wise feed forward layer  

Each sublayer has a residual connection  
and is normalized: LayerNorm(x + Sublayer(x))

21
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BPE Tokenization  (Sennrich et al, ACL 2016)

BytePair Encoding (Gage 1994): a compression 
algorithm that iteratively replaces the most common 
pair of adjacent bytes with a single, unused byte

BPE tokenization: introduce new tokens by merging 
the most common adjacent pairs of tokens

Start with all characters, plus a special end-of-word character
Introduce new token by merging the most common pair of 
adjacent tokens.  
(Assumption: each individual token will still occur in a different 
context, so we will also keep both tokens in the vocabulary)
Machine translation: train one tokenizer across both 
languages (better generalization for related languages)
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Wordpiece tokenization (Wu et al, 2016)

Part of Google’s LSTM-based Neural Machine 
Translation system (https://arxiv.org/pdf/1609.08144.pdf)

Segment words into subtokens (with special word 
boundary symbols to recover original tokenization)

Input: Jet makers feud over seat width with big orders at stake 
Output: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

Training of Wordpiece:
Specify desired number of tokens, D
Add word boundary token (at beginning of words)
Optimization task: greedily merge adjacent characters to 
improve log-likelihood of data until the vocabulary has size D.

24



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Subword Regularization (Kudo, ACL 2018)

Observation: Subword tokenization can be ambiguous
Can this be harnessed?

Approach: Train a (translation) model with (multiple) 
subword segmentations that are sampled from a 
character-based unigram language model
 
Training the unigram model:
Start with an overly large seed vocabulary V (all possible single-
character tokens and many multi-character tokens) 
Randomly sample a segmentation from the unigram model
Decide which multi-character words to remove from V based on 
how the likelihood decreases by removing them 
Stop when the vocabulary is small enough. 
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GPT
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Generative Pre-Training (Radford et al, 2018)

Auto-regressive 12-layer transformer decoder
Each token only conditioned on preceding context
BPE tokenization (|V| = 40K), 768 hidden size, 12 attention heads

Pre-trained on raw text as a language model
(Maximize the probability of predicting the next word)

Fine-tuned on labeled data (and language modeling)
Include new start, delimiter and end tokens,  
plus linear layer added to last layer of end token output.
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Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

3.3 Task-specific input transformations

For some tasks, like text classification, we can directly fine-tune our model as described above.
Certain other tasks, like question answering or textual entailment, have structured inputs such as
ordered sentence pairs, or triplets of document, question, and answers. Since our pre-trained model
was trained on contiguous sequences of text, we require some modifications to apply it to these tasks.
Previous work proposed learning task specific architectures on top of transferred representations [44].
Such an approach re-introduces a significant amount of task-specific customization and does not
use transfer learning for these additional architectural components. Instead, we use a traversal-style
approach [52], where we convert structured inputs into an ordered sequence that our pre-trained
model can process. These input transformations allow us to avoid making extensive changes to the
architecture across tasks. We provide a brief description of these input transformations below and
Figure 1 provides a visual illustration. All transformations include adding randomly initialized start
and end tokens (hsi, hei).

Textual entailment For entailment tasks, we concatenate the premise p and hypothesis h token
sequences, with a delimiter token ($) in between.

Similarity For similarity tasks, there is no inherent ordering of the two sentences being compared.
To reflect this, we modify the input sequence to contain both possible sentence orderings (with a
delimiter in between) and process each independently to produce two sequence representations hm

l
which are added element-wise before being fed into the linear output layer.

Question Answering and Commonsense Reasoning For these tasks, we are given a context
document z, a question q, and a set of possible answers {ak}. We concatenate the document context
and question with each possible answer, adding a delimiter token in between to get [z; q; $; ak]. Each
of these sequences are processed independently with our model and then normalized via a softmax
layer to produce an output distribution over possible answers.

4 Experiments

4.1 Setup

Unsupervised pre-training We use the BooksCorpus dataset [71] for training the language model.
It contains over 7,000 unique unpublished books from a variety of genres including Adventure,
Fantasy, and Romance. Crucially, it contains long stretches of contiguous text, which allows the
generative model to learn to condition on long-range information. An alternative dataset, the 1B
Word Benchmark, which is used by a similar approach, ELMo [44], is approximately the same size
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BERT (Devlin et al, NAACL 2019)

Fully bidirectional transformer encoder
BERTbase: 12 layers, hidden size=768, 12 att’n heads (110M parameters)
BERTlarge: 24 layers, hidden size=1024, 16 attention heads (340M parameters)

Input: sum of token, positional, segment embeddings
Segment embeddings (A and B): is this token part of 
sentence A (before SEP) or sentence B (after SEP)? 

