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Natural language conveys 
information about the world
We can compare statements about the world with the 
actual state of the world:

Champaign is in California.  (false)

We can learn new facts about the world from natural 
language statements:

The earth turns around the sun. 

We can answer questions about the world:
Where can I eat Korean food on campus?
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We draw inferences from natural 
language statements
Some inferences are purely linguistic:

All blips are foos.
Blop is a blip.____________
Blop is a foo (whatever that is).  

Some inferences require world knowledge.
Mozart was born in Salzburg.
Mozart was born in Vienna._______________________
No, that can’t be - these are different cities.
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What does it mean to “understand” 
language?
The ability to identify the intended literal meaning  
is a prerequisite for any deeper understanding

“eat sushi with chopsticks” does not mean that chopsticks were eaten  

True understanding also requires the ability to draw 
appropriate inferences that go beyond literal meaning:

— Lexical inferences (depend on the meaning of words)
You are running —> you are moving.
— Logical inferences (e.g. syllogisms)
All men are mortal. Socrates is a man —> Socrates is mortal.
— Common sense inferences (require world knowledge):
It’s raining —> You get wet if you’re outside. 
— Pragmatic inferences (speaker’s intent, speaker’s assumptions 
about the state of the world, social relations)
Boss says “It’s cold here” —> Assistant gets up to close the window.
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What does it mean to “understand” 
language?
Linguists have studied (and distinguish between) 
semantics and pragmatics

— Semantics is concerned with literal meaning  
(e.g. truth conditions: when is a statement true), 
lexical knowledge (running is a kind of movement).
— Pragmatics is (mostly) concerned with speaker 
intent and assumptions, social relations, etc. 

NB: Linguistics has little to say about extralinguistic (commonsense) 
inferences that are based on world knowledge, although some of this is 
captured by lexical knowledge.
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How do we get computers to 
“understand” language?

Not all aspects of understanding are equally important 
for all NLP applications

Historically, even just identifying the correct literal 
meaning has been difficult. 

In recent years, more efforts on task such as 
entailment recognition that aim to evaluate  
the ability to draw inferences.
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Semantics: getting at literal meaning
In order to understand language, we need to be able 
to identify its (literal) meaning. 

— How do we represent the meaning of a word?   
   (Lexical semantics)
—How do we represent the meaning of a sentence?  
   (Compositional semantics)
—How do we represent the meaning of a text?  
   (Discourse semantics) 
 
NB: Although we clearly need to handle all levels of semantics, 
historically these have often been studied in (relative) isolation,  
so these subareas each have their own theories and models.
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Today’s lecture
Our initial question:
What is the meaning of (declarative) sentences?

Declarative sentences: “John likes coffee”.
(We won’t deal with questions (“Who likes coffee?”) and 
imperative sentences (commands: “Drink up!”)) 
 

Follow-on question 1:  
How can we represent the meaning of sentences?

Follow-on question 2:  
How can we map a sentence to its meaning 
representation? 
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What do nouns and verbs mean?
In the simplest case, an NP is just a name:  
      John, Urbana, USA, Thanksgiving, 
Names refer to (real or abstract) entities in the world.

Verbs define n-ary predicates: 
     stand, run, eat, win,  
Depending on the arguments they take (and the state 
of the world), the proposition that is obtained when we 
apply these predicates to the arguments can be true 
or false in a given situation.
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What do sentences mean?
Declarative sentences (statements) can be  
true or false, depending on the state of the world:

John sleeps. 

In the simplest case, they consist of a verb  
and one or more noun phrase arguments.

Principle of compositionality (Frege):
The meaning of an expression depends on the 
meaning of its parts and how they are put together.
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Today’s lecture
Part 1: Overview, Principle of Compositionality
 
Part 2: First-order predicate logic  
           as a meaning representation language

Part 3: Using CCG to map sentences  
           to predicate logic
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Additional topics
Representing events and temporal relations:

–Add event variables e to represent the events described by verbs, and 
temporal variables t to represent the time at which an event happens. 

Other quantifiers:
–What about “most | at least two | … chefs”?  

