Lecture 25:
Question Answering
Where are we at?

This week:
 Question-Answering (today)
 Dialogue (Friday)

Next week:
 Large language models (Wednesday and Friday)

Last lecture:
 TBD
What is Question Answering?
Question Answering (QA)

Question Answering can mean different things:

— Being able to **query a collection of documents** that is known (or assumed) to contain answers (as short text spans in these documents)

— Being able to answer questions based on a single document by returning short text spans in the document that answer these questions (**"reading comprehension"**)

— Being able to **query a "knowledge base"** (e.g. a database of known facts) in natural language. This may require a **semantic parser** to translate the natural language question into, say, SQL

— Being able to answer knowledge questions about a domain (e.g. take **multiple choice exams** on science questions)

Reading: Chapter 14
Retrieval-Based Factoid QA
Factoid Questions: QA as IR

Questions about simple facts ("factoids") that are answered by searching a large document collection for short snippets of texts that contain the answer.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where is the Louvre Museum located?</td>
<td>in Paris, France</td>
</tr>
<tr>
<td>What’s the abbreviation for limited partnership?</td>
<td>L.P.</td>
</tr>
<tr>
<td>What are the names of Odin’s ravens?</td>
<td>Huginn and Muninn</td>
</tr>
<tr>
<td>What currency is used in China?</td>
<td>the yuan</td>
</tr>
<tr>
<td>What kind of nuts are used in marzipan?</td>
<td>almonds</td>
</tr>
<tr>
<td>What instrument does Max Roach play?</td>
<td>drums</td>
</tr>
<tr>
<td>What’s the official language of Algeria?</td>
<td>Arabic</td>
</tr>
<tr>
<td>How many pounds are there in a stone?</td>
<td>14</td>
</tr>
</tbody>
</table>

This means we can treat QA as an information retrieval (IR) task.
Retrieve-and-Read Pipeline

Assumptions:

- We have access to a large collection of documents that we have processed in advance ("indexed documents")
- The question can be answered by returning a snippet of text ("span") from one (or more) of these documents

Q: When was the premiere of *The Magic Flute*?

A: 1791
Retrieve-and-Read Pipeline

Q: When was the premiere of *The Magic Flute*?

A: 1791

Procedure:

– Identify a (small) subset of documents that are **relevant** to the question

– Identify (and return) **the most likely answer span**
Document and Passage Retrieval

The IR engine returns a ranked list of relevant **documents** from the collection.

Because answers are short snippets, the top n documents are split into shorter **passages** (e.g. paragraphs).

We can filter passages to identify more relevant passages at this stage, e.g. based on how many named entities they contain, how many question words (or n-grams) they contain, the answer type, etc.
Ad-Hoc Information Retrieval

User poses a natural language **query** to an IR system
(ad-hoc: the query could be about anything, and is not known in advance)
Each query consists of a number of **terms** (tokens or phrases)

The IR system returns a **ranked list** of relevant documents

Documents: web pages, scientific papers, news articles, paragraphs, etc.

Relevance: how similar is the document to the query?
Determining Relevance: tf-idf

Traditional approach to determining relevance:

- Represent **query** \(q \) and **document** \(d \) as vectors \(\mathbf{q}, \mathbf{d} \)
 whose elements correspond to terms \(t \).

- The entry for term \(t \) in \(\mathbf{q} \) or \(\mathbf{d} \) depends on its **tf-idf** value
 \[q[t] = \text{tf-idf}_{t,q} \quad d[t] = \text{tf-idf}_{t,d} \]

 - **tf** (term frequency): based on #occurrences of term \(t \) in the document \(d \)
 - **idf** (inverse document frequency): based on #documents that contain term \(t \)
 \[\text{tf-idf}_{t,d} = \text{tf}_{t,d} \times \text{idf}_{t,d} = \log_{10}(\text{count}(c, d) + 1) \times \log_{10} \frac{N}{\#d : \text{count}(t, d) > 0} \]

- **Relevance** of document \(d \) for query \(q \): cosine similarity
 \[\text{score}(q, d) = \cos(q, d) = \frac{\mathbf{q} \cdot \mathbf{d}}{||\mathbf{q}|| ||\mathbf{d}||} \]
Determining relevance with LLMs

Instead of using explicit term-based vectors, we can use BERT (or other large language models) to compute a document embedding vector for \(q \) and \(d \)
Back to QA: Answer Extraction

Given a set of relevant documents/passages, return the span that contains the answer.

