
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 20: 
Compositional
Semantics

http://courses.engr.illinois.edu/cs498jh4
mailto:juliahmr@illinois.edu

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 1:

Over
view

2

Lecture 19:  
Compositional Semantics

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Natural language conveys
information about the world
We can compare statements about the world with the
actual state of the world:

Champaign is in California. (false)

We can learn new facts about the world from natural
language statements:

The earth turns around the sun.

We can answer questions about the world:
Where can I eat Korean food on campus?

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

We draw inferences from natural
language statements
Some inferences are purely linguistic:

All blips are foos.
Blop is a blip.____________
Blop is a foo (whatever that is).  

Some inferences require world knowledge.
Mozart was born in Salzburg.
Mozart was born in Vienna._______________________
No, that can’t be - these are different cities.

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

What does it mean to “understand”
language?
The ability to identify the intended literal meaning  
is a prerequisite for any deeper understanding

“eat sushi with chopsticks” does not mean that chopsticks were eaten  

True understanding also requires the ability to draw
appropriate inferences that go beyond literal meaning:

— Lexical inferences (depend on the meaning of words)
You are running —> you are moving.
— Logical inferences (e.g. syllogisms)
All men are mortal. Socrates is a man —> Socrates is mortal.
— Common sense inferences (require world knowledge):
It’s raining —> You get wet if you’re outside.
— Pragmatic inferences (speaker’s intent, speaker’s assumptions
about the state of the world, social relations)
Boss says “It’s cold here” —> Assistant gets up to close the window.

5

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

What does it mean to “understand”
language?
Linguists have studied (and distinguish between)
semantics and pragmatics

— Semantics is concerned with literal meaning  
(e.g. truth conditions: when is a statement true),
lexical knowledge (running is a kind of movement).
— Pragmatics is (mostly) concerned with speaker
intent and assumptions, social relations, etc.

NB: Linguistics has little to say about extralinguistic (commonsense)
inferences that are based on world knowledge, although some of this is
captured by lexical knowledge.

6

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How do we get computers to
“understand” language?

Not all aspects of understanding are equally important
for all NLP applications

Historically, even just identifying the correct literal
meaning has been difficult.

In recent years, more efforts on task such as
entailment recognition that aim to evaluate  
the ability to draw inferences.

7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Semantics: getting at literal meaning
In order to understand language, we need to be able
to identify its (literal) meaning.

— How do we represent the meaning of a word?  
 (Lexical semantics)
—How do we represent the meaning of a sentence?  
 (Compositional semantics)
—How do we represent the meaning of a text?  
 (Discourse semantics) 
 
NB: Although we clearly need to handle all levels of semantics,
historically these have often been studied in (relative) isolation,  
so these subareas each have their own theories and models.

8

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Today’s lecture
Our initial question:
What is the meaning of (declarative) sentences?

Declarative sentences: “John likes coffee”.
(We won’t deal with questions (“Who likes coffee?”) and
imperative sentences (commands: “Drink up!”)) 

Follow-on question 1:  
How can we represent the meaning of sentences?

Follow-on question 2:  
How can we map a sentence to its meaning
representation?

9

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

What do nouns and verbs mean?
In the simplest case, an NP is just a name:  
 John, Urbana, USA, Thanksgiving, 
Names refer to (real or abstract) entities in the world.

Verbs define n-ary predicates:
 stand, run, eat, win,  
Depending on the arguments they take (and the state
of the world), the proposition that is obtained when we
apply these predicates to the arguments can be true
or false in a given situation.

10

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

What do sentences mean?
Declarative sentences (statements) can be  
true or false, depending on the state of the world:

John sleeps. 

In the simplest case, they consist of a verb  
and one or more noun phrase arguments.

Principle of compositionality (Frege):
The meaning of an expression depends on the
meaning of its parts and how they are put together.

11

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Today’s lecture
Part 1: Overview, Principle of Compositionality
 
Part 2: First-order predicate logic  
 as a meaning representation language

Part 3: Using CCG to map sentences  
 to predicate logic

12

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Additional topics
Representing events and temporal relations:

–Add event variables e to represent the events described by verbs, and
temporal variables t to represent the time at which an event happens. 

