Lecture 21: Verb Semantics (I)

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Where we’re at

Last lecture: Compositional semantics

Today: Verb semantics
— Argument structure and Thematic/Semantic roles
— Verb classes
— Semantic Role Labeling (briefly)
(Chapter 20 in textbook)
What do nouns and verbs mean?

In the simplest case, an NP is just a name:

*John, Urbana, USA, Thanksgiving,*

**Names** refer to (real or abstract) entities in the world.

**Verbs** define *n*-ary predicates:

*stand, run, eat, win,*

Depending on the **arguments** they take (and the state of the world), the proposition that is obtained when we apply these predicates to the arguments can be true or false in a given situation.
What do sentences mean?

Declarative sentences (statements) can be true or false, depending on the state of the world:

*John sleeps.*

In the simplest case, they consist of a verb and one or more noun phrase arguments.

**Principle of compositionality (Frege):**
The meaning of an expression depends on the meaning of its parts and how they are put together.
Using FOL to represent meaning

John is a student:
\textit{student}(john')

All students take at least one class:
\[ \forall x \textit{student}(x) \rightarrow \exists y (\textit{class}(y) \land \textit{take}(x,y)) \]

There is a class that all students take:
\[ \exists y (\textit{class}(y) \land \forall x (\textit{student}(x) \rightarrow \textit{take}(x,y))) \]

John loves Mary
\textit{love}(john', mary')
How do we represent verb semantics?
Predicate-argument structure

Understanding a sentence = knowing who did what (to whom, when, where, why…)

**Verbs** corresponds to predicates (what was done)

Their **arguments** (and modifiers) identify who did it, to whom, where, when, why, etc.

The police officer **detained** the suspect **at the scene of the crime**
Syntactic Parsing

Syntactic Parsing (e.g. dependency parsing) identifies grammatical roles (subject, object, etc.)

But grammatical roles do not uniquely identify semantic roles…

```
WHO

did WHAT

to WHOM

WHERE

The police officer detached the suspect at the scene of the crime
SBJ ROOT DOBJ MOD
```
What do verbs mean?

Verbs describe **events** or **states** (‘eventualities’):

- Tom broke the **window** with a **rock**.
- The **window** broke.
- The **window** was broken by Tom/ by a **rock**.

If we *naively* translate verbs to *(logical)* predicates…

(subject = first argument, object = second argument, etc.)

- `break(Tom, window, rock)`
- `break(window)`
- `break(window, Tom)`
- `break(window, rock)`

… we don’t really capture that these sentences describe the same event.
There are many different ways to describe the same event

Grammatical roles ≠ Semantic roles

Tom broke the window with a rock.
The window broke.
The window was broken by Tom/by a rock.

Related verbs/nouns can describe the same event:

XYZ corporation bought the stock.
They sold the stock to XYZ corporation.
The stock was bought by XYZ corporation.
The purchase of the stock by XYZ corporation...
The stock purchase by XYZ corporation...

Can we map sentences describing the same event to the same representation?
Neo-Davidsonian Event Representations

Predicate logic with explicit event variables $e$, and explicit predicates for each role:
- Sasha broke the window
  $\exists e \exists y \text{Breaking}(e) \land \text{Broken}(e, y) \land \text{Breaker}(e, \text{Sasha}) \land \text{Window}(y)$
- Pat opened the door
  $\exists e \exists y \text{Opening}(e) \land \text{OpenedThing}(e, y) \land \text{Opener}(e, \text{Pat}) \land \text{Door}(y)$

Explicit event variables make it easy to add adjuncts (Time($e, t$)), and to express relations between events.

But verb-specific roles (Breaker and Opener) are hard to reason about/with or to generalize across verbs.
Towards Thematic roles

Breaker and Opener have something in common!
— Both are volitional actors
— Both are often animate
— Both bear a direct causal responsibility for the event

Thematic roles are a way to capture the semantic commonality between the Breaker and Opener.

The Breaker and Opener are both AGENTS.

The BrokenThing and OpenedThing are THEMES.

(THEME: Prototypically inanimate objects affected in some way by the action)
Semantic/Thematic roles

Verbs describe **events** or **states** (‘eventualities’):

- Tom broke the **window** with a **rock**.
- The **window** broke.
- The **window** was broken by Tom/ by a **rock**.

**Thematic roles** refer to **participants** of these events:

- **Agent** (who performed the action): Tom
- **Patient** (who was the action performed on): window
- **Tool/Instrument** (what was used to perform the action): rock

**Semantic/thematic roles** (agent, patient) are different from **grammatical roles** (subject or object).
Thematic roles

One of the oldest linguistic concepts

Indian grammarian Panini between the 7th and 4th centuries BCE

Modern formulation from Fillmore (1966,1968), Gruber (1965)

Fillmore influenced by Lucien Tesnière’s (1959) *Éléments de Syntaxe Structurale*, the book that introduced dependency grammar

Fillmore first referred to roles as *actants* (Fillmore, 1966) but switched later to the term *case*
Thematic grid, case frame, θ-grid

Tom broke the window with a rock.
The window broke.
The window was broken by Tom
The window was broken by a rock.

