CS447: Natural Language Processing

Lecture 17: CFG Parsing

Julia Hockenmaier

juliahmr@illinois.edu
3324 Siebel Center

Introduction to syntax

Previous key concepts

NLP tasks dealing with words...

- POS-tagging, morphological analysis
... requiring finite-state representations,
- Finite-State Automata and Finite-State Transducers
... the corresponding probabilistic models,
- Probabilistic FSAs and Hidden Markov Models
- Estimation: relative frequency estimation, EM algorithm
... and appropriate search algorithms
- Dynamic programming: Viterbi

The next key concepts

NLP tasks dealing with sentences...

- Syntactic parsing and semantic analysis
... require (at least) context-free representations,
- Context-free grammars, dependency grammars, unification grammars, categorial grammars
... the corresponding probabilistic models,
- Probabilistic Context-Free Grammars
... and appropriate search algorithms
- Dynamic programming: CKY parsing

Dealing with ambiguity

Structural

 Representation (e.g FSA)
Scoring

 Function(Probability model, e.g HMM)

Today's lecture

Introduction to natural language syntax ('grammar'):

Part 1: Introduction to Syntax (constituency, dependencies,...)
Part 2: Context-free Grammars for natural language
Part 3: A simple CFG for English
Part 4: The CKY parsing algorithm
Reading: Chapter 12 of Jurafsky \& Martin

What is grammar?

Grammar formalisms:

A precise way to define and describe the structure of sentences.
There are many different formalisms out there.

What is grammar?

Grammar formalisms
(= syntacticians' programming languages)
A precise way to define and describe the structure of sentences.
(N.B.: There are many different formalisms out there, which each define their own data structures and operations)

Specific grammars

(= syntacticians' programs)
Implementations (in a particular formalism) for a particular language (English, Chinese,....)

Can we define a program that generates all English sentences?

Undergeneration
 Overgeneration

John saw Mary.
I ate sushi with tuna.

Did you go there?

English

Did you went there?

Can we define a program that generates all English sentences?

Challenge 1: Don't undergenerate!
(Your program needs to cover a lot different constructions)
Challenge 2: Don't overgenerate!
(Your program should not generate word salad)
Challenge 3: Use a finite program!
Recursion creates an infinite number of sentences
(even with a finite vocabulary),
but we need our program to be of finite size

Basic sentence structure

A finite-state-automaton (FSA)

A Hidden Markov Model (HMM)

Words take arguments I eat sushi.
 I eat sushi you. ???
 I sleep sushi ??? Subcategoriation Vobions I give sushi ???
 I drink sushi ? Selectional Preferenene

Subcategorization

(purely syntactic: what set of arguments do words take?) Intransitive verbs (sleep) take only a subject.
Transitive verbs (eat) take a subject and one (direct) object.
Ditransitive verbs (give) take a subject, direct object and indirect object.

Selectional preferences

(semantic: what types of arguments do words tend to take)
The object of eat should be edible.

A better FSA

Language is recursive

the ball
the big ball
the big, red ball the big, red, heavy ball

Adjectives can modify nouns.
The number of modifiers (aka adjuncts) a word can have is (in theory) unlimited.

Another FSA

Recursion can be more complex

the ball
the ball in the garden the ball in the garden behind the house the ball in the garden behind the house next to the school

Yet another FSA

So, why do we need anything beyond regular (finite-state) grammars?

What does this sentence mean?

There is an attachment ambiguity:
 Does "in my pajamas" go with "shot" or with "an elephant" ?

I shot an elephant in my pajamas

省

FSAs do not generate hierarchical structure

What is the structure of a sentence?

Sentence structure is hierarchical:

A sentence consists of words (I, eat, sushi, with, tuna)
...which form phrases or constituents: "sushi with tuna"
Sentence structure defines dependencies between words or phrases:

[I[eat[sushi [with tuna]]]]

Formal definitions

Context-free grammars

A CFG is a 4-tuple $\langle\mathbf{N}, \mathbf{\Sigma}, \mathbf{R}, S\rangle$ consisting of:
A finite set of nonterminals \mathbf{N}
(e.g. $\mathbf{N}=\{S, N P, V P, P P$, Noun, Verb, $\}$)

A finite set of terminals $\boldsymbol{\Sigma}$
(e.g. $\boldsymbol{\Sigma}=\{1$, you, he, eat, drink, sushi, ball, $\}$)

A finite set of rules \mathbf{R}
$\mathbf{R} \subseteq\{A \rightarrow \beta$ with left-hand-side (LHS) $A \in \mathbf{N}$ and right-hand-side (RHS) $\left.\beta \in(\mathbf{N} \cup \mathbf{\Sigma})^{*}\right\}$

A unique start symbol $S \in \mathbf{N}$

Context-free grammars (CFGs) define phrase structure trees

Leaf nodes (I, eat, ...) correspond to the words in the sentence

Intermediate nodes (NP, VP, PP) span substrings (= the yield of the node), and correspond to nonterminal constituents

The root spans the entire sentence and is labeled with the start symbol of the grammar (here, S)

CFGs capture recursion

Language has simple and complex constituents
(simple: "the garden", complex: "the garden behind the house")
Complex constituents behave just like simple ones.
("behind the house" can always be omitted)

CFGs define nonterminal categories (e.g. NP) to capture equivalence classes of constituents.