Other quantifiers:
–What about “most | at least two | … chefs”?  

Underspecified representations:
–Which interpretation of “Every chef cooks a meal” is correct? This might

depend on context. Let the parser generate an underspecified
representation from which both readings can be computed. 

Going beyond single sentences:
–How do we combine the interpretations of single sentences?

13

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

But…
… what can we do with these representations?

Being able to translate a sentence into predicate logic is not
enough, unless we also know what these predicates mean.
Semantics joke (B. Partee): The meaning of life is life’
Compositional formal semantics tells us how to fit together
pieces of meaning, but doesn’t have much to say about the
meaning of the basic pieces (i.e. lexical semantics)

… how do we put together meaning representations of multiple
sentences?

We need to consider discourse (there are approaches within
formal semantics, e.g. Discourse Representation Theory)

… Do we really need a complete analysis of each sentence?
This is pretty brittle (it’s easy to make a parsing mistake) 
Can we get a more shallow analysis?

14

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 2:

Firs
t-or

der

pred
icate

 log
ic

(FOL
) as

 a m
eani

ng

repr
esen

tatio
n la

ngua
ge

15

Lecture 19:  
Compositional Semantics

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Predicate logic expressions
Terms: refer to entities

Variables: x, y, z
Constants: John’, Urbana’
Functions applied to terms (fatherOf(John’))

Predicates: refer to properties of, or relations
between, entities

tall(x), eat(x,y), …

Formulas: can be true or false
Atomic formulas: predicates, applied to terms: tall(John’)
Complex formulas: constructed recursively via logical
connectives and quantifiers

16

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Formulas
Atomic formulas are predicates, applied to terms:

book(x), eat(x,y), tall(John’)

Complex formulas are constructed recursively by
...negation (¬): ¬book(John’)
...connectives (⋀,⋁,→): book(y) ⋀ read(x,y)

conjunction (and): φ⋀ψ disjunction (or): φ⋁ψ implication (if): φ→ψ
...quantifiers (∀x, ∃x)

universal (typically with implication) ∀x[φ(x) → ψ(x)]
existential (typically with conjunction) ∃x[φ(x)], ∃x[φ(x) ⋀ ψ(x)]

Interpretation: formulas are either true or false.
17

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The syntax of FOL expressions
Term ⇒ Constant |
 Variable |
 Function(Term,...,Term)

Formula ⇒ Predicate(Term, ...Term) |
 ¬ Formula |
 ∀ Variable Formula |
 ∃ Variable Formula |
 Formula ∧ Formula |
 Formula ∨ Formula |
 Formula → Formula

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Some examples

John is a student:  
student(john’)

All students take at least one class:
∀x student(x) ⟶ ∃y(class(y) ∧ take(x,y))

There is a class that all students take:
∃y(class(y) ∧ ∀x (student(x) ⟶ take(x,y))

19

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

FOL is sufficient for some  
natural language inferences

All blips are foos. ∀x blip(x) → foo(x)
Blop is a blip. blip(blop’)____________ ____________
Blop is a foo foo(blop’)

20

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Not all of natural language
can be expressed in FOL:
Tense:

It was hot yesterday.
I will go to Chicago tomorrow.

Modals:
You can/must go to Chicago from here.

Other kinds of quantifiers:
Most students hate 8:00am lectures.

21

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

λ-Expressions
We can use λ-expressions and β-reduction to combine  
simpler logical formulas into complex logical formulas.  

λ-expressions λx.φ(..x...) are (unary) functions  
Here x is a variable, and φ is a FOL expression that  
we assume contains one or more free occurrences of x
(free = not bound by a quantifier, e.g. ∀x)  

β-reduction (called λ-reduction in textbook): 
Apply the function λx.φ(…x…) to some argument a:
 (λx.φ(..x...) a) ⇒ φ(…a…)
Replace all (free) occurrences of x in φ(..x...) with a
n-ary functions contain embedded λ-expressions: 
 λx.λy.λz.give(x,y,z)

22

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 3:

Usin
g Combina

tory

Categ
oria

l Gram
mar (C

CG)

to m
ap s

ente
nces

 to

pred
icate

 log
ic

23

Lecture 19:  
Compositional Semantics

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Last lecture…
We’ve introduced CCG as a syntactic formalism.

