
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 19:
Linguistically Expressive
Grammars

http://courses.engr.illinois.edu/cs498jh4
mailto:juliahmr@illinois.edu

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 1:

Gram
mars

in N
LP:

what
and

 why

2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

What is grammar?
Grammar formalisms
(= linguists’ programming languages)

A precise way to define and describe  
the structure of sentences.
(N.B.: There are many different formalisms out there,  
which each define their own data structures and operations)

Specific grammars
(= linguists’ programs)

Implementations (in a particular formalism) for a particular
language (English, Chinese,….)
(NB: any practical parser will need to also have a model/scoring function to
identify which grammatical analysis should be assigned to a given sentence)

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Why study grammar?
Linguistic questions:

What kind of constructions occur in natural language(s)?  

Formal questions:
Can we define formalisms that allow us to characterize  
which strings belong to a language?
Those formalisms have appropriate weak generative capacity
Can we define formalisms that allow us to map sentences  
to their appropriate structures?
Those formalisms have appropriate strong generative capacity 

Practical applications (Syntactic/Semantic Parsing):
Can we identify the grammatical structure of sentences?
Can we translate sentences to appropriate meaning representations?

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

OvergenerationUndergeneration

John saw Mary.
I ate sushi with tuna.

I ate the cake that John had
made for me yesterday

I want you to go there.

John made some cake.

English

Did you go there?

.....

John Mary saw.

 with tuna sushi ate I.

Did you went there?

....

5

Can we define a program  
that generates all English sentences?

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Syntax as an interface to semantics

Surface  
string

Mary saw John

Meaning
representation

Logical form:
saw(Mary,John)

 
Grammar

Parsing

Generation
Pred-arg structure:

 PRED saw
 AGENT Mary
 PATIENT John

Dependency graph:
 saw

Mary John

6

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Grammar formalisms
Formalisms provide a formal language in which
linguistic theories can be expressed and implemented  

Formalisms define elementary objects 
(trees, strings, feature structures)  
and recursive operations which generate  
complex objects from simple objects. 

Different formalisms may impose different constraints  
(e.g. on the kinds of dependencies they can capture)

7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

What makes a formalism
“expressive”?

“Expressive” formalisms are richer  
than context-free grammars.

Different formalisms use different mechanisms,  
data structures and operations to go beyond CFGs

8

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Examples of expressive grammar
formalisms
Tree-adjoining Grammar (TAG):
Fragments of phrase-structure trees 

Combinatory Categorial Grammar (CCG):
Syntactic categories paired with meaning representations

Lexical-functional Grammar (LFG):
Annotated phrase-structure trees (c-structure) 
linked to feature structures (f-structure) 

Head-Driven Phrase Structure Grammar(HPSG):
Complex feature structures (Attribute-value matrices)

9

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 2:

Why g
o be

yond

CFGs?

10

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The dependencies so far:
Arguments:

Verbs take arguments: subject, object, complements, ...
Heads subcategorize for their arguments  

Adjuncts/Modifiers:
Adjectives modify nouns, adverbs modify VPs or adjectives,
PPs modify NPs or VPs
Modifiers subcategorize for the head 

Typically, these are local dependencies: they can be
expressed within individual CFG rules
 
 VP → Adv Verb NP

11

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Context-free grammars
CFGs capture only nested dependencies

The dependency graph is a tree
The dependencies do not cross

12

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

German: center embedding
...daß ich [Hans schwimmen] sah  
...that I Hans swim saw  
...that I saw [Hans swim] 
 

...daß ich [Maria [Hans schwimmen] helfen] sah  

...that I Maria Hans swim help saw  

...that I saw [Mary help [Hans swim]] 
 
 

...daß ich [Anna [Maria [Hans schwimmen] helfen] lassen] sah  

...that I Anna Maria Hans swim help let saw  

...that I saw [Anna let [Mary help [Hans swim]]]

13

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dependency structures in general
Nested (projective) 
dependency trees
(CFGs) 
 

Non-projective  
dependency trees

Non-local dependency
graphs

14

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Beyond CFGs:  
Nonprojective dependencies

Dependencies form a tree with crossing
branches 

15

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dutch: Cross-Serial Dependencies
...dat ik Hans zag zwemmen  
...that I Hans saw swim 
...that I saw [Hans swim] 

...dat ik Maria Hans zag helpen zwemmen  

...that I Maria Hans saw help swim 

...that I saw [Mary help [Hans swim]] 
 