Recursive rules (where the same nonterminal appears on both sides) generate recursive structures

$$
\begin{array}{llll}
N P & \rightarrow D T & \text { N } & \text { (Simple, i.e. non-recursive NP) } \\
N P \rightarrow N P & P P & \text { (Complex, i.e. recursive, NP) }
\end{array}
$$

CFGs are equivalent to Pushdown Automata (PDAs)

PDAs are FSAs with an additional stack:
Emit a symbol and push/pop a symbol from the stack

This is equivalent to the following CFG:

$$
\begin{aligned}
& S \rightarrow a S b b \\
& S \rightarrow a b b
\end{aligned}
$$

Generating $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{n}$

Action

1. Push x on stack. Emit a.
2. Push x on stack. Emit a.
3. Push x on stack. Emit a.
4. Push x on stack. Emit a.
5. Pop x off stack. Emit b.
6. Pop x off stack. Emit b.
7. Pop x off stack. Emit b.
8. Pop x off stack. Emit b

Stack String

x a
xx aa
xxx aaa
xxxx aaaa
xxx aaaab
xx aaaabb
x aaaabbb
aaaabbbb

Encoding linguistic principles in a CFG

Is string α a constituent?

[Should my grammar/parse tree have a nonterminal for α ?]

He talks [in class].

Substitution test:
Can α be replaced by a single word?
He talks [there].

Movement test:

Can α be moved around in the sentence?
[In class], he talks.
Answer test:
Can α be the answer to a question?
Where does he talk? - [In class].

Constituents:

Heads and dependents

There are different kinds of constituents:
Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly

Every phrase has one head:

Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly The other parts are its dependents.

```
NB: this is an
oversimplification.
Some phrases (John,
Kim and Mary) have multiple heads, others (I like coffee and [you tea]) perhaps don't
even have a head
```

NB: some linguists think the argument-adjunct distinction isn't always clear-cut, and there are some cases that could be treated as either, or something in-between

Dependents are either arguments or adjuncts

Arguments are obligatory

Words subcategorize for specific sets of arguments:
Transitive verbs (sbj + obj): [John] likes [Mary]
The set/list of arguments is called a subcat frame
All arguments have to be present:
*[John] likes. *likes [Mary].
No argument slot can be occupied multiple times: *[John] [Peter] likes [Ann] [Mary].

Words can have multiple subcat frames:
Transitive eat (sbj + obj): [John] eats [sushi].
Intransitive eat (sbj): [John] eats

Adjuncts (modifiers) are optional

Adverbs, PPs and adjectives can be adjuncts
Adverbs: John runs [fast]. a [very] heavy book.
PPs: John runs [in the gym].
the book [on the table]
Adjectives: a [heavy] book
There can be an arbitrary number of adjuncts:
John saw Mary.
John saw Mary [yesterday].
John saw Mary [yesterday] [in town]
John saw Mary [yesterday] [in town] [during lunch]
[Perhaps] John saw Mary [yesterday] [in town] [during lunch]

Heads, Arguments and Adjuncts in CFGs

How do we define CFGs that...
... identify heads and
... distinguish between arguments and adjuncts?

We have to make additional assumptions about the rules that we allow.

Important: these are not formal/mathematical constraints, but aim to capture linguistic principles
A more fleshed out version of what we will describe here is known as
"X-bar Theory" (Chomsky, 1970)
Phrase structure trees that conform to these assumptions can easily be translated to dependency trees

Heads, Arguments and Adjuncts in CFGs

To identify heads:

We assume that each RHS has one head child, e.g.
VP \rightarrow Verb NP (Verbs are heads of VPs)
NP \rightarrow Det Noun (Nouns are heads of NPs)
$S \rightarrow N P$ VP (VPs are heads of sentences)

Exception: This does not work well for coordination:
VP \rightarrow VP conj VP
We need to define for each nonterminal in our grammar (S, NP, VP, ...) which nonterminals (or terminals) can be used as its head children.

Heads, Arguments and Adjuncts in CFGs

To distinguish between arguments and adjuncts, assume that each is introduced by different rules.

Argument rules:

The head has a different category from the parent:
$\mathrm{S} \rightarrow$ NP VP (the NP is an argument of the VP [verb])
$\mathrm{VP} \rightarrow$ Verb NP (the NP is an argument of the verb)
This captures that arguments are obligatory.

Adjunct rules ("Chomsky adjunction"):

The head has the same category as the parent:
VP \rightarrow VP PP (the PP is an adjunct of the VP)
This captures that adjuncts are optional and that their number is unrestricted.

CFGs and unbounded recursion

Unbounded recursion: CFGs and center embedding

The mouse ate the corn.
The mouse that the snake ate ate the corn.

S	\rightarrow	NP	VP
VP	\rightarrow	V	NP
NP	\rightarrow	Det	N
NP	\rightarrow		RC
RC	\rightarrow	tha	N
Det	\rightarrow	the	
N		mou	\|
V		ate	

Unbounded recursion: CFGs and center embedding

The mouse ate the corn.
The mouse that the snake ate ate the corn.
The mouse that the snake that the hawk ate ate ate the corn.

