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Today’s class

Recap: Using RNNs for various NLP tasks

From static to contextual embeddings: ELMO

Recap: Transformers
Subword tokenizations

Early Large Language Models (GPT, BERT)
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RNNs for language generation

AKA "autoregressive generation”
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An RNN for Machine Translation
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RNNSs for sequence classification

If we just want to assign one label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word

in the sequence as input to a feedforward net:

o
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RNN
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Basic RNNs for sequence labeling

Sequence labeling (e.g. POS tagging):
Assign one label to each element in the sequence.

RNN Architecture:
Each time step has a distribution over output classes

[ [LUTDD }[ Duﬂiﬂiuu M DDU:.‘:—LDD M DDDHZD:.D }[ DDHD$DDD }

RNN

A A A A

(_Janet ) C( will Y back ) ( the ) ( bill )

Extension: add a CRF layer to capture dependencies among labels of adjacent tokens.
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E.mbeddings from Language Models

Replace static embeddings (lexicon lookup)
with context-dependent embeddings
(produced by a neural language model)

=> Each token’s representation is a function of
the entire input sentence, computed by a deep
(multi-layer) bidirectional language model

=> Return for each token a (task-dependent) linear
combination of its representation across layers.

=> Different layers capture different information

Peters et al., NAACL 2018
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ELMo

Pre-training:
— Train a multi-layer bidirectional language model
with character convolutions on raw text

— Each layer of this language model network
computes a vector representation for each token.
— Freeze the language model parameters.

Fine-tuning (for each task)

Train task-dependent softmax weights to combine
the layer-wise representations into a single vector
for each token jointly with a task-specific model
that uses those vectors
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ELMo’s input token representations

The input token representations are purely character-
based: a character CNN, followed by linear projection
to reduce dimensionality

*2048 character n-gram convolutional filters

with two highway layers, followed by a linear
projection to 512 dimensions”

Advantage over using fixed embeddings:
no UNK tokens, any word can be represented
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ELMo’s bidirectional language models

Forward LM: a deep LSTM that goes over the sequence from
start to end to predict token txbased on the prefix t1...tk-1:

%
PG|ty oo s 13 O Opgryy, ©) .
Parameters: token embeddings ®, LSTM ©O; ¢, , softmax O

Backward LM: a deep LSTM that goes over the sequence
from end to start to predict token txbased on the suffix ti.1...tn:

&
PG| tiits - 0 O Oy O))

Train these LMs jointly, with the same parameters for the token

representations and the softmax layer (but not for the LSTMs)
N

— —
Z (10gp(tk| ts s 113 O Oy Oy) +10g (| 1115 -5 1y O, Oy ®s)>
k=1
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ELMo’s output token representations

Given an input token representation x,
each layer j of the LSTM language models computes
a vector representation h.;for every token k.

With L layers, ELMo represents each token as L vectors hiM
LM WLM Y LM
Ry = {x! ,h,w,% i=1,....L)
— {h ’ )= . L}7

where hLM = [hLM hLM] and hko = X,

task task

ELMo learns softmax weights S; and a task-specific scalar y
to collapse these L vectors into a smgle task-specific token vector:

ELMOtask E(R @task task Z ;aSkhLM.
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Results

ELMo gave improvements on a variety of tasks:

— question answering (SQUAD)

— entailment/natural language inference (SNLI)

— semantic role labeling (SRL)
— coreference resolution (Coref)

— named entity recognition (NER)

— sentiment analysis (SST-5) INCREASE
TASK PREVIOUS SOTA OUR ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 &+ 0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +£0.19 || 90.15 9222 +£0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 547+ 0.5 3.3/6.8%
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ELMo:

ELMo showed that contextual embeddings are very
useful: it outperformed other models on many tasks

ELMo embeddings could also be concatenated with other
token-specific features, depending on the task

ELMo requires training a task-specific softmax and
scalar to predict how best to combine each layer
Not all layers were equally useful for each task
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Encoder-Decoder (seg2seq) model

The decoder is a language model that generates an
output sequence conditioned on the input sequence.