 

...dat ik Anna Maria Hans zag laten helpen zwemmen  

...that I Anna Maria Hans saw let help swim 

...that I saw [Anna let [Mary help [Hans swim]]]

Such cross-serial dependencies require  
mildly context-sensitive grammars

16

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Other crossing (non-projective) dependencies

(Non-local) scrambling: In a sentence with multiple verbs, the
argument of a verb appears in a different clause from that which
contains the verb (arises in languages with freer word order than
English)

Die Pizza hat Klaus versprochen zu bringen  
The pizza has Klaus promised to bring  
Klaus has promised to bring the pizza

Extraposition: Here, a modifier of the subject NP is moved to the
end of the sentence

The guy is coming who is wearing a hat 
Compare with the non-extraposed variant 
The [guy [who is wearing a hat]] is coming

Topicalization: Here, the argument of the embedded verb is moved
to the front of the sentence.

Cheeseburgers, I [thought [he likes]]

17

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Beyond CFGs:  
Nonlocal dependencies

Dependencies form a DAG  
(a node may have multiple incoming edges)
Arise in the following constructions:
- Control (He has promised me to go), raising (He seems to go)
-Wh-movement (the man who you saw yesterday is here again),
- Non-constituent coordination  

(right-node raising, gapping, argument-cluster coordination)

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Wh-Extraction (e.g. in English)
Relative clauses:
the sushi that [you told me [John saw [Mary eat]]]’
Wh-Questions:
‘what [did you tell me [John saw [Mary eat]]]?’  

Wh-questions (what, who, …) and relative clauses
contain so-called unbounded nonlocal dependencies  
because the verb that subcategorizes for the moved
NP may be arbitrarily deeply embedded in the tree
Linguists call this phenomenon wh-extraction  
(wh-movement).

19

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

As a phrase structure tree:

20

NP

NP SBAR

SIN
VPNP

S

VPNP

V

V

the sushi
that

you

told

NP

me

John

saw

S

VPNP

VMary
eat

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The trace analysis of
wh-extraction

21

NP

NP

NP SBAR

SIN
VPNP

S

VPNP

V

V

the sushi
 that

you

told

NP

me

John

saw

S

VPNP

VMary
eat *T*

trace

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Slash categories for wh-extraction
Because only one element can be extracted,  
we can use slash categories.
This is still a CFG: the set of nonterminals is finite.  
 
 
 
 
 
 
 
 
 

Generalized Phrase Structure Grammar 
(GPSG), Gazdar et al. (1985)

22

NP

NP SBAR

S/NPIN
VP/NPNP

S/NP
VP/NPNP

V

V

the sushi
 that

you

told
NP
me

John
saw

S/NP
 VP/NPNP

VMary
eat

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 3:

Feat
ure

Stru
ctur

e

Gram
mars

23

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Why feature structures
Feature structures form the basis for many grammar
formalisms used in computational linguistics.

Feature structure grammars (aka attribute-value
grammars, or unification grammars) can be used as
– a more compact way of representing rich CFGs
– a way to represent more expressive grammars

24

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Simple grammars overgenerate

This generates ungrammatical sentences like  
“these student eats a cakes”  

We need to capture (number/person) agreement

S → NP VP

VP → Verb NP

NP → Det Noun

Det → the | a | these

Verb → eat |eats

Noun → cake |cakes | student | students

25

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Refining the nonterminals

This yields very large grammars.
What about person, case, …?

Difficult to capture generalizations  
(Subject and verb have to have number agreement)

NPsg, NPpl and NP are three distinct nonterminals

S → NPsg VPsg

S → NPpl VPpl

VPsg → VerbSg NP

VPpl → VerbPl NP

NPsg → DetSg NounSg

DetSg → the | a

...

26

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Feature structures
Replace atomic categories with feature structures:  
 
 
 
 

A feature structure is a list of features (= attributes,
e.g. CASE), and values (e.g. NOM).
 
We often represent feature structures as  
attribute value matrices (AVMs)
Usually, values are typed (to avoid CASE:SG)

27

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Feature structures
as directed graphs

28

= NP

Sg

3

PERS

Nom

CASE NUM
CAT

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Complex feature structures
We distinguish between atomic and complex  
feature values.
A complex value is a feature structure itself.  

This allows us to capture better generalizations.