S	$\rightarrow \mathrm{NP}$	VP
VP	$\rightarrow \mathrm{V} \quad \mathrm{NP}$	
NP	\rightarrow	Det N
NP	$\rightarrow \mathrm{NP} \mathrm{RC}$	
RC	\rightarrow that NP V	
Det	\rightarrow the	
N	\rightarrow mouse	corn \mid snake
V	\longrightarrow ate	

Unbounded recursion: CFGs and center embedding

These sentences are unacceptable, but formally, they are all grammatical, because they are generated by the recursive rules required for even just one relative clause:

```
NP }->\mathrm{ NP RC
    RC }->\mathrm{ that NP V
```

Problem: CFGs are not able to capture bounded recursion. (bounded = "only embed one or two relative clauses").

To deal with this discrepancy between what the grammar predicts to be grammatical, and what humans consider grammatical, linguists distinguish between a speaker's competence (grammatical knowledge) and performance (processing and memory limitations)

The cot parsing algorithm

CKY chart parsing algorithm
CKY= Cocke-Kasami-Younger (aka "CYK" algorithm)
Bottom-up parsing:
start with the words
Dynamic programming:
save the results in a table/chart
re-use these results in finding larger constituents
Complexity: $O\left(n^{3}|G|\right)$
n : length of string, $|G|$: size of grammar)

Presumes a CFG in Chomsky Normal Form:

Rules are all either $\mathrm{X} \rightarrow \mathrm{Y} \mathbf{Z}$ (the RHS has two nonterminals) or $X \rightarrow \mathbf{w} \quad$ (the RHS is a single terminal)
(with $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ nonterminals and \mathbf{w} a terminal)

Chomsky Normal Form

The right-hand side of a standard CFG rules can have an arbitrary number of symbols (terminals and nonterminals):

$$
\mathrm{VP} \rightarrow \mathrm{ADV} \text { eat NP }
$$

A CFG in Chomsky Normal Form (CNF) allows only two kinds of right-hand sides:

- Two nonterminals: VP \rightarrow ADV VP
- One terminal: VP \rightarrow eat

Any CFG can be transformed into an equivalent CFG in CNF by introducing new, rule-specific dummy non-terminals ($\mathrm{VP}_{1}, \mathrm{VP}_{2}, \ldots$)
VP \rightarrow ADVP VP \mathbf{V}_{1}
$\mathrm{VP}_{1} \rightarrow \mathrm{VP}_{2} \mathrm{NP}$
$V^{\prime} \mathbf{P}_{\mathbf{2}} \rightarrow$ eat

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A note about ε-productions

Formally, context-free grammars are allowed to have empty productions ($\varepsilon=$ the empty string): $\mathrm{VP} \rightarrow \mathrm{V}$ NP $\quad \mathrm{NP} \rightarrow$ DT Noun $\quad \mathrm{NP} \rightarrow \varepsilon$

These can always be eliminated without changing the language generated by the grammar:
$\mathrm{VP} \rightarrow \mathrm{V}$ NP $\quad \mathrm{NP} \rightarrow$ DT Noun \quad NP $\rightarrow \varepsilon$
becomes
$\mathrm{VP} \rightarrow \mathrm{V}$ NP $\quad \mathrm{VP} \rightarrow \mathrm{V} \varepsilon \quad \mathrm{NP} \rightarrow \mathrm{DT}$ Noun
which in turn becomes
$\mathrm{VP} \rightarrow \mathrm{V}$ NP $\quad \mathrm{VP} \rightarrow \mathrm{V} \quad \mathrm{NP} \rightarrow \mathrm{DT}$ Noun

We will assume that our grammars don't have ε-productions

The CKY parsing algorithm

The CKY parsing algorithm

To recover the parse tree, each entry needs pairs of backpointers.

$S \rightarrow N P V P$

VP \rightarrow V NP
$V \rightarrow$ eat
NP \rightarrow we
NP \rightarrow sushi

We eat sushi

CKY algorithm

1. Create the chart

(an $n \times n$ upper triangular matrix for an sentence with n words)

- Each cell chart[i][j] corresponds to the substring $w^{(i)} . . . w^{(j)}$

2. Initialize the chart (fill the diagonal cells chart[i][i]):

For all rules $\mathrm{X} \rightarrow \mathrm{w}^{(\mathrm{i})}$, add an entry X to chart[i][i]

3. Fill in the chart:

Fill in all cells chart[i][i+1], then chart[i][i+2], ..., until you reach chart[1][n] (the top right corner of the chart)

- To fill chart[i][j], consider all binary splits $w^{(i)} \ldots w^{(k)} \mid w^{(k+1)} \ldots w^{(j)}$
- If the grammar has a rule $X \rightarrow Y Z$, chart[i][k] contains a Y and chart[k+1][j] contains a Z, add an X to chart[i][j] with two backpointers to the Y in chart[i][k] and the Z in chart[$\mathrm{k}+1][\mathrm{j}]$