Baseline model (for some types of questions)
 Run an NER system, and return the entities whose type matches the answer type

More generally, answer extraction can be treated as a sequence labeling task
Evaluation: MRR

The **mean reciprocal rank (MRR)** metric is used to evaluate system that return a ranked list of items (here: answer spans):

Q: Where was Elvis born?

Answers:
1. Memphis, Tennessee
2. Tupelo, MS ← **Correct** (rank(Q) = 2)
3. Graceland

Define $\text{rank}(Q)$ as the highest rank of any correct answer for Q, and $r\text{Rank}(Q)=1/\text{rank}(Q)$ when at least one correct answer is returned, and $r\text{Rank}(Q)=0$ when no correct answer is returned.

The system’s MRR score on a pool of N questions is then defined as the average (mean) reciprocal rank on all questions:

$$\text{MRR} = \frac{1}{N} \sum r\text{Rank}(Q_i)$$
Reading comprehension as span-extraction QA

Reading comprehension tests often ask children to answer questions based on a short paragraph.

Although reading comprehension can be formulated as a multiple-choice task, or a free answer task (which is difficult to evaluate), the span-extraction perspective requires that answers correspond to text spans.
Humans were asked to write questions for Wikipedia paragraphs and provide spans as answers.

The best systems outperform humans, even on SQuAd 2.0, which has “unanswerable questions” (no span to be returned)

Leaderboard: https://rajpurkar.github.io/SQuAD-explorer/
A BiLSTM-based QA System

Basic architecture: Two biLSTMs (for question and passage):

— The **question LSTM** computes a single question **vector** \(q \)

— The **passage LSTM** predicts **start and end positions** of the answer span, based on two learned classifiers that depend on each passage word’s embedding \(p_i \) and on the question vector \(q \)

\[
P_{\text{start}}(i) \propto \exp(p_i W_s q_i) \quad P_{\text{end}}(i) \propto \exp(p_i W_e q_i)
\]

The **question vector** \(q \) is a weighted average of the biLSTM-based embeddings of the question words:

\[
q = \sum_j b_j q_j
\]

Question word weights \(b_j \) are given by the normalized, exponentiated dot product of each word embedding with a single, learned, relevance weight vector \(w \)

\[
b_j = \frac{\exp(w \cdot q_j)}{\sum_i \exp(w \cdot q_i)}
\]

Passage: Each token is input as an embedding (e.g. GloVe), concatenated with its POS tag/NER label, a 0/1 flag indicating whether it occurs in the question, and possibly an token-specific attention-based embedding of the question
A BERT-based QA system

BERT is a very large pre-trained transformer-based model that provides contextual embeddings

BERT reads the question and passage as a single string, separated by a SEP token.
(this is standard for tasks where BERT has to consider two sequences)

To use BERT for QA:
— define new start and end token embeddings S and E
— fine-tune the output layer, again to predict start and end,
e.g. via $P_{\text{start}}(i) \propto \exp(p_iS)$, $P_{\text{end}}(i) \propto \exp(p_iE)$
Classical IR-based QA
A simple IR-QA pipeline

Stage 1: Question Processing
- Query Formulation
- Answer Type Detection

Stage 2: Document and Passage Retrieval
- Document Retrieval
- Passage Retrieval

Stage 3: Answer Extraction

25.1 IR-based Factoid Question Answering
The goal of information retrieval based question answering is to answer a user's question by finding short text segments on the web or some other collection of documents. Figure 25.1 shows some sample factoid questions and their answers.

Question Answer
Where is the Louvre Museum located? in Paris, France
What's the abbreviation for limited partnership? L.P.
What are the names of Odin's ravens? Huginn and Muninn
What currency is used in China? the yuan
What kind of nuts are used in marzipan? almonds
What instrument does Max Roach play? drums
What's the official language of Algeria? Arabic
How many pounds are there in a stone? 14

Figure 25.1 Some sample factoid questions and their answers.

Figure 25.2 IR-based factoid question answering has three stages: question processing, passage retrieval, and answer processing.

25.1.1 Question Processing
The main goal of the question-processing phase is to extract the query: the keywords passed to the IR system to match potential documents. Some systems additionally extract further information such as:
- answer type: the entity type (person, location, time, etc.) of the answer.
- focus: the string of words in the question that is likely to be replaced by the answer in any answer string found.
- question type: is this a definition question, a math question, a list question?

For example, for the question Which US state capital has the largest population? the query processing might produce:
query: “US state capital has the largest population”
answer type: city
focus: state capital

In the next two sections we summarize the two most commonly used tasks, query formulation and answer type detection.
Question Processing

We need to get from a natural language question…
 Which US state capital has the largest population?