[CLS] and [SEP] tokens: added during pre-training
 
Pre-training tasks: 
–Masked language modeling
– Next sentence prediction
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BERT Input
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Pre-training tasks
BERT is jointly pre-trained on two tasks:

Next-sentence prediction: [based on CLS token]
Does sentence B follow sentence A in a real document?

Masked language modeling:
15% of tokens are randomly chosen as masking tokens
10% of the time, a masking token remains unchanged
10% of the time, a masking token is replaced by a random token 
80% of the time, a masking token is replaced by [MASK],  
and the output layer has to predict the original token
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Using BERT for classification
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Figure 4: Illustrations of Fine-tuning BERT on Different Tasks.

SST-2 The Stanford Sentiment Treebank is a
binary single-sentence classification task consist-
ing of sentences extracted from movie reviews
with human annotations of their sentiment (Socher
et al., 2013).

CoLA The Corpus of Linguistic Acceptability is
a binary single-sentence classification task, where
the goal is to predict whether an English sentence
is linguistically “acceptable” or not (Warstadt
et al., 2018).

STS-B The Semantic Textual Similarity Bench-
mark is a collection of sentence pairs drawn from
news headlines and other sources (Cer et al.,
2017). They were annotated with a score from 1
to 5 denoting how similar the two sentences are in
terms of semantic meaning.

MRPC Microsoft Research Paraphrase Corpus
consists of sentence pairs automatically extracted
from online news sources, with human annotations

for whether the sentences in the pair are semanti-
cally equivalent (Dolan and Brockett, 2005).

RTE Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
much less training data (Bentivogli et al., 2009).14

WNLI Winograd NLI is a small natural lan-
guage inference dataset (Levesque et al., 2011).
The GLUE webpage notes that there are issues
with the construction of this dataset, 15 and every
trained system that’s been submitted to GLUE has
performed worse than the 65.1 baseline accuracy
of predicting the majority class. We therefore ex-
clude this set to be fair to OpenAI GPT. For our
GLUE submission, we always predicted the ma-

14Note that we only report single-task fine-tuning results
in this paper. A multitask fine-tuning approach could poten-
tially push the performance even further. For example, we
did observe substantial improvements on RTE from multi-
task training with MNLI.

15https://gluebenchmark.com/faq

Sentence Pair  
Classification

Single Sentence  
Classification

Add a softmax classifier on final layer of [CLS] token 
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Using BERT for Question-Answering
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SST-2 The Stanford Sentiment Treebank is a
binary single-sentence classification task consist-
ing of sentences extracted from movie reviews
with human annotations of their sentiment (Socher
et al., 2013).

CoLA The Corpus of Linguistic Acceptability is
a binary single-sentence classification task, where
the goal is to predict whether an English sentence
is linguistically “acceptable” or not (Warstadt
et al., 2018).

STS-B The Semantic Textual Similarity Bench-
mark is a collection of sentence pairs drawn from
news headlines and other sources (Cer et al.,
2017). They were annotated with a score from 1
to 5 denoting how similar the two sentences are in
terms of semantic meaning.

MRPC Microsoft Research Paraphrase Corpus
consists of sentence pairs automatically extracted
from online news sources, with human annotations

for whether the sentences in the pair are semanti-
cally equivalent (Dolan and Brockett, 2005).

RTE Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
much less training data (Bentivogli et al., 2009).14

WNLI Winograd NLI is a small natural lan-
guage inference dataset (Levesque et al., 2011).
The GLUE webpage notes that there are issues
with the construction of this dataset, 15 and every
trained system that’s been submitted to GLUE has
performed worse than the 65.1 baseline accuracy
of predicting the majority class. We therefore ex-
clude this set to be fair to OpenAI GPT. For our
GLUE submission, we always predicted the ma-

14Note that we only report single-task fine-tuning results
in this paper. A multitask fine-tuning approach could poten-
tially push the performance even further. For example, we
did observe substantial improvements on RTE from multi-
task training with MNLI.