4. Extract the parse trees from the S in chart[1][n].

CKY: filling the chart

CKY: filling one cell

chart[2][6]:
$\mathrm{w}_{1} \mathrm{~W}_{2} \mathrm{~W}_{3} \mathrm{~W}_{4} \mathrm{~W}_{5} \mathrm{~W}_{6} \mathrm{w}_{7}$

chart[2][6]:

chart[2][6]:
$\mathrm{w}_{1} \mathrm{~W}_{2} \mathrm{~W}_{3} \mathrm{~W}_{4} \mathrm{~W}_{5} \mathrm{WW}_{6} \mathrm{w}_{7}$

The CKY parsing algorithm

$\mathrm{P} \rightarrow$ with
[CS447 Natural Language Processing (J. Hockenmaier) https://co54ses.grainger.illinois.edu/cs447/

The CKY parsing algorithm

we	we eat	we eat sushi	we eat sushi with	we eat sushi with tuna
$\mathrm{S} \rightarrow \mathrm{NP}$ VP	$\underset{\text { eat }}{\mathrm{V}, \mathrm{VP}}$	VP eat sushi	eat sushi with	VP eat sushi with tuna
$\mathrm{VP} \rightarrow \mathrm{V}$ NP				
$\mathrm{VP} \rightarrow$ VP PP				
$\overline{\mathrm{V}} \rightarrow \mathrm{eat}$	Each cell contains only a single entry for each nonterminal. Each entry may have a list of pairs of backpointers.			sushi with tuna
$\mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP}$				PP with tuna
$\mathrm{NP} \rightarrow$ we $\mathrm{NP} \rightarrow$ sushi $\mathrm{NP} \rightarrow$ tuna				tuna
$\mathrm{P} \rightarrow \mathrm{P} \mathrm{NP}$	We eat sushi with tuna			

Cocke Kasami Younger

ckyParse(n): initChart(n) fillChart(n)

initChart(n):

for $i=1$...n: initCell(i,i)

initCell(i,i):

for c in lex(word[i]): addToCell(cell[i][i], c)

fillChart(n):

for span $=1 . . . n-1$:
for $i=1$...n-span:
fillCell(i,i+span)

fillCell(i,j):

for $k=i . . j-1$:
combineCells(i, $k, j)$
combineCells(i,k,j):
for Y in cell $[i][k]$: for Z in cell[k +1][j]: for X in Nonterminals: if $X \rightarrow Y Z$ in Rules: addToCell(cell[i][j], X, Y, Z) for X in Nonterminals: if $X \rightarrow Y$ in Rules: addToCell(cell[i][j], X, Y)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Cocke Kasami Younger

```
addToCell(Terminal,cell) // Adding terminal nodes to the chart
    cell.addEntry(Terminal) // add entry with no backpointers
addToCell(Parent,cell,Left, Right) // For binary rules
        if (cell.hasEntry(Parent)):
            P = cell.getEntry(Parent)
        P.addBackpointers(Left, Right) // add two backpointers to existing entry
    else cell.addEntry(Parent, Left, Right) // add entry with a pair of backpointers
    addToCell(Parent,cell,Child) // For unary rules
        if (cell.hasEntry(Parent)):
            P = cell.getEntry(Parent)
        P.addBackpointer(Child) // add one backpointer to existing entry
    else cell.addEntry(Parent, Child) // add entry with one backpointer
```

probabiliskic context-Free

Grammars are ambiguous

A grammar might generate multiple trees for a sentence:

What's the most likely parse τ for sentence S ?

We need a model of $\mathrm{P}(\tau \mid \mathrm{S})$

Computing $\mathrm{P}(\tau \mid \mathrm{S})$

Using Bayes' Rule:

$$
\begin{aligned}
\arg \max _{\tau} P(\tau \mid S) & =\arg \max _{\tau} \frac{P(\tau, S)}{P(S)} \\
& =\arg \max _{\tau} P(\tau, S) \\
& =\arg \max _{\tau} P(\tau) \text { if } \mathrm{S}=\operatorname{yield}(\tau)
\end{aligned}
$$

The yield of a tree is the string of terminal symbols that can be read off the leaf nodes

Computing $\mathrm{P}(\tau)$

T is the (infinite) set of all trees in the language:

$$
L=\left\{s \in \Sigma^{*} \mid \exists \tau \in T: \operatorname{yield}(\tau)=s\right\}
$$

We need to define $\mathrm{P}(\tau)$ such that:

$$
\begin{array}{lc}
\forall \tau \in T: & 0 \leq P(\tau) \leq 1 \\
& \sum_{\tau \in T} P(\tau)=1
\end{array}
$$

The set T is generated by a context-free grammar

Probabilistic Context-Free Grammars

For every nonterminal X , define a probability distribution $\mathrm{P}(\mathrm{X} \rightarrow \alpha \mid \mathrm{X})$ over all rules with the same LHS symbol X :

S	\rightarrow NP VP	0.8
S	\rightarrow S conj S	0.2
NP	\rightarrow Noun	0.2
NP \rightarrow Det Noun	0.4	
NP \rightarrow NP PP	0.2	
NP \rightarrow NP conj NP	0.2	
VP \rightarrow Verb	0.4	
VP \rightarrow Verb NP	0.3	
VP \rightarrow Verb NP NP	0.1	
VP \rightarrow VP PP	0.2	
PP \rightarrow P NP	1.0	