— Vanilla RNN: condition on the last hidden state
— Attention: condition on all hidden states

Encoder

e [000HO00HO00HO00
- (009000000
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Transformers use Self-Attention

Attention so far (in seg2seq architectures):

In the decoder (which has access to the complete input
sequence), compute attention weights over encoder positions
that depend on each decoder position

Self-attention:

If the encoder has access to the complete input sequence,
we can also compute attention weights over encoder positions
that depend on each encoder position

self-attention:

ncoaqer ope
For each z position t...,

...Compute an attention weight for each encoder position s

...Renormalize these weights (that depend on t) w/ softmax
to get a new weighted avg. of the input sequence vectors
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Transformer Architecture

Non-Recurrent Encoder-Decoder

architecture

— No hidden states

— Context information
captured via attention

and positional encodings

— Consists of stacks of layers
with various sublayers

Vaswani et al, NIPS 2017
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https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

E nCOd er Vaswani et al, NIPS 2017

A stack of N=6 identical layers P )
All layers and sublayers are 512-dimensional Forware
A
Each layer consists of two sublayers e
. . Attention
— one multi-head self attention layer T
— one position-wise feed forward layer ~ /

Each sublayer is followed by an “Add & Norm” layer:

... a residual connection x + Sublayer(x)
(the input X is added to the output of the sublayer)

... followed by a normalization step
(using the mean and standard deviation of its activations)
LayerNorm (X + Sublayer(x))
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https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

e 1 N
| Add & Norm <=~

D Feed
eCOd er Vaswani et al, NIPS 2017 Forward
~ [
| Add & Norm e~
A stack of N=6 identical layers VIR
All layers and sublayers are 512-dimensional dl 2 J 7

| Add & Norm J
Each layer consists of three sublayers Vol Hoad

Attention

— one masked multi-head self attention layer )

over decoder output h g
(masked, i.e. ignoring future tokens)

— one multi-headed attention layer
over encoder output

— one position-wise feed forward layer

Each sublayer has a residual connection
and is normalized: LayerNorm(X + Sublayer(x))
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B P E TO ke n izatio n (Sennrich et al, ACL 2016)

BytePair Encoding (Gage 1994): a compression
algorithm that iteratively replaces the most common
pair of adjacent bytes with a single, unused byte

BPE tokenization: introduce new tokens by merging
the most common adjacent pairs of tokens
Start with all characters, plus a special end-of-word character

Introduce new token by merging the most common pair of

adjacent tokens.
(Assumption: each individual token will still occur in a different
context, so we will also keep both tokens in the vocabulary)

Machine translation: train one tokenizer across both
languages (better generalization for related languages)
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Wordpiece tokenization wea,zome

Part of Google’s LSTM-based Neural Machine
Translation system (nttps:/ariv.org/pdt/1609.08144.pa

Segment words into subtokens (with special word

boundary symbols to recover original tokenization)

Input: Jet makers feud over seat width with big orders at stake
Output: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

Training of Wordpiece:
Specify desired number of tokens, D
Add word boundary token (at beginning of words)

Optimization task: greedily merge adjacent characters to
improve log-likelihood of data until the vocabulary has size D.
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Subword Regularization o s 2o

Observation: Subword tokenization can be ambiguous
Can this be harnessed?

Approach: Train a (translation) model with (multiple)
subword segmentations that are sampled from a
character-based unigram language model

Training the unigram model:

Start with an overly large seed vocabulary V (all possible single-
character tokens and many multi-character tokens)
Randomly sample a segmentation from the unigram model

Decide which multi-character words to remove from V based on
how the likelihood decreases by removing them
Stop when the vocabulary is small enough.

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 25




I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 20




Generatlve Pre Tralnlng (Radford et al, 2018)

Classification | Start | Text | Extract H—»{ Transformer H Linear |

Entailment | Start | Premise | Delim | Hypothesis | Extract |+| Transformer H Linear |
| Start l Text 1 | Delim | Text 2 | Extract |_+{ Transformer

Similarity - Linear
| Start | Text 2 ‘ Delim | Text 1 | Extract |+‘ Transformer

VPRI | Start | Context | Delim | Answer 1 | Extract [ﬂ Transformer H Linear
elf Attention Z
Multiple Choice | Start | Context | Delim | Answer 2 | Extract |+| Tremsioimar H L

Text & Position Embed | Start | Context ’ Delim | Answer N | Extract |—>| Transformer H Linear

12x

Auto-regressive 12-layer transformer decoder

Each token only conditioned on preceding context
BPE tokenization (IVI = 40K), 768 hidden size, 12 attention heads

Pre-trained on raw text as a language model
(Maximize the probability of predicting the next word)

Fine-tuned on labeled data (and language modeling)

Include new start, delimiter and end tokens,
plus linear layer added to last layer of end token output.
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B E RT (Devlin et al, NAACL 2019)

Fully bidirectional transformer encoder

BERTvase: 12 layers, hidden size=768, 12 att’n heads (110M parameters)
BERTiarge: 24 layers, hidden size=1024, 16 attention heads (340M parameters)

Input: sum of token, positional, segment embeddings

Segment embeddings (A and B): is this token part of
sentence A (before SEP) or sentence B (after SEP)?