Only atomic values:

29

Complex values:

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Feature paths

A feature path allows us to identify  
particular values in a feature structure: 

〈NP CAT〉 = NP
〈NP AGR CASE〉 = NOM

30

NP:

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Unification
Two feature structures A and B unify (A ⊔ B)  
if they can be merged into one consistent feature
structure C:  
 
 
 

Otherwise, unification fails:

31

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

PATR-II style
feature structures

CFG rules are augmented with constraints:
 A0 → A1 ... An
 {set of constraints}

There are two kinds of constraints:
Unification constraints: 
 〈Ai feature-path〉 = 〈 Aj feature-path〉

Value constraints:
 〈Ai feature-path〉 = atomic value

32

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lexical entry

Constraints

Grammar rule

Constraints

Grammar rule

Constraints

S → NP VP
〈NP NUM〉 = 〈VP NUM〉
〈NP CASE〉 = nom

NP → DT NOUN
〈NP NUM〉 = 〈NOUN NUM〉
〈NP CASE〉 = 〈NOUN CASE〉

NOUN → cake
〈NOUN NUM〉 = sg

A grammar with feature structures

33

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lexical entry

Constraints

Grammar rule

Constraints

Grammar rule

Constraints

S → NP VP
〈NP AGR〉 = 〈VP AGR〉
〈NP CASE〉 = nom

NP → DT NOUN
〈NP AGR〉 = 〈NOUN AGR〉

NOUN → cake
〈NOUN AGR NUM〉 = sg

With complex feature structures

34

Complex feature structures can capture better
generalizations (and hence require fewer

constraints) — cf. the previous slide

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The head feature
Instead of implicitly specifying heads for each rewrite
rule, let us define a head feature.
 
The head of a VP has the same agreement feature  
as the VP itself:

35

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Re-entrancies
What we really want to say is that  
the agreement feature of the head  
is identical to that of the VP itself. 

This corresponds to a re-entrancy in the FS
(indicated via coindexation)

36

1

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

 Re-entrancies — not like this:

AGR

Sg
3

PERS

NUM

VP

HEAD

AGRHEAD

AGR

AGR

Sg
3

PERS

NUM

37

CAT

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

 Re-entrancies — but like this:

VP

HEAD
AGR

HEAD

AGR

AGR

Sg
3

PERS

NUM

38

CAT

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Attribute-Value Grammars
and CFGs

If every feature can only have a finite set of values,  
any attribute-value grammar can be compiled out  
into a (possibly huge) context-free grammar

39

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Going beyond CFGs
The power-of-2 language: L2 = {wi | i is a power of 2}

L2 is a (fully) context-sensitive language.  
(Mildly context-sensitive languages have the constant growth property
(the length of words always increases by a constant factor c)) 

 
Here is a feature grammar which generates L2: 
 
 
 

40

A ! a
hA Fi= 1

A ! A1 A2

hA Fi= hA1i
hA Fi= hA2i

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 4:

Tree
-Ad

join
ing

Gram
mar

41

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

(Lexicalized) Tree-Adjoining Grammar

AK Joshi and Y Schabes (1996)
Tree Adjoining Grammars.  

In G. Rosenberg and A. Salomaa,
Eds., Handbook of Formal

Languages

TAG is a tree-rewriting formalism:
TAG defines operations (substitution, adjunction) on trees.
The elementary objects in TAG are trees (not strings) 

TAG is lexicalized:
Each elementary tree is anchored to a lexical item (word)
“Extended domain of locality”: 
The elementary tree contains all arguments of the anchor.
TAG requires a linguistic theory which specifies the shape  
of these elementary trees. 

TAG is mildly context-sensitive:
can capture Dutch cross-serial dependencies
but is still efficiently parseable

42

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Mildly context-sensitive grammars
Contain all context-free grammars/languages 

Can be parsed in polynomial time (TAG/CCG: O(n6))  
 
(Strong generative capacity) capture certain kinds of
dependencies: nested (like CFGs) and cross-serial (like the
Dutch example), but not the MIX language:
MIX: the set of strings w ∈ {a, b, c}* that contain equal numbers of as, bs and cs

Have the constant growth property: 
the length of strings grows in a linear way 
The power-of-2 language {a2n} does not have the constant
growth propery.

43

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Recursively enumerable

The Chomsky Hierarchy

Context-sensitive

Mildly context-sensitive

Context-free

Regular

44

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Extended domain of locality

S
NP VP

VBZ NP

eats

We want to capture all arguments of a word  
in a single elementary object.