Computing $\mathrm{P}(\tau)$ with a PCFG

The probability of a tree τ is the product of the probabilities of all its rules:

Learning the parameters of a PCFG

If we have a treebank (a corpus in which each sentence is associated with a parse tree), we can just count the number of times each rule appears, e.g.:

$$
\begin{array}{ll}
S \rightarrow N P V P . & (\text { count }=1000) \\
S \rightarrow S \text { conj } S . & (\text { count }=220) \\
P P \rightarrow \text { IN NP } & (\text { count }=700)
\end{array}
$$

and then we divide the count (observed frequency) of each rule $X \rightarrow Y Z$ by the sum of the frequencies of all rules with the same LHS X to turn these counts into probabilities:
$S \rightarrow$ NP VP • $\quad(p=1000 / 1220)$
$S \rightarrow S$ conj S $\quad(p=220 / 1220)$
$P P \rightarrow I N N P$
pcFo Decoding CKH with viterbi

How do we handle flat rules?

S		NP VP	0.8
S	\rightarrow	S conj S	0.2
NP	\rightarrow	Noun	0.2
NP	\rightarrow	Det Noun	0.4
NP	\rightarrow	NP PP	0.2
NP		NP conj NP	0.2
VP	\rightarrow	Verb	0.3
VP	\rightarrow	Verb NP	0.3
VP	\rightarrow	Verb NP NP	0.1
VP	\rightarrow	VP PP	0.3
PP		PP NP	1.0
Prep	\rightarrow	P	1.0
Noun	\rightarrow	N	1.0
Verb	\rightarrow	V	1.0

Binarize each flat rule by adding a unique dummy nonterminal (ConjS), and setting the probability of the new rule with the dummy nonterminal on the LHS to 1

How do we handle flat rules?

S		NP VP	0.8	S	NP VP	0.8
S		\mathbf{S} conj S	0.2	S	S ConjS	0.2
NP	\rightarrow	Noun	0.2	NP	Noun	0.2
NP	\rightarrow	Det Noun	0.4	NP $\quad \rightarrow$	Det Noun	0.4
NP	\rightarrow	NP PP	0.2	NP	NP PP	0.2
NP		NP conj NP	0.2	NP	NP ConjNP	0.2
VP	\rightarrow	Verb	0.3	VP	Verb	0.3
VP	\rightarrow	Verb NP	0.3	VP	Verb NP	0.3
VP	\rightarrow	Verb NP NP	0.1	VP	Verb NPNP	0.1
VP	\rightarrow	VP PP	0.3	VP	VP PP	0.3
PP	\rightarrow	PP NP	1.0	PP	PP NP	1.0
Prep	\rightarrow	P	1.0	Prep \rightarrow	P	1.0
Noun	\rightarrow	N	1.0	Noun \rightarrow	N	1.0
Verb	\rightarrow	V	1.0	Verb \rightarrow	V	1.0
				Conjs	\rightarrow conj S	1.0
				ConjNP	\rightarrow conj NP	1.0
				NPNP	\rightarrow NP NP	1.0

Probabilistic CKY: Viterbi

Like standard CKY, but with probabilities.
Finding the most likely tree is similar to Viterbi for HMMs: Initialization:

- [optional] Every chart entry that corresponds to a terminal
(entry w in cell [i][i]) has a Viterbi probability $P_{\operatorname{VIT}}\left(\mathrm{w}_{[i][i]}\right)=1\left({ }^{*}\right)$
- Every entry for a non-terminal x in cell [i][i] has Viterbi probability $P_{\mathrm{VIT}}\left(\mathrm{X}_{[\mathrm{i}][\mathrm{i}]}\right)=\mathrm{P}(\mathrm{X} \rightarrow \mathrm{w} \mid \mathrm{X})$ [and a single backpointer to $\mathrm{w}_{[i][i]}(*)$]

Recurrence: For every entry that corresponds to a non-terminal x in cell[i][j], keep only the highest-scoring pair of backpointers to any pair of children (Y in cell[i][k] and z in cell[k+1][j]): $P_{\mathrm{VIT}}\left(\mathrm{X}_{[i][j]}\right)=\operatorname{argmax}_{\mathrm{Y}, \mathrm{Z}, \mathrm{k}} P_{\mathrm{VIT}}\left(\mathrm{Y}_{[\mathrm{i}] \mathrm{k}]}\right) \times P_{\mathrm{VIT}}\left(\mathrm{Z}_{[\mathrm{k}+1][j]}\right) \times P(\mathrm{X} \rightarrow \mathrm{Y} \mathrm{Z} \mid \mathrm{X})$

Final step: Return the Viterbi parse for the start symbol S in the top cell[1][n].
*this is unnecessary for simple PCFGs, but can be helpful for more complex probability models

Probabilistic CKY

Probabilistic CKY

Input: POS-tagged sentence
John_N eats_V pie_N with_P cream_N

John	eats	pie	with	cream	
Noun NP 1.0 0.2					John
					eats
				pie	
				with	
				cream	

