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What is grammar?
Grammar formalisms
(= linguists’ programming languages)

A precise way to define and describe  
the structure of sentences. 
(N.B.: There are many different formalisms out there,  
which each define their own data structures and operations)

Specific grammars
(= linguists’ programs)

Implementations (in a particular formalism) for a particular 
language (English, Chinese,….)
(NB: any practical parser will need to also have a model/scoring function to 
identify which grammatical analysis should be assigned to a given sentence)

3
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Why study grammar?
Linguistic questions:

What kind of constructions occur in natural language(s)?  

Formal questions: 
Can we define formalisms that allow us to characterize  
which strings belong to a language? 
Those formalisms have appropriate weak generative capacity
Can we define formalisms that allow us to map sentences  
to their appropriate structures?
Those formalisms have appropriate strong generative capacity 

Practical applications (Syntactic/Semantic Parsing):
Can we identify the grammatical structure of sentences?
Can we translate sentences to appropriate meaning representations?

4
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OvergenerationUndergeneration

John saw Mary.
I ate sushi with tuna.

I ate the cake that John had  
made for me yesterday

I want you to go there.

John made some cake.

English

Did you go there? 

.....

John Mary saw.

 with tuna sushi ate I.

Did you went there? 

....

5

Can we define a program  
that generates all English sentences?
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Syntax as an interface to semantics

Surface  
string

Mary saw John

Meaning
representation

Logical form:
saw(Mary,John)

 
Grammar

Parsing

Generation
Pred-arg structure:

     PRED       saw 
     AGENT    Mary 
     PATIENT John 

Dependency graph:
 saw  

Mary     John

6
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Grammar formalisms
Formalisms provide a formal language in which 
linguistic theories can be expressed and implemented  

Formalisms define elementary objects 
(trees, strings, feature structures)  
and recursive operations which generate  
complex objects from simple objects. 

Different formalisms may impose different constraints  
(e.g. on the kinds of dependencies they can capture) 
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What makes a formalism 
“expressive”?

“Expressive” formalisms are richer  
than context-free grammars.

Different formalisms use different mechanisms,  
data structures and operations to go beyond CFGs

8
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Examples of expressive grammar 
formalisms
Tree-adjoining Grammar (TAG): 
Fragments of phrase-structure trees 

Combinatory Categorial Grammar (CCG): 
Syntactic categories paired with meaning representations

Lexical-functional Grammar (LFG): 
Annotated phrase-structure trees (c-structure) 
linked to feature structures (f-structure) 

Head-Driven Phrase Structure Grammar(HPSG):
Complex feature structures (Attribute-value matrices)

9
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The dependencies so far:
Arguments:

Verbs take arguments: subject, object, complements, ...
Heads subcategorize for their arguments  

Adjuncts/Modifiers:
Adjectives modify nouns, adverbs modify VPs or adjectives, 
PPs modify NPs or VPs
Modifiers subcategorize for the head 

Typically, these are local dependencies: they can be 
expressed within individual CFG rules
 
                          VP → Adv Verb NP

11
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Context-free grammars
CFGs capture only nested dependencies

The dependency graph is a tree
The dependencies do not cross 

12
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German: center embedding
...daß ich [Hans schwimmen] sah  
...that I      Hans  swim             saw  
...that I saw [Hans swim] 
 

...daß ich [Maria [Hans schwimmen] helfen] sah  

...that I      Maria   Hans  swim               help     saw  

...that I saw [Mary help [Hans swim]] 
 
 

...daß ich [Anna [Maria [Hans schwimmen] helfen] lassen] sah  

...that I      Anna   Maria   Hans  swim               help     let          saw  

...that I saw [Anna let [Mary help [Hans swim]]]

13
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Dependency structures in general
Nested (projective) 
dependency trees
(CFGs) 
 

Non-projective  
dependency trees

Non-local dependency
graphs

14
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Beyond CFGs:  
Nonprojective dependencies

Dependencies form a tree with crossing 
branches 

15
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Dutch: Cross-Serial Dependencies
...dat ik Hans zag zwemmen  
...that I   Hans saw swim 
...that I saw [Hans swim] 