15https://gluebenchmark.com/faq

Input: [CLS] question [SEP] answer passage [SEP]

Learn to predict a START and an END token on answer tokens
Represent START and END as H-dimensional vectors S, E
Find the most likely start and end tokens in the answer by computing a softmax over the dot 
product of all token embeddings Ti and S (or E )

P(Ti is start) =
exp(Ti ⋅ S)

∑j exp(Tj ⋅ S)
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Using BERT for Sequence Labeling
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SST-2 The Stanford Sentiment Treebank is a
binary single-sentence classification task consist-
ing of sentences extracted from movie reviews
with human annotations of their sentiment (Socher
et al., 2013).

CoLA The Corpus of Linguistic Acceptability is
a binary single-sentence classification task, where
the goal is to predict whether an English sentence
is linguistically “acceptable” or not (Warstadt
et al., 2018).

STS-B The Semantic Textual Similarity Bench-
mark is a collection of sentence pairs drawn from
news headlines and other sources (Cer et al.,
2017). They were annotated with a score from 1
to 5 denoting how similar the two sentences are in
terms of semantic meaning.

MRPC Microsoft Research Paraphrase Corpus
consists of sentence pairs automatically extracted
from online news sources, with human annotations

for whether the sentences in the pair are semanti-
cally equivalent (Dolan and Brockett, 2005).

RTE Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
much less training data (Bentivogli et al., 2009).14

WNLI Winograd NLI is a small natural lan-
guage inference dataset (Levesque et al., 2011).
The GLUE webpage notes that there are issues
with the construction of this dataset, 15 and every
trained system that’s been submitted to GLUE has
performed worse than the 65.1 baseline accuracy
of predicting the majority class. We therefore ex-
clude this set to be fair to OpenAI GPT. For our
GLUE submission, we always predicted the ma-

14Note that we only report single-task fine-tuning results
in this paper. A multitask fine-tuning approach could poten-
tially push the performance even further. For example, we
did observe substantial improvements on RTE from multi-
task training with MNLI.

15https://gluebenchmark.com/faq

Add a softmax classifier to the tokens in the sequence
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Fine-tuning BERT
To use BERT on any task, it needs to be fine-tuned:

— Add any new parts to the model  
    (e.g. classifier layers)

   This will add new parameters (initialized randomly)

— Retrain the entire model (update all parameters)
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More compact BERT models  (Turc et al., 2019)

Pre-training and fine-tuning works well on much smaller 
BERT variants
https://arxiv.org/abs/1908.08962

Additional improvements through knowledge 
distillation:
– Pre-train a compact model (‘student’) in the standard way
– Train/Fine-tune a large model (‘teacher’) on the target task
– Knowledge distillation step: 

Train the student on noisy task predictions made by teacher
– Fine-tune student on actual task data

Students can have more layers (but smaller 
embeddings) than models trained in the standard way
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RoBERTA (Liu et al. 2019)

Investigates better pre-training for BERT
Found that BERT was undertrained.
Optimizes hyperparameter choice.
Evaluates next-sentence prediction task
RoBERTA outperforms BERT on several tasks.

Pre-training improvements:
Dynamic masking: randomly change which tokens in a 
sentence get masked (BERT: same tokens in each epoch)
Much larger batch sizes (2K sentences instead of 256) 
Use byte-level BPE, not character level BPE
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BART (Lewis et al., ACL 2020)

Combines bidirectional encoder (like BERT) with  
auto-regressive (unidirectional) decoder (like GPT)
Used for classification, generation, translation
Uses final token of decoder sequence for classification tasks. 
 
 
 

Pre-training: corrupts (encoder) input with masking, deletion, 
rotation, permutation, infilling.  
Decoder needs to recover original input
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SentenceBERT (Reimers & Gurevych, EMNLP 2019)

For tasks that require scoring of sentence pairs 
(e.g. semantic textual similarity, or entailment recognition)
Motivation: BERT treats sequence pairs as one (long) sequence,  
but cross-attention across O(2n) words is very slow.   

SentenceBERT Solution: Siamese network
Run BERT over each sentence independently 
Compute one vector (u and v)  
for each sentence by (mean or max)  
pooling over word embeddings or by using CLS token
Classification tasks:  
concatenate u, v, and u–v,  
use as input to softmax
Similarity tasks:  
use the cosine similarity  
of u and v as similarity score
Training: start with BERT, fine-tune Siamese model on task-specific data
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