S	\longrightarrow NP VP	0.8
S	$\longrightarrow \mathrm{~S}$ ConjS	0.2
NP	\longrightarrow Noun	0.2

$$
\text { NP } \quad \rightarrow \text { Det Noun } 0.4
$$

$$
N P \quad \rightarrow \text { NP PP } \quad 0.2
$$

$$
N P \quad \rightarrow \text { NP ConjNP } 0.2
$$

$$
\text { VP } \quad \rightarrow \text { Verb } \quad 0.3
$$

$$
\text { VP } \quad \rightarrow \text { Verb NP } 0.3
$$

$$
\text { VP } \quad \rightarrow \text { Verb NPNP } 0.1
$$

$$
\mathrm{VP} \quad \rightarrow \mathrm{VP} \mathrm{PP} \quad 0.3
$$

$$
P P \quad \rightarrow P P \text { NP } \quad 1.0
$$

$$
\text { Prep } \rightarrow P \quad 1.0
$$

Noun $\rightarrow \mathrm{N} \quad 1.0$
Verb \rightarrow V 1.0

$$
\text { Conjs } \rightarrow \text { conj } s \quad 1.0
$$

$$
\text { ConjNP } \rightarrow \text { conj NP } 1.0
$$

$$
\text { NPNP } \quad \rightarrow \text { NP NP } \quad 1.0
$$

Probabilistic CKY

Probabilistic CKY

Input: POS-tagged sentence

John_N eats_V pie_N with_P cream_N

John	eats	pie	with	cream	
$\begin{array}{\|l\|l} \hline & \\ \hline & \text { Noun } \\ 1.0 & 0.2 \end{array}$					John
	$\begin{array}{ll}\text { Verb VP } \\ 1.0 & 0.3\end{array}$				eats
		$\begin{array}{ll} \text { Noun NP } \\ 1.0 & 0.2 \end{array}$			pie
					with
					cream

S	\rightarrow NP VP	0.8
S	\rightarrow S ConjS	0.2
NP \rightarrow Noun	0.2	
NP \rightarrow Det Noun	0.4	
NP \rightarrow NP PP	0.2	
NP \rightarrow NP ConjNP	0.2	
VP \rightarrow Verb	0.3	
VP \rightarrow Verb NP	0.3	
VP \rightarrow Verb NPNP	0.1	
VP \rightarrow VP PP	0.3	
PP \rightarrow PP NP	1.0	
Prep \rightarrow P	1.0	
Noun \rightarrow N	1.0	
Verb \rightarrow V	1.0	
ConjS \rightarrow conj S	1.0	
ConjNP \rightarrow conj NP	1.0	
NPNP \rightarrow NP NP	1.0	

Probabilistic CKY

Probabilistic CKY

Input: POS-tagged sentence

John_N eats_V pie_N with_P cream_N

John	eats	pie	with	cream	
$\begin{array}{ll} & \\ \hline & \text { Noun } \\ 1.0 & 0.2 \end{array}$					John
	$\begin{array}{ll}\text { Verb VP } \\ 1.0 & 0.3\end{array}$				eats
		$\begin{array}{ll} & \\ \text { Noun } & \text { NP } \\ 1.0 & 0.2 \end{array}$			pie
			$\begin{aligned} & \text { Prep } \\ & 1.0 \end{aligned}$		with
				$\begin{aligned} & \text { Noun NP } \\ & 1.0 \quad 0.2 \end{aligned}$	cream

S	\rightarrow NP VP	0.8
S	\rightarrow S ConjS	0.2
NP \rightarrow Noun	0.2	
NP \rightarrow Det Noun	0.4	
NP \rightarrow NP PP	0.2	
NP \rightarrow NP ConjNP	0.2	
VP \rightarrow Verb	0.3	
VP \rightarrow Verb NP	0.3	
VP \rightarrow Verb NPNP	0.1	
VP \rightarrow VP PP	0.3	
PP \rightarrow PP NP	1.0	
Prep \rightarrow P	1.0	
Noun \rightarrow N	1.0	
Verb \rightarrow V	1.0	
ConjS \rightarrow conj S	1.0	
ConjNP \rightarrow conj NP	1.0	
NPNP \rightarrow NP NP	1.0	

Probabilistic CKY

Input: POS-tagged sentence

John_N eats_V pie_N with_P cream_N

John	eats	pie	with	cream	
$\begin{array}{ll} & \\ \hline & \text { Noun } \\ 1.0 & \mathbf{0 . 2} \end{array}$	$\underset{0.8 \cdot 0.2 \cdot 0.3}{\mathrm{~S}}$				John
$\begin{array}{\|ll} \hline \text { Verb VP } \\ 1.0 & \mathbf{0 . 3} \end{array}$					eats
		$\begin{array}{ll} \text { Noun NP } \\ 10 & 0 \end{array}$			pie
			$\begin{aligned} & \text { Prep } \\ & 1.0 \end{aligned}$		with
				$\begin{array}{ll} & \begin{array}{l} \text { Noun NP } \\ 1.0 \end{array} \\ \hline \end{array}$	cream