Tom: AGENT
window: THEME
rock: INSTRUMENT

A thematic grid (case frame, θ-grid) identifies the set of semantic / thematic roles associated with a particular event type:

**BREAK**: AGENT, THEME, INSTRUMENT

Each of these semantic/thematic roles can be expressed (‘realized’) by different grammatical roles:

AGENT/Subject THEME/Object INSTRUMENT/PP with.
THEME/Subject.
THEME/PassSubject AGENT/PP by
THEME/PassSubject INSTRUMENT/PP by
The inventory of thematic roles

To create systems that can identify thematic roles automatically, we need to create labeled training data.

This means we need to define an inventory of thematic roles

It is difficult to give a formal definition of thematic roles that generalizes across all verbs.
# Thematic roles

A typical set:

<table>
<thead>
<tr>
<th>Thematic Role</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT</td>
<td>The volitional causer of an event</td>
<td><em>The waiter</em> spilled the soup.</td>
</tr>
<tr>
<td>EXPERIENCER</td>
<td>The experiencer of an event</td>
<td><em>John</em> has a headache.</td>
</tr>
<tr>
<td>FORCE</td>
<td>The non-volitional causer of the event</td>
<td><em>The wind</em> blows debris from the mall into our yards.</td>
</tr>
<tr>
<td>THEME</td>
<td>The participant most directly affected by an event</td>
<td>Only after Benjamin Franklin broke <em>the ice</em>...</td>
</tr>
<tr>
<td>RESULT</td>
<td>The end product of an event</td>
<td><em>The city built a regulation-size baseball diamond</em>...</td>
</tr>
<tr>
<td>CONTENT</td>
<td>The proposition or content of a propositional event</td>
<td>Mona asked <em>&quot;You met Mary Ann at a supermarket?&quot;</em>...</td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>An instrument used in an event</td>
<td>He poached catfish, stunning them <em>with a shocking device</em>...</td>
</tr>
<tr>
<td>BENEFICIARY</td>
<td>The beneficiary of an event</td>
<td>Whenever Ann Callahan makes hotel reservations <em>for her boss</em>...</td>
</tr>
<tr>
<td>SOURCE</td>
<td>The origin of the object of a transfer event</td>
<td>I flew in <em>from Boston</em>...</td>
</tr>
<tr>
<td>GOAL</td>
<td>The destination of an object of a transfer event</td>
<td>I drove to <em>Portland</em>...</td>
</tr>
</tbody>
</table>
Problems with Thematic Roles

Hard to create a standard set of roles or formally define them

Often roles need to be fragmented to be defined, e.g.:

Levin and Rappaport Hovav (2015): two kinds of INSTRUMENTS

**Intermediary instruments** can appear as subjects

The cook *opened* the jar *with the new gadget.*

The new gadget *opened* the jar.

**Enabling instruments** cannot appear as subjects:

Shelly *ate* the sliced banana *with a fork.*

*The fork ate* the sliced banana.
Alternatives to thematic roles

Fewer roles:
Generalized semantic roles, defined as prototypes (Dowty 1991)

- PROTO-AGENT
- PROTO-PATIENT

PropBank: Generic roles with frame-specific interpretation

More roles:
Specific roles that belong only specific predicates

FrameNet: Frame-specific roles
Diathesis Alternations

**Active/passive** alternation:
- Tom broke the window with a rock. (active voice)
- The window was broken by Tom / by a rock. (passive voice)

**Causative** alternation:
- Tom broke the window. (‘causative’; active voice)
- The window broke. (‘anticausative’/‘inchoative’; active voice)

**Dative** alternation:
- Tom gave the gift to Mary.
- Tom gave Mary the gift.

**Locative** alternation:
- Jessica loaded boxes into the wagon.
- Jessica loaded the wagon with boxes.
Verb classes ("Levin classes")

Verbs with similar meanings undergo the same syntactic alternations, and have the same set of thematic roles (Beth Levin, 1993)

**VerbNet** ([verbs.colorado.edu](http://verbs.colorado.edu); Kipper et al., 2008)
A large database of verbs, their thematic roles and their alternations (linked to Propbank and FrameNet style frame files: [https://uvi.colorado.edu](https://uvi.colorado.edu))
Corpora for Verb Semantics; Semantic Role Labeling
A FrameNet frame defines a set of frame-specific semantic roles (called frame elements), and includes a set of predicates (e.g., verbs) that take these roles. It also includes example sentences (not shown below).