[CLS] and [SEP] tokens: added during pre-training

Pre-training tasks:
— Masked language modeling
— Next sentence prediction
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BERT Input

[CLS] Sentence A [SEP] Sentence B [SEP]
Input [CLS] ’ my dog is ‘ cute ’ [SEP] he ‘ likes H play H##ing ’ [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
== . o . o . == == == == . . o ==
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
== . . . == == == == . e ==
Position
Embeddings EO E1 E2 E3 E4 E5 E6 E7 E8 E9 Elo
30
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Pre-training tasks

BERT is jointly pre-trained on two tasks:

Next-sentence prediction: [based on CLS token]
Does sentence B follow sentence A in a real document?

Masked language modeling:
15% of tokens are randomly chosen as masking tokens
10% of the time, a masking token remains unchanged
10% of the time, a masking token is replaced by a random token

80% of the time, a masking token is replaced by [MASK],
and the output layer has to predict the original token
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Using BERT for classification

Class Class

_aﬁ La%i
()7 ) () (e~ =] -
BERT BERT
@m (T‘JKNISEPINTT}--- (Tﬁk] [cs] || Tok1 || Tok2 To|kN
\_H \_H | | |
Sentence Pair Single Sentence
Classification Classification

Add a softmax classifier on final layer of [CLS] token
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Using BERT for Question-Answering

Start/End Span

a0

T T ] -

BERT

Ees || Eq | - Ev || Egem || B |~ | B

R O R O

—
- =0 -

Question Paragraph

Input: [CLS] question [SEP] answer passage [SEP]
Learn to predict a START and an END token on answer tokens
Represent START and END as H-dimensional vectors S, E

Find the most likely start and end tokens in the answer by computing a softmax over the dot
product of all token embeddings Tiand S (or E)

exp(7; - S)
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Using BERT for Sequence Labeling

O B-PER O
5 5 £k
BERE
BERT
E[CLS] E1 Ez EN
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

Add a softmax classifier to the tokens in the sequence
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Fine-tuning BERT

To use BERT on any task, it needs to be fine-tuned:

— Add any new parts to the model
(e.g. classifier layers)
This will add new parameters (initialized randomly)

— Retrain the entire model (update all parameters)
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More compact BERT models e,z

Pre-training and fine-tuning works well on much smaller

BERT variants
https://arxiv.org/abs/1908.08962

Additional improvements through knowledge

distillation:
— Pre-train a compact model (‘student’) in the standard way
— Train/Fine-tune a large model (‘teacher’) on the target task

— Knowledge distillation step:
Train the student on noisy task predictions made by teacher

— Fine-tune student on actual task data

Students can have more layers (but smaller
embeddings) than models trained in the standard way
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https://arxiv.org/abs/1908.08962

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 37




ROBERTA e 2o

Investigates better pre-training for BERT
Found that BERT was undertrained.

Optimizes hyperparameter choice.

Evaluates next-sentence prediction task
RoBERTA outperforms BERT on several tasks.

Pre-training improvements:

Dynamic masking: randomly change which tokens in a
sentence get masked (BERT: same tokens in each epoch)

Much larger batch sizes (2K sentences instead of 256)
Use byte-level BPE, not character level BPE
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BA RT (Lewis et al., ACL 2020)

Combines bidirectional encoder (like BERT) with
auto-regressive (unidirectional) decoder (like GPT)

Used for classification, generation, translation

Uses final token of decoder sequence for classification tasks.
ABCDE

REEE Y

( Bidirectional Autoregressive Pre-trained [> Pre-trained
< Encoder > Decoder > < Encoder Decoder
R Frrfe Pt FEEifd
A B _E <s>sABCD ABCDE <ss>SABCDE

Pre-training: corrupts (encoder) input with masking, deletion,
rotation, permutation, infilling.
Decoder needs to recover original input

DE.ABC. C.DE.AB

Token Masking  Sentence Permutation Document Rotation

(ATED) ) (RECDED ¢ (D ED

Token Deletion Text Infilling
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Se ntenCe B E RT (Reimers & Gurevych, EMNLP 2019)

For tasks that require scoring of sentence pairs
(e.g. semantic textual similarity, or entailment recognition)

Motivation: BERT treats sequence pairs as one (long) sequence,
but cross-attention across O(2n) words is very slow.

SentenceBERT Solution: Siamese network
Run BERT over each sentence independently

Compute one vector (u and v)
for each sentence by (mean or max)
pooling over word embeddings or by using CLS token

-1..1

Classification tasks: [ sottmancasser| 4
concatenate u, v, and u-v, e ] /Q
use as input to softmax | /" "\ | : :
Similarity tasks: [ oooig | [ oaivs | poir oo
use the cosine similarity o | [ e | serT —
of u and v as similarity score e semenes Sentehcer  sentonce

Training: start with BERT, fine-tune Siamese model on task-specific data
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