S	\rightarrow NP VP	0.8
S	\rightarrow S ConjS	0.2
NP \rightarrow Noun	0.2	
NP \rightarrow Det Noun	0.4	
NP \rightarrow NP PP	0.2	
NP \rightarrow NP ConjNP	0.2	
VP \rightarrow Verb	0.3	
VP \rightarrow Verb NP	0.3	
VP \rightarrow Verb NPNP	0.1	
VP \rightarrow VP PP	0.3	
PP \rightarrow PP NP	1.0	
Prep \rightarrow P	1.0	
Noun \rightarrow N	1.0	
Verb \rightarrow V	1.0	
ConjS \rightarrow conj S	1.0	
ConjNP \rightarrow Conj NP	1.0	
NPNP \rightarrow NP NP	1.0	

Probabilistic CKY

Probabilistic CKY

Probabilistic CKY

Probabilistic CKY

Input: POS-tagged sentence

John_N eats_V pie_N with_P cream_N

John	eats	pie	with	cream	
$\begin{array}{ll} & \\ \hline & \text { Noun } \\ 1.0 & \mathbf{0 . 2} \end{array}$	$\underset{0.8 \cdot 0.2 \cdot 0.3}{\mathrm{~S}}$	$\underset{0.8 \cdot 0.2 \cdot 0.06}{S}$			John
	$\begin{array}{\|ll} \hline \text { Verb } & \text { VP } \\ 1.0 & 0.3 \end{array}$	$\begin{gathered} \text { VP } \\ \substack{1 \cdot 0.3 \cdot 0.02 \\ =0.06} \end{gathered}$			eats
		$\begin{array}{\|ll} \text { Noun NP } \\ 1.0 & 0.2 \end{array}$			pie
			$\begin{aligned} & \text { Prep } \\ & 1.0 \end{aligned}$	$\underset{1 \cdot 1 \cdot 0.2}{P P}$	with
				$\begin{array}{ll} & \begin{array}{l} \text { Noun NP } \\ 1.0 \end{array} \\ \hline \end{array}$	cream

S	\rightarrow NP VP	0.8
S	\rightarrow S ConjS	0.2
NP	\rightarrow Noun	0.2
NP	\rightarrow Det Noun	0.4
NP	\rightarrow NP PP	0.2
NP	\rightarrow NP ConjNP	0.2
VP	\rightarrow Verb	0.3
VP	\rightarrow Verb NP	0.3
VP	\rightarrow Verb NPNP	0.1
VP	\rightarrow VP PP	0.3
PP	\rightarrow PP NP	1.0
Prep \rightarrow P	1.0	
Noun \rightarrow N	1.0	
Verb \rightarrow V	1.0	
ConjS \rightarrow conj S	1.0	
ConjNP \rightarrow Conj NP	1.0	
NPNP	\rightarrow NP NP	1.0

Probabilistic CKY

Probabilistic CKY

Probabilistic CKY

Probabilistic CKY

Input: POS-tagged sentence
John_N eats_V pie_N with_P cream_N

John	eats	pie	with	cream	
$\begin{array}{ll} & \\ \hline & \text { Noun } \\ 1.0 & 0.2 \end{array}$	$\underset{0.8 \cdot 0.2 \cdot 0.3}{\mathrm{~S}}$	$\left\|\begin{array}{c} S \\ 0.8 \cdot 0.2 \cdot 0.06 \end{array}\right\|$			John
	$\begin{array}{ll}\text { Verb VP } \\ 1.0 & 0.3\end{array}$	$\begin{gathered} \text { VP } \\ \substack{1.3 \cdot 0.0 .2 \\ =0.06} \end{gathered}$			eats
		$\begin{array}{\|cc} \hline \text { Noun } & \text { NP } \\ 1.0 & \mathbf{0 . 2} \end{array}$		$\begin{gathered} \text { NP } \\ \begin{array}{c} 0.2 \cdot 0.2 \cdot 0.2 \\ =0.008 \end{array} \end{gathered}$	pie
			$\begin{aligned} & \text { Prep } \\ & 10 \end{aligned}$	$\underset{1 \cdot 1 \cdot 0.2}{\text { PP }}$	with
				$\begin{array}{ll} & \\ \text { Noun NP } \\ 1.0 & 0.2 \end{array}$	cream

S	\rightarrow NP VP	0.8
S	\rightarrow S ConjS	0.2
NP \rightarrow Noun	0.2	
NP \rightarrow Det Noun	0.4	
NP \rightarrow NP PP	0.2	
NP \rightarrow NP ConjNP	0.2	
VP \rightarrow Verb	0.3	
VP \rightarrow Verb NP	0.3	
VP \rightarrow Verb NPNP	0.1	
VP \rightarrow VP PP	0.3	
PP \rightarrow PP NP	1.0	
Prep \rightarrow P	1.0	
Noun \rightarrow N	1.0	
Verb \rightarrow V	1.0	
ConjS \rightarrow conj S	1.0	
ConjNP \rightarrow conj NP	1.0	
NPNP \rightarrow NP NP	1.0	