…to a query string for the IR system:
 Query = “US state capital has largest population”

… an answer type:
 Answer Type = CITY

… and the focus (which words in the question are likely to be replaced by the answer):
 Focus = “which US state capital”
Answer Type Identification

The answers to many common factoid questions fall into a small number of categories (answer types). Knowing the answer type can be very helpful.

In the simplest case, the question word alone is sufficient to identify the answer type:

- **Who...** → **PERSON**
- **Where...** → **LOCATION**
- **When...** → **TIME**

But in many cases, one has to consider at least the first noun after the question word, or the verb

- **Which city...** → **CITY**
- **How much does ... cost** → **MONEY**
Answer types (Li & Roth ’02,’05)

Entities:
Animals, body parts, colors, creative works (books, films,…),
currency, diseases/medicine, products,…

Humans:
Individuals (who was the first person on the moon?),
descriptions (who was Confucius?), groups, etc.

Locations:
City, country, mountain, state, …

Descriptions:
Definitions (what is X?), manner (how can you do X),…

Numeric:
Code (e.g. phone numbers), counts, dates, distances, sizes,
order (ranks of entities), temperatures, speeds, weights, …
IBM’s Watson wins at Jeopardy!

https://www.youtube.com/watch?v=P18EdAKuC1U

https://dl.acm.org/doi/10.1147/JRD.2012.2184356
Knowledge-Based QA
Knowledge-Based QA

Paradigm 1: Graph-based QA:
 Assumes you have a knowledge based of “facts” (facts = RDF triplets: predicate with two arguments, can also be expressed as a knowledge graph):

Ada Lovelace birth-year 1815
Claude Shannon birth-year 1916
William Shakespeare author Hamlet
… … ….

[data sets: SimpleQuestions, FreebaseQA, WebQA etc.]

When was Ada Lovelace born?
Who was born in 1815?
…
Knowledge-Based QA

Paradigm 2: QA by semantic parsing
Assumes facts are given in a database.
QA can be done by translating query to DB query

<table>
<thead>
<tr>
<th>Question</th>
<th>Logical form</th>
</tr>
</thead>
<tbody>
<tr>
<td>What states border Texas?</td>
<td>(\lambda x. \text{state}(x) \land \text{borders}(x, \text{texas}))</td>
</tr>
<tr>
<td>What is the largest state?</td>
<td>(\text{argmax}(\lambda x. \text{state}(x), \lambda x. \text{size}(x)))</td>
</tr>
</tbody>
</table>
| I’d like to book a flight from San Diego to Toronto | SELECT DISTINCT f1.flight_id
FROM flight f1, airport_service a1,
city c1, airport_service a2, city c2
WHERE f1.from_airport=a1.airport_code
AND a1.city_code=c1.city_code
AND c1.city_name=’san diego’
AND f1.to_airport=a2.airport_code
AND a2.city_code=c2.city_code
AND c2.city_name=’toronto’ |
| How many people survived the sinking of the Titanic? | (count (ifb:event.disaster.survivors
fb:en.sinking_of_the.titanic)) |
| How many yards longer was Johnson’s longest touchdown compared to his shortest touchdown of the first quarter? | ARITHMETIC diff(SELECT num(ARGMAX(SELECT)) SELECT num(ARGMIN(FILTER(SELECT)))) |
Semantic Parsing for QA

Earlier approaches: often grammar-based (e.g. based on CCG)

Current approaches: seq2seq based models:
Entity Linking

Map mentions of entities in text to the corresponding entry in an ontology (e.g. based on Wikipedia pages):

Mention detection: which spans are entity mentions?
Mention disambiguation: which entry does a mention refer to?

A database obtained from Wikipedia (e.g. Wikidata) would use different terms for each Charles III.

This is useful for knowledge-based QA (and other applications)
Using LLMs (e.g. T5) for QA

Pre-training: masked language modeling (fill in masked out word)
Fine-tuning: predict answer (for QA datasets)
Other QA tasks
More recent developments in QA

QA is a very active area of research

Retrieval-based QA is often seen as too simplistic (especially when billed as “reading comprehension”)

More recent developments include datasets whose answers require several steps of reasoning (multi-hop QA), as well answers that require commonsense knowledge.

Visual QA: answer questions about an image.
Science exams as testbed for QA

Task: Answer **multiple choice questions** from 8th-grade science exams

1. Which equipment will best separate a mixture of iron filings and black pepper?
 (1) magnet (2) filter paper (3) triple-beam balance (4) voltmeter

This requires a lot of **background knowledge** that has to be acquired from somewhere (e.g. textbooks), and reasoning capabilities

https://allenai.org/content/docs/Aristo_Milestone.pdf