Syntactically, CCG’s main advantages are:
 
CCG is more expressive than CFGs,  
so it can handle non-projective dependencies. 
(but it’s still efficiently parseable)

Type-raising and composition give CCG  
a “flexible constituent structure” that allows CCG  
to capture non-local dependencies without traces  
(e.g. by combing a subject and transitive verb into an S/NP
constituent)

24

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Today’s lecture
Compositionality in CCG’s syntax-semantics interface

Every lexical entry can be paired with a semantic interpretation
Every syntactic combinatory rule has a semantic counterpart

NB: We will use first-order predicate logic as one
example of a meaning representation language,  
but these principles can be applied to any other kind
of representation.

25

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

CCG categories
Simple (atomic) categories: NP, S, PP 

Complex categories (functions):
Return a result when combined with an argument 
 
  VP, intransitive verb S\NP

Transitive verb (S\NP)/NP

Adverb (S\NP)\(S\NP)

Prepositions ((S\NP)\(S\NP))/NP  
(NP\NP)/NP
PP/NP

26

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Forward application (>):

(S\NP)/NP NP ⇒> S\NP
eats tapas eats tapas
Backward application (<):

NP S\NP ⇒< S
John eats tapas John eats tapas

Function application

Combines function X/Y or X\Y with argument Y to yield result X 
Used in all variants of categorial grammar

27

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Type-raising and composition
Type-raising: X → T/(T\X)

Turns an argument into a function.  
NP → S/(S\NP) (subject) 
NP → (S\NP)\((S\NP)/NP) (object)

Harmonic composition: X/Y Y/Z → X/Z
Composes two functions (complex categories),  
same slashes 
(S\NP)/PP PP/NP → (S\NP)/NP 
S/(S\NP) (S\NP)/NP → S/NP

Crossing composition: X/Y Y\Z → X\Z
Composes two functions (complex categories),  
different slashes 
(S\NP)/S S\NP → (S\NP)\NP

28

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

CCG semantics
Every syntactic constituent has a semantic interpretation:

Every lexical entry maps a word to a syntactic category  
and a corresponding, appropriate semantic type, e.g.:
John=(NP, john’) Mary= (NP, mary’)
loves: ((S\NP)/NP λy.λx.loves(x,y))
[a transitive verb has two (paired) arguments in the syntax and the semantics] 

Every combinatory rule has a syntactic and a corresponding
semantic part:
Function application: X/Y:λy.f(y) Y:a → X:f(a)
Function composition: X/Y:λy.f(y) Y/Z:λz.g(z) → X/Z:λz.f(g(z))
Type raising: X:a → T/(T\X) λf.f(a)

29

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A CCG derivation with semantics

30

John sees Mary

NP : John0 (S\NP)/NP : �y.�x.see0(x, y) NP : Mary0
>

S\NP : �x.see0(x,Mary0)
<

S : see0(John0,Mary0)

1

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Quantifier scope ambiguity
“Every chef cooks a meal” 

– Interpretation A: 
For every chef, there is a meal which he cooks. 
 

– Interpretation B: 
There is some meal which every chef cooks.

31

∀x[chef′ (x) ⟶ ∃y[meal′ (y) ∧ cook′ (x, y)]]

∃y[meal′ (y) ∧ ∀x[chef′ (x) ⟶ cook′ (x, y)]]

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Interpretation A

32

John sees Mary

NP : John0 (S\NP)/NP : �y.�x.see0(x, y) NP : Mary0
>

S\NP : �x.see0(x,Mary0)
<

S : see0(John0,Mary0)

Every chef cooks a meal

(S/(S\NP))/N N (S\NP)/NP ((S\NP)\((S\NP)/NP))/N N
�P.�Q.8x[(P x) �! (Q x)] �z.chef 0(z) �u.�v.cook 0(v, u) �P.�Q.�w.9y[(P y) ^ ((Q y) w)] �z.meal 0(z)

> >
S/(S\NP) (S\NP)\((S\NP)/NP)