Underspecified representations:
–Which interpretation of “Every chef cooks a meal” is correct? This might 

depend on context. Let the parser generate an underspecified 
representation from which both readings can be computed. 

Going beyond single sentences:
–How do we combine the interpretations of single sentences?

13
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But…
… what can we do with these representations?

Being able to translate a sentence into predicate logic is not 
enough, unless we also know what these predicates mean.
Semantics joke (B. Partee): The meaning of life is life’
Compositional formal semantics tells us how to fit together 
pieces of meaning, but doesn’t have much to say about the 
meaning of the basic pieces (i.e. lexical semantics)

… how do we put together meaning representations of multiple 
sentences? 

We need to consider discourse (there are approaches within 
formal semantics, e.g. Discourse Representation Theory)

… Do we really need a complete analysis of each sentence? 
This is pretty brittle (it’s easy to make a parsing mistake) 
Can we get a more shallow analysis?
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Predicate logic expressions
Terms: refer to entities

Variables: x, y, z 
Constants: John’, Urbana’
Functions applied to terms (fatherOf(John’)) 

Predicates: refer to properties of, or relations 
between, entities

tall(x), eat(x,y), …

Formulas: can be true or false
Atomic formulas: predicates, applied to terms: tall(John’)
Complex formulas: constructed recursively via logical 
connectives and quantifiers  

16
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Formulas
Atomic formulas are predicates, applied to terms: 

book(x), eat(x,y), tall(John’) 

Complex formulas are constructed recursively by
...negation (¬):   ¬book(John’) 
...connectives (⋀,⋁,→): book(y) ⋀ read(x,y)

conjunction (and): φ⋀ψ  disjunction (or): φ⋁ψ implication (if): φ→ψ 
...quantifiers (∀x, ∃x)

universal (typically with implication) ∀x[φ(x) → ψ(x)] 
existential (typically with conjunction) ∃x[φ(x)], ∃x[φ(x) ⋀ ψ(x)]  

Interpretation: formulas are either true or false.
17
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The syntax of FOL expressions
Term      ⇒ Constant | 
                    Variable |  
                    Function(Term,...,Term) 

Formula ⇒ Predicate(Term, ...Term) | 
                   ¬ Formula |  
                   ∀ Variable Formula |  
                   ∃ Variable Formula | 
                   Formula ∧ Formula |  
                   Formula ∨ Formula |  
                   Formula → Formula  
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Some examples

John is a student:    
student(john’) 

All students take at least one class:
∀x student(x) ⟶ ∃y(class(y) ∧ take(x,y)) 

There is a class that all students take:
∃y(class(y) ∧ ∀x (student(x) ⟶ take(x,y)) 

19



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

FOL is sufficient for some  
natural language inferences

All blips are foos.                          ∀x blip(x) → foo(x)
Blop is a blip.                                blip(blop’)____________                             ____________
Blop is a foo                                  foo(blop’) 

20
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Not all of natural language 
can be expressed in FOL:
Tense: 

It was hot yesterday.
I will go to Chicago tomorrow.

Modals:
You can/must go to Chicago from here.

Other kinds of quantifiers:
Most students hate 8:00am lectures.

21
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λ-Expressions
We can use λ-expressions and β-reduction to combine  
simpler logical formulas into complex logical formulas.   

λ-expressions λx.φ(..x...) are (unary) functions  
Here x is a variable, and φ is a  FOL expression that  
we assume contains one or more free occurrences of x  
(free = not bound by a quantifier, e.g. ∀x )  

β-reduction (called λ-reduction in textbook): 
Apply the function λx.φ(…x…) to some argument a: 
    (λx.φ(..x...) a)  ⇒  φ(…a…) 
Replace all (free) occurrences of x in φ(..x...) with a 
n-ary functions contain embedded λ-expressions: 
   λx.λy.λz.give(x,y,z)
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Last lecture…
We’ve introduced CCG as a syntactic formalism.