We also want to retain certain syntactic structures  
(e.g. VPs).

Our elementary objects are tree fragments:

45

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

TAG substitution (arguments)

Substitute X YX↓ Y↓

α1:

Xα2: Yα3:

α2 α3

α1Derivation tree:

Derived tree:

46

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

ADJOIN

TAG adjunction

X
X*

X

X

X*

Auxiliary
tree

Foot node
α1:

β1:

α1

β1

Derived tree:

Derivation tree:

47

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The effect of adjunction
TIG: 

sister  
adjunction

TAG: 
wrapping  

adjunction

No adjunction: TSG (Tree substitution grammar)
TSG is context-free

Sister adjunction: TIG (Tree insertion grammar)
TIG is also context-free, but has a linguistically more adequate
treatment of modifiers 

Wrapping adjunction: TAG (Tree-adjoining grammar)
TAG is mildy context-sensitive

48

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A small TAG lexicon

S

NP VP

VBZ NP

eats

 α1:

NP

John

α2:

VP

RB VP*

always

β1:

NP

tapas

α3:

49

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A TAG derivation
S

NP VP

VBZ NP

eats

NP

John

NP

tapas

VP

RB VP*

always

NP

NP

NP

NP

α2:

α1:

β1:
α3:

α1

α3α2

50

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A TAG derivation
S

NP VP

VBZ NP

eats tapas

VP
RB VP*

always

John

VP

VP

α1

α3α2 β1

β1

51

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A TAG derivation
S

NP

VBZ
VP

NP

eats tapas

VP
RB VP*

always
John

52

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

anbn: Cross-serial dependencies

Elementary trees:

Deriving aabb

S

a

b

S

S*

S

a
b

S

S

a
b

S
S

a

b

S

S*

S

a

b
S

S

S

a

b
SS

53

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 5:

(Combina
tory

)

Categ
oria

l Gram
mar

54

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

CCG: the machinery
Categories:

specify subcat lists of words/constituents. 

Combinatory rules:
specify how constituents can combine. 

The lexicon:
specifies which categories a word can have. 

Derivations:
spell out process of combining constituents.

55

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

CCG categories
Simple (atomic) categories: NP, S, PP 

Complex categories (functions):
Return a result when combined with an argument 
 
  VP, intransitive verb S\NP

Transitive verb (S\NP)/NP

Adverb (S\NP)\(S\NP)

Prepositions ((S\NP)\(S\NP))/NP  
(NP\NP)/NP
PP/NP

56

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

CCG categories are functions
CCG has a few atomic categories, e.g

S, NP, PP
All other CCG categories are functions:

57

S

Result

NP

Argument

/

Dir.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Rules: Function application

S/NP

Function

NP

Argument

58

Result
S

x
y

· y = x

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Rules: Function application

S\NP

Function

NP

Argument

59

Result
S

y · x
y

= x

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Rules: Function application

(S\NP)/NP

Function

NP

Argument

60

Result
S\NP

x
y

· y = x

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Forward application (>):

(S\NP)/NP NP ⇒> S\NP
eats tapas eats tapas
Backward application (<):

NP S\NP ⇒< S
John eats tapas John eats tapas

Function application

Combines function X/Y or X\Y with argument Y to yield result X 
Used in all variants of categorial grammar

61

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A (C)CG derivation

62

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Rules: Function Composition

S/S

1st Function

S\NP

2nd Function

63

S\NP

x
y

· y
z

=
x
z

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Rules: Type-Raising

NP

64

S/(S\NP)

y =
x
x

· y =
x�
x
y

�

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Type-raising and composition
Type-raising: X → T/(T\X)

Turns an argument into a function.  
NP → S/(S\NP) (subject) 
NP → (S\NP)\((S\NP)/NP) (object)

Harmonic composition: X/Y Y/Z → X/Z
Composes two functions (complex categories),  
same slashes 
(S\NP)/PP PP/NP → (S\NP)/NP 
S/(S\NP) (S\NP)/NP → S/NP

Crossing composition: X/Y Y\Z → X\Z
Composes two functions (complex categories),  
different slashes 
(S\NP)/S S\NP → (S\NP)\NP

65

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Type-raising and composition
Wh-movement (relative clause): 
 
 
 
 

Right-node raising:

66