�Q.8x[(�z.chef 0(z) x) �! (Q x)] �Q.�w.9y[(�z.meal 0(z) y) ^ ((Q y) w)]
⌘ �Q.8x[chef 0(x) �! (Q x)] ⌘ �Q.�w.9y[meal 0(y) ^ ((Q y) w)]

<
S\NP

�w.9y[meal 0(y) ^ ((�u.�v.cook 0(v, u) y) w)]
⌘ �w.9y[meal 0(y) ^ cook 0(w, y)]

>
S : 8x[chef 0(x) �! (�w.9y[meal 0(y) ^ cook 0(w, y)] x)]

⌘ 8x[chef 0(x) �! 9y[meal 0(y) ^ cook 0(x, y)]]

Every chef cooks a meal

(S/(S\NP))/N N (S\NP)/NP (S\(S/NP))/N N
�P.�Q.8x[(P x) �! (Q x)] �z.chef 0(z) �u.�v.cook 0(v, u) �P.�Q.9y[(P y) ^ (Q y)] �z.meal 0(z)

> >
S/(S\NP) S\(S/NP)

�Q.8x[(�z.chef 0(z) x) �! (Q x)] �Q.9y[(�z.meal 0(z) y) ^ (Q y)]
⌘ �Q.8x[chef 0(x) �! (Q x)] ⌘ �Q.9y[meal 0(y) ^ (Q y)]

>B
S/NP

�z.8x[chef 0(x) �! ((�u.�v.cook 0(v, u) z) x)]
⌘ �z.8x[chef 0(x) �! cook 0(x, z)]

<
S : 9y[meal 0(y) ^ (�z.8x[chef 0(x) �! cook 0(x, z)] y)]

⌘ 9y[meal 0(y) ^ 8x[chef 0(x) �! cook 0(x, y)]]

1

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Interpretation B

33

John sees Mary

NP : John0 (S\NP)/NP : �y.�x.see0(x, y) NP : Mary0
>

S\NP : �x.see0(x,Mary0)
<

S : see0(John0,Mary0)

Every chef cooks a meal

(S/(S\NP))/N N (S\NP)/NP ((S\NP)\((S\NP)/NP))/N N
�P.�Q.8x[(P x) �! (Q x)] �z.chef 0(z) �u.�v.cook 0(v, u) �P.�Q.�w.9y[(P y) ^ ((Q y) w)] �z.meal 0(z)

> >
S/(S\NP) (S\NP)\((S\NP)/NP)

�Q.8x[(�z.chef 0(z) x) �! (Q x)] �Q.�w.9y[(�z.meal 0(z) y) ^ ((Q y) w)]
⌘ �Q.8x[chef 0(x) �! (Q x)] ⌘ �Q.�w.9y[meal 0(y) ^ ((Q y) w)]

<
S\NP

�w.9y[meal 0(y) ^ ((�u.�v.cook 0(v, u) y) w)]
⌘ �w.9y[meal 0(y) ^ cook 0(w, y)]

>
S : 8x[chef 0(x) �! (�w.9y[meal 0(y) ^ cook 0(w, y)] x)]

⌘ 8x[chef 0(x) �! 9y[meal 0(y) ^ cook 0(x, y)]]

Every chef cooks a meal

(S/(S\NP))/N N (S\NP)/NP (S\(S/NP))/N N
�P.�Q.8x[(P x) �! (Q x)] �z.chef 0(z) �u.�v.cook 0(v, u) �P.�Q.9y[(P y) ^ (Q y)] �z.meal 0(z)

> >
S/(S\NP) S\(S/NP)

�Q.8x[(�z.chef 0(z) x) �! (Q x)] �Q.9y[(�z.meal 0(z) y) ^ (Q y)]
⌘ �Q.8x[chef 0(x) �! (Q x)] ⌘ �Q.9y[meal 0(y) ^ (Q y)]

>B
S/NP

�z.8x[chef 0(x) �! ((�u.�v.cook 0(v, u) z) x)]
⌘ �z.8x[chef 0(x) �! cook 0(x, z)]

<
S : 9y[meal 0(y) ^ (�z.8x[chef 0(x) �! cook 0(x, z)] y)]

⌘ 9y[meal 0(y) ^ 8x[chef 0(x) �! cook 0(x, y)]]

1