...dat ik Maria Hans zag helpen zwemmen  

...that I  Maria   Hans  saw help swim 

...that I saw [Mary help [Hans swim]] 
 
 

...dat ik Anna Maria Hans zag laten helpen  zwemmen  

...that I  Anna   Maria   Hans  saw let help swim 

...that I saw [Anna let [Mary help [Hans swim]]]

Such cross-serial dependencies require  
mildly context-sensitive grammars

16
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Other crossing (non-projective) dependencies

(Non-local) scrambling: In a sentence with multiple verbs, the 
argument of a verb appears in a different clause from that which 
contains the verb (arises in languages with freer word order than 
English) 

Die Pizza hat Klaus versprochen zu bringen  
The pizza has Klaus promised     to  bring  
Klaus has promised to bring the pizza

Extraposition: Here, a modifier of the subject NP is moved to the 
end of the sentence

The guy is coming who is wearing a hat 
Compare with the non-extraposed variant 
The [guy [who is wearing a hat]] is coming

Topicalization: Here, the argument of the embedded verb is moved 
to the front of the sentence.  

Cheeseburgers, I [thought [he likes]]

17
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Beyond CFGs:  
Nonlocal dependencies

Dependencies form a DAG  
(a node may have multiple incoming edges)
Arise in the following constructions:
- Control (He has promised me to go), raising (He seems to go)
-Wh-movement (the man who you saw yesterday is here again),
- Non-constituent coordination  

(right-node raising, gapping, argument-cluster coordination)

18
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Wh-Extraction (e.g. in English)
Relative clauses: 
the sushi that [you told me [John saw [Mary eat]]]’
Wh-Questions:
‘what [did you tell me [John saw [Mary eat ]]]?’  

Wh-questions (what, who, …) and relative clauses 
contain so-called unbounded nonlocal dependencies  
because the verb that subcategorizes for the moved 
NP may be arbitrarily deeply embedded in the tree
Linguists call this phenomenon wh-extraction  
(wh-movement).

19
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As a phrase structure tree:

20
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The trace analysis of  
wh-extraction
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Slash categories for wh-extraction
Because only one element can be extracted,  
we can use slash categories.
This is still a CFG: the set of nonterminals is finite.  
 
 
 
 
 
 
 
 
 

Generalized Phrase Structure Grammar 
(GPSG), Gazdar et al. (1985)
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Why feature structures
Feature structures form the basis for many grammar 
formalisms used in computational linguistics. 

Feature structure grammars (aka attribute-value 
grammars, or unification grammars) can be used as
– a more compact way of representing rich CFGs
– a way to represent more expressive grammars

24



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Simple grammars overgenerate

This generates ungrammatical sentences like  
“these student eats a cakes”  

We need to capture (number/person) agreement

S → NP VP

VP → Verb NP

NP → Det Noun

Det → the | a | these

Verb → eat |eats

Noun → cake |cakes | student | students

25



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Refining the nonterminals

This yields very large grammars.
What about person, case, …?

Difficult to capture generalizations  
(Subject and verb have to have number agreement)

NPsg, NPpl and NP are three distinct nonterminals

S → NPsg VPsg

S → NPpl VPpl

VPsg → VerbSg NP

VPpl → VerbPl NP

NPsg → DetSg NounSg

DetSg → the | a

... ... ...

26
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Feature structures
Replace atomic categories with feature structures:  
 
 
 
 

A feature structure is a list of features (= attributes, 
e.g. CASE), and values (e.g. NOM).
 
We often represent feature structures as  
attribute value matrices (AVMs)
Usually, values are typed (to avoid CASE:SG)

27
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Feature structures 
as directed graphs

28
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Complex feature structures
We distinguish between atomic and complex  
feature values. 
A complex value is a feature structure itself.  

This allows us to capture better generalizations.