Syntactically, CCG’s main advantages are:
 
CCG is more expressive than CFGs,  
so it can handle non-projective dependencies. 
(but it’s still efficiently parseable) 

Type-raising and composition give CCG  
a “flexible constituent structure” that allows CCG  
to capture non-local dependencies without traces  
(e.g. by combing a subject and transitive verb into an S/NP 
constituent)

24
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Today’s lecture
Compositionality in CCG’s syntax-semantics interface 

Every lexical entry can be paired with a semantic interpretation
Every syntactic combinatory rule has a semantic counterpart

NB: We will use first-order predicate logic as one 
example of a meaning representation language,  
but these principles can be applied to any other kind 
of representation. 

25
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CCG categories
Simple (atomic) categories: NP, S, PP 

Complex categories (functions):
Return a result when combined with an argument 
 
  VP, intransitive verb S\NP

Transitive verb (S\NP)/NP

Adverb (S\NP)\(S\NP)

Prepositions ((S\NP)\(S\NP))/NP  
(NP\NP)/NP
PP/NP

26
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Forward application (>):

(S\NP)/NP NP ⇒> S\NP
eats tapas eats tapas
Backward application (<):

NP S\NP ⇒< S
John eats tapas John eats tapas

Function application

Combines function X/Y or X\Y with argument Y to yield result X 
Used in all variants of categorial grammar

27



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Type-raising and composition
Type-raising:  X → T/(T\X) 

Turns an argument into a function.  
NP     →  S/(S\NP)         (subject) 
NP     →  (S\NP)\((S\NP)/NP)   (object)

Harmonic composition:  X/Y   Y/Z → X/Z
Composes two functions (complex categories),  
same slashes 
(S\NP)/PP  PP/NP     → (S\NP)/NP 
S/(S\NP) (S\NP)/NP    →     S/NP

Crossing composition: X/Y Y\Z → X\Z
Composes two functions (complex categories),  
different slashes 
(S\NP)/S  S\NP     → (S\NP)\NP 

28
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CCG semantics
Every syntactic constituent has a semantic interpretation:

Every lexical entry maps a word to a syntactic category  
and a corresponding, appropriate semantic type, e.g.:  
John=(NP, john’ )  Mary= (NP, mary’ )   
loves: ((S\NP)/NP λy.λx.loves(x,y))  
[a transitive verb has two (paired) arguments in the syntax and the semantics] 

Every combinatory rule has a syntactic and a corresponding 
semantic part: 
Function application:    X/Y:λy.f(y)  Y:a               → X:f(a) 
Function composition:  X/Y:λy.f(y)  Y/Z:λz.g(z)  → X/Z:λz.f(g(z))
Type raising:                 X:a                                    → T/(T\X) λf.f(a) 
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A CCG derivation with semantics

30

John sees Mary

NP : John0 (S\NP)/NP : �y.�x.see0(x, y) NP : Mary0
>

S\NP : �x.see0(x,Mary0)
<

S : see0(John0,Mary0)

1
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Quantifier scope ambiguity
“Every chef cooks a meal” 

– Interpretation A: 
For every chef, there is a meal which he cooks. 
 

– Interpretation B: 
There is some meal which every chef cooks.

31

∀x[chef′ (x) ⟶ ∃y[meal′ (y) ∧ cook′ (x, y)]]

∃y[meal′ (y) ∧ ∀x[chef′ (x) ⟶ cook′ (x, y)]]
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Interpretation A

32

John sees Mary

NP : John0 (S\NP)/NP : �y.�x.see0(x, y) NP : Mary0
>

S\NP : �x.see0(x,Mary0)
<

S : see0(John0,Mary0)

Every chef cooks a meal

(S/(S\NP))/N N (S\NP)/NP ((S\NP)\((S\NP)/NP))/N N
�P.�Q.8x[(P x) �! (Q x)] �z.chef 0(z) �u.�v.cook 0(v, u) �P.�Q.�w.9y[(P y) ^ ((Q y) w)] �z.meal 0(z)

> >
S/(S\NP) (S\NP)\((S\NP)/NP)

�Q.8x[(�z.chef 0(z) x) �! (Q x)] �Q.�w.9y[(�z.meal 0(z) y) ^ ((Q y) w)]
⌘ �Q.8x[chef 0(x) �! (Q x)] ⌘ �Q.�w.9y[meal 0(y) ^ ((Q y) w)]