**Frame: Change-position-on-a-scale**

**Predicates:** rise, increase, ...

**Frame Elements:** ITEM, ATTRIBUTE, INITIAL VALUE, FINAL VALUE

This frame consists of words that indicate the change of an ITEM’s position on a scale (the ATTRIBUTE) from a starting point (INITIAL VALUE) to an end point (FINAL VALUE).
The “Change position on a scale” Frame

<table>
<thead>
<tr>
<th>VERBS:</th>
<th>advancement</th>
<th>climb</th>
<th>decrease</th>
<th>diminish</th>
<th>dip</th>
<th>double</th>
<th>drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>move</td>
<td>mushroom</td>
<td>plummet</td>
<td>reach</td>
<td>rocket</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soar</td>
<td>swell</td>
<td>triple</td>
<td>tumble</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>escalation</td>
<td>explosion</td>
<td>fall</td>
<td>fluctuation</td>
<td>gain</td>
<td>hike</td>
<td>increase</td>
<td>rise</td>
</tr>
<tr>
<td>shift</td>
<td>tumble</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVERBS:</th>
<th>increasingly</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>NOUNS:</th>
<th>decline</th>
<th>decrease</th>
<th>increase</th>
<th>rise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>slide</td>
<td>rocket</td>
<td>fluctuate</td>
<td>hike</td>
</tr>
</tbody>
</table>

**Core Roles**

- **ATTRIBUTE**: The ATTRIBUTE is a scalar property that the ITEM possesses.
- **DIFFERENCE**: The distance by which an ITEM changes its position on the scale.
- **FINAL_STATE**: A description that presents the ITEM’s state after the change in the ATTRIBUTE’s value as an independent predication.
- **FINAL_VALUE**: The position on the scale where the ITEM ends up.
- **INITIAL_STATE**: A description that presents the ITEM’s state before the change in the ATTRIBUTE’s value as an independent predication.
- **INITIAL_VALUE**: The initial position on the scale from which the ITEM moves away.
- **ITEM**: The entity that has a position on the scale.
- **VALUE_RANGE**: A portion of the scale, typically identified by its end points, along which the values of the ATTRIBUTE fluctuate.

**Some Non-Core Roles**

- **DURATION**: The length of time over which the change takes place.
- **SPEED**: The rate of change of the VALUE.
- **GROUP**: The GROUP in which an ITEM changes the value of an ATTRIBUTE in a specified way.
Proposition Bank (PropBank)


[[The San Francisco Examiner] issued [a special edition] [yesterday]]

| ARG0 | TARGET ARG1 | ARGM-TMP |

Penn Treebank annotated with semantic roles and frame files for English verbs

**Very coarse numbered argument roles** (arg0, arg1,...), used for all verbs (but interpretation depends on specific verb), (inspired by Dowty 1991’s proto-roles)

- Arg0 = proto-agent
- Arg1 = proto-patient
- Arg2...: specific to each verb
- ArgM-TMP/LOC/...: temporal/locative/... modifiers
PropBank Frames and Annotations

**agree.01**  
Arg0: Agreer  
Arg1: Proposition  
Arg2: Other entity agreeing  

[Arg0 The group] agreed [Arg1 it wouldn’t make an offer]  
[Arg0 John] agrees with [Arg2 Mary]

**fall.01**  
Arg1: patient/thing falling  
Arg2: extent/amount fallen  
Arg3: start point  
Arg4: end point  

[Arg1 Sales] fell [Arg4 to $251 million]  
[Arg1 Junk bonds] fell [Arg2 by 5%]
Core PropBank roles

Proto-Agent (ARG0)

Volitional involvement in event or state
Sentience (and/or perception)
Causes an event or change of state in another participant
Movement (relative to position of another participant)

Proto-Patient (ARG1)

Undergoes change of state
Causally affected by another participant
Stationary relative to movement of another participant
Modifier roles: Arg-M-…

ARG-M-TMP: temporal (when?)
  yesterday evening, now, last year
ARG-M-LOC: locative (where?)
  at the museum, in San Francisco
ARG-M-DIR: directional (where to/from?)
  down, to Bangkok
ARG-M-MNR: manner (how?)
  clearly, with much enthusiasm
ARG-M-PRP/CAU: purpose/cause (why?)
  because…, in order to, …
ARG-M-PRD  secondary predication
  eat the meat raw
ARG-M-ADV miscellaneous other adverbs
Semantic Role Labeling (SRL)

The task of identifying...
- all **predicates** in a sentence
- the **arguments of each predicate**
  and their **semantic role**

SRL systems for English are typically trained on **PropBank** or **FrameNet**
History

Semantic roles as a intermediate semantics, used early in
  machine translation (Wilks, 1973)
  question-answering (Hendrix et al., 1973)
  spoken-language understanding (Nash-Webber, 1975)
  dialogue systems (Bobrow et al., 1977)

Early SRL systems
  Simmons 1973, Marcus 1980:
  − parser followed by hand-written rules for each verb
  − dictionaries with verb-specific case frames (Levin 1977)
SRL algorithms

Syntactic (phrase-structure) parsing has often been seen as a prerequisite for SRL:

Arguments (typically) correspond to syntactic constituents. Semantic roles depend often on the grammatical relations between the predicate and its arguments (modeling this may require features that capture the path in the tree between the argument and the predicate)

SRL can also be viewed as a sequence-labeling task: For each predicate, identify the spans of each argument.