Only atomic values:

29

Complex values:
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Feature paths

A feature path allows us to identify  
particular values in a feature structure: 

〈NP CAT〉 = NP 
〈NP AGR CASE〉 = NOM 

30
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Unification
Two feature structures A and B unify ( A ⊔ B)  
if they can be merged into one consistent feature 
structure C:  
 
 
 

Otherwise, unification fails: 

31
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PATR-II style  
feature structures

CFG rules are augmented with constraints:
    A0 → A1 ... An 
              {set of constraints} 

There are two kinds of constraints:
Unification constraints: 
     〈Ai  feature-path〉 = 〈 Aj  feature-path〉 

Value constraints:
    〈Ai feature-path〉 =  atomic value

32
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Lexical entry

Constraints

Grammar rule   

Constraints

Grammar rule   

Constraints

S → NP VP
〈NP NUM〉 = 〈VP NUM〉
〈NP CASE〉 = nom

NP → DT NOUN
〈NP NUM〉 = 〈NOUN NUM〉
〈NP CASE〉 = 〈NOUN CASE〉

NOUN → cake
〈NOUN NUM〉 = sg

A grammar with feature structures

33
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Lexical entry

Constraints

Grammar rule   

Constraints

Grammar rule   

Constraints

S → NP VP
〈NP AGR〉 = 〈VP AGR〉
〈NP CASE〉 = nom

NP → DT NOUN
〈NP AGR〉 = 〈NOUN AGR〉

NOUN → cake
〈NOUN AGR NUM〉 = sg

With complex feature structures

34

Complex feature structures can capture better 
generalizations (and hence require fewer 

constraints) — cf. the previous slide
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The head feature
Instead of implicitly specifying heads for each rewrite 
rule, let us define a head feature. 
 
The head of a VP has the same agreement feature  
as the VP itself: 

35



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Re-entrancies
What we really want to say is that  
the agreement feature of the head  
is identical to that of the VP itself. 

This corresponds to a re-entrancy in the FS
(indicated via coindexation      )

36
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  Re-entrancies — not like this:

AGR

Sg
3

PERS

NUM

VP

HEAD

AGRHEAD

AGR

AGR

Sg
3

PERS

NUM

37
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  Re-entrancies — but like this:

VP

HEAD
AGR

HEAD

AGR

AGR

Sg
3

PERS

NUM

38

CAT
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Attribute-Value Grammars  
and CFGs

If every feature can only have a finite set of values,  
any attribute-value grammar can be compiled out  
into a (possibly huge) context-free grammar

39
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Going beyond CFGs
The power-of-2 language: L2 = {wi | i is a power of 2}

L2 is a (fully) context-sensitive language.  
(Mildly context-sensitive languages have the constant growth property 
(the length of words always increases by a constant factor c)) 

 
Here is a feature grammar which generates L2: 
 
 
 

40

A ! a
hA Fi= 1

A ! A1 A2

hA Fi= hA1i
hA Fi= hA2i
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(Lexicalized) Tree-Adjoining Grammar

AK Joshi and Y Schabes (1996) 
Tree Adjoining Grammars.  

In G. Rosenberg and A. Salomaa, 
Eds., Handbook of Formal 

Languages

TAG is a tree-rewriting formalism:
TAG defines operations (substitution, adjunction) on trees.
The elementary objects in TAG are trees (not strings) 

TAG is lexicalized:
Each elementary tree is anchored to a lexical item (word)
“Extended domain of locality”: 
The elementary tree contains all arguments of the anchor.
TAG requires a linguistic theory which specifies the shape  
of these elementary trees. 

TAG is mildly context-sensitive:
can capture Dutch cross-serial dependencies
but is still efficiently parseable

42
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Mildly context-sensitive grammars
Contain all context-free grammars/languages 

Can be parsed in polynomial time (TAG/CCG: O(n6))  
 
(Strong generative capacity) capture certain kinds of 
dependencies: nested (like CFGs) and cross-serial (like the 
Dutch example), but not the MIX language:
MIX: the set of strings w ∈ {a, b, c}* that contain equal numbers of as, bs and cs 

Have the constant growth property: 
the length of strings grows in a linear way 
The power-of-2 language {a2n} does not have the constant 
growth propery.

43
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Recursively enumerable

The Chomsky Hierarchy

Context-sensitive

Mildly context-sensitive

Context-free

Regular

44
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Extended domain of locality

S
NP VP

VBZ NP

eats

We want to capture all arguments of a word  
in a single elementary object.

We also want to retain certain syntactic structures  
(e.g. VPs). 