<
S\NP

�w.9y[meal 0(y) ^ ((�u.�v.cook 0(v, u) y) w)]
⌘ �w.9y[meal 0(y) ^ cook 0(w, y)]

>
S : 8x[chef 0(x) �! (�w.9y[meal 0(y) ^ cook 0(w, y)] x)]

⌘ 8x[chef 0(x) �! 9y[meal 0(y) ^ cook 0(x, y)]]

Every chef cooks a meal

(S/(S\NP))/N N (S\NP)/NP (S\(S/NP))/N N
�P.�Q.8x[(P x) �! (Q x)] �z.chef 0(z) �u.�v.cook 0(v, u) �P.�Q.9y[(P y) ^ (Q y)] �z.meal 0(z)

> >
S/(S\NP) S\(S/NP)

�Q.8x[(�z.chef 0(z) x) �! (Q x)] �Q.9y[(�z.meal 0(z) y) ^ (Q y)]
⌘ �Q.8x[chef 0(x) �! (Q x)] ⌘ �Q.9y[meal 0(y) ^ (Q y)]

>B
S/NP

�z.8x[chef 0(x) �! ((�u.�v.cook 0(v, u) z) x)]
⌘ �z.8x[chef 0(x) �! cook 0(x, z)]

<
S : 9y[meal 0(y) ^ (�z.8x[chef 0(x) �! cook 0(x, z)] y)]

⌘ 9y[meal 0(y) ^ 8x[chef 0(x) �! cook 0(x, y)]]
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Interpretation B

33

John sees Mary

NP : John0 (S\NP)/NP : �y.�x.see0(x, y) NP : Mary0
>

S\NP : �x.see0(x,Mary0)
<

S : see0(John0,Mary0)

Every chef cooks a meal

(S/(S\NP))/N N (S\NP)/NP ((S\NP)\((S\NP)/NP))/N N
�P.�Q.8x[(P x) �! (Q x)] �z.chef 0(z) �u.�v.cook 0(v, u) �P.�Q.�w.9y[(P y) ^ ((Q y) w)] �z.meal 0(z)

> >
S/(S\NP) (S\NP)\((S\NP)/NP)

�Q.8x[(�z.chef 0(z) x) �! (Q x)] �Q.�w.9y[(�z.meal 0(z) y) ^ ((Q y) w)]
⌘ �Q.8x[chef 0(x) �! (Q x)] ⌘ �Q.�w.9y[meal 0(y) ^ ((Q y) w)]

<
S\NP

�w.9y[meal 0(y) ^ ((�u.�v.cook 0(v, u) y) w)]
⌘ �w.9y[meal 0(y) ^ cook 0(w, y)]

>
S : 8x[chef 0(x) �! (�w.9y[meal 0(y) ^ cook 0(w, y)] x)]

⌘ 8x[chef 0(x) �! 9y[meal 0(y) ^ cook 0(x, y)]]

Every chef cooks a meal

(S/(S\NP))/N N (S\NP)/NP (S\(S/NP))/N N
�P.�Q.8x[(P x) �! (Q x)] �z.chef 0(z) �u.�v.cook 0(v, u) �P.�Q.9y[(P y) ^ (Q y)] �z.meal 0(z)

> >
S/(S\NP) S\(S/NP)

�Q.8x[(�z.chef 0(z) x) �! (Q x)] �Q.9y[(�z.meal 0(z) y) ^ (Q y)]
⌘ �Q.8x[chef 0(x) �! (Q x)] ⌘ �Q.9y[meal 0(y) ^ (Q y)]

>B
S/NP

�z.8x[chef 0(x) �! ((�u.�v.cook 0(v, u) z) x)]
⌘ �z.8x[chef 0(x) �! cook 0(x, z)]

<
S : 9y[meal 0(y) ^ (�z.8x[chef 0(x) �! cook 0(x, z)] y)]

⌘ 9y[meal 0(y) ^ 8x[chef 0(x) �! cook 0(x, y)]]
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