Our elementary objects are tree fragments: 

45
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TAG substitution (arguments)

Substitute X YX↓ Y↓

α1:

Xα2: Yα3:

α2 α3

α1Derivation tree:

Derived tree:

46
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ADJOIN

TAG adjunction

X
X*

X

X

X*

Auxiliary 
tree

Foot node
α1:

β1:

α1

β1

Derived tree:

Derivation tree:

47
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The effect of adjunction
TIG: 

sister  
adjunction

TAG: 
wrapping  

adjunction

No adjunction: TSG (Tree substitution grammar)
TSG is context-free

Sister adjunction: TIG (Tree insertion grammar)
TIG is also context-free, but has a linguistically more adequate 
treatment  of modifiers 

Wrapping adjunction: TAG (Tree-adjoining grammar)
TAG is mildy context-sensitive 

48
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A small TAG lexicon

S

NP VP

VBZ NP

eats

   α1:

NP

John

α2:

VP

RB VP*

always

β1:

NP

tapas

α3:

49
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A TAG derivation
S

NP VP

VBZ NP

eats

NP

John

NP

tapas

VP

RB VP*

always

NP

NP

NP

NP

α2:

α1:

β1:
α3:

α1

α3α2

50
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A TAG derivation
S

NP VP

VBZ NP

eats tapas

VP
RB VP*

always

John

VP

VP

α1

α3α2 β1

β1

51
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A TAG derivation
S

NP

VBZ
VP

NP

eats tapas

VP
RB VP*

always
John

52
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anbn: Cross-serial dependencies

Elementary trees:

Deriving aabb

S

a

b

S

S*

S

a
b

S

S

a
b

S
S

a

b

S

S*

S

a

b
S

S

S

a

b
SS
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CCG: the machinery
Categories: 

specify subcat lists of words/constituents. 

Combinatory rules: 
specify how constituents can combine. 

The lexicon: 
specifies which categories a word can have. 

Derivations: 
spell out process of combining constituents.

55
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CCG categories
Simple (atomic) categories: NP, S, PP 

Complex categories (functions):
Return a result when combined with an argument 
 
  VP, intransitive verb S\NP

Transitive verb (S\NP)/NP

Adverb (S\NP)\(S\NP)

Prepositions ((S\NP)\(S\NP))/NP  
(NP\NP)/NP
PP/NP

56
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CCG categories are functions
CCG has a few atomic categories, e.g

S, NP, PP
All other CCG categories are functions:

57

S

Result

NP

Argument

/

Dir.
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Rules: Function application

S/NP

Function

NP

Argument

58

Result  
S

x
y

· y = x
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Rules: Function application

S\NP

Function

NP

Argument

59

Result  
S

y · x
y

= x
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Rules: Function application

(S\NP)/NP

Function

NP

Argument

60

Result 
S\NP

x
y

· y = x
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Forward application (>):

(S\NP)/NP NP ⇒> S\NP
eats tapas eats tapas
Backward application (<):

NP S\NP ⇒< S
John eats tapas John eats tapas

Function application

Combines function X/Y or X\Y with argument Y to yield result X 
Used in all variants of categorial grammar

61
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A (C)CG derivation

62
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Rules: Function Composition

S/S

1st Function

S\NP

2nd Function

63

 
S\NP

x
y

· y
z

=
x
z



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Rules: Type-Raising

NP

64

 
S/(S\NP)

y =
x
x

· y =
x�
x
y

�
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Type-raising and composition
Type-raising:  X → T/(T\X) 

Turns an argument into a function.  
NP     →  S/(S\NP)         (subject) 
NP     →  (S\NP)\((S\NP)/NP)   (object)

Harmonic composition:  X/Y   Y/Z → X/Z
Composes two functions (complex categories),  
same slashes 
(S\NP)/PP  PP/NP     → (S\NP)/NP 
S/(S\NP) (S\NP)/NP    →     S/NP

Crossing composition: X/Y Y\Z → X\Z
Composes two functions (complex categories),  
different slashes 
(S\NP)/S  S\NP     → (S\NP)\NP 
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Type-raising and composition
Wh-movement (relative clause): 
 
 
 
 

Right-node raising:

66