Probabilistic CKY

Probabilistic CKY

Input: POS-tagged sentence

John_N eats_V pie_N with_P cream_N

S	\rightarrow NP VP	0.8
S	\rightarrow S ConjS	0.2
NP	\rightarrow Noun	0.2
NP	\rightarrow Det Noun	0.4
NP	\rightarrow NP PP	0.2
NP	\rightarrow NP ConjNP	0.2
VP	\rightarrow Verb	0.3
VP	\rightarrow Verb NP	0.3
VP	\rightarrow Verb NPNP	0.1
VP	\rightarrow VP PP	0.3
PP \rightarrow PP NP	1.0	
Prep \rightarrow P	1.0	
Noun \rightarrow N	1.0	
Verb \rightarrow V	1.0	
ConjS	\rightarrow conj S	1.0
ConjNP \rightarrow conj NP	1.0	
NPNP	\rightarrow NP NP	1.0

Probabilistic CKY

Input: POS-tagged sentence John N eats V pie N with P cream N						$\begin{array}{ll} \mathrm{S} & \rightarrow \mathrm{NP} \text { VP } \\ \mathrm{S} & \rightarrow \mathrm{~S} \text { ConjS } \\ \mathrm{NP} & \rightarrow \text { Noun } \end{array}$	0.8 0.2 0.2
John	eats	pie	with	cream		NP $\quad \rightarrow$ NP PP	0.2
$\begin{array}{ll} & \\ \text { Noun } & \text { NP } \\ 1.0 & 0.2 \end{array}$	$\underset{0.8 \cdot 0.2 \cdot 0.3}{S}$	$\underset{0.8 \cdot 0.2 \cdot 0.06}{S}$		$\underset{0.20 \cdot 0.0036}{S}$	John	$\begin{array}{ll} \text { VP } & \rightarrow \text { Verb } \\ \text { VP } & \rightarrow \text { Verb NP } \end{array}$	0.3 0.3
	$\begin{array}{ll} \hline \text { Verb VP } \\ 1.0 & 0.3 \end{array}$	$\begin{gathered} \hline \text { VP } \\ \substack{1 \cdot 0.3 \cdot 0.2 \\ =0.06} \end{gathered}$		VP 0.0036	eats	$\begin{array}{ll} \mathrm{VP} & \rightarrow \text { Verb NPNP } \\ \mathrm{VP} & \rightarrow \mathrm{VP} \mathrm{PP} \\ \mathrm{PP} & \rightarrow \mathrm{PP} \mathrm{NP} \end{array}$	0.3 1.0
		$\begin{array}{ll} \hline \text { Noun NP } \\ 1.0 & 0.2 \end{array}$		$\begin{array}{\|c\|} \hline \text { NP } \\ 0.2 \cdot 0.2 \cdot 0.2 \\ =0.008 \\ \hline \end{array}$	pie	Prep \rightarrow P Noun $\rightarrow \mathrm{N}$	1.0 1.0 1.0
			$\begin{aligned} & \text { Prep } \\ & 1.0 \end{aligned}$	$\underset{1 \cdot 1 \cdot 0.2}{P P}$	with	$\begin{aligned} & \text { ConjS } \rightarrow \text { conj } S \\ & \text { ConjNP } \rightarrow \text { conj NP } \end{aligned}$	1.0 1.0
				$\begin{array}{\|cc} \hline \text { Noun NP } \\ 1.0 & 0.2 \end{array}$	cream	NPNP \rightarrow NP NP	1.0

Probabilistic CKY

Probabilistic CKY

Extracting the final tree

Input：POS－tagged sentence

 John＿N eats＿V pie＿N with＿P cream＿N| John | eats | pie | with | cream | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll} & \\ \text { Noun NP } \\ 1.0 & 0.2 \end{array}$ | $\underset{0.8 \cdot 0.2 \cdot 0.3}{S}$ | $\underset{0.8 \cdot 0.2 \cdot 0.06}{S}$ | | | John |
| | $\begin{array}{\|ll} \hline \text { Verb } & \text { VP } \\ 1.0 & 0.3 \end{array}$ | $\begin{gathered} \text { VP } \left.\begin{array}{c} 1 \cdot 0.3 \cdot 0.2 \\ =0.06 \\ =0.0 \end{array}\right) \end{gathered}$ | | VP 0.0036 | eats |
| | | $\begin{array}{\|ll} & \text { Noun NP } \\ 1.0 & 0.2 \end{array}$ | | $\begin{gathered} \text { NP } \\ \begin{array}{c} 0.2 \cdot 0.2 \cdot 0.0 .2 \\ =0.008 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ~ \\ \hline \end{gathered}$ | pie |
| | | | $\begin{aligned} & \text { Prep } \\ & 1.0 \end{aligned}$ | $\underset{1 \cdot 1 \cdot 0.2}{\text { PP }}$ | with |
| | | | | Noun NP
 $1.0 \quad 0.2$ | cream |

Extracting the final tree

Input: POS-tagged sentence

John_N eats_V pie_N with_P cream_N

John	eats	pie	with	cream	
$\begin{array}{\|c\|} \hline \text { Noun } \\ \hline 1.0 \\ \hline 1.0 \\ \hline \end{array}$	$\begin{gathered} \mathrm{S} \\ 0.8 \cdot 0.2 \cdot 0.3 \end{gathered}$	$\underset{0.8 \cdot 0.2 \cdot 0.06}{\mathrm{~S}^{2}}$		$=S$	John
	$\begin{array}{cc} \text { verb } & \text { vp } \\ 1.0 & 0.3 \end{array}$	$\begin{gathered} 1 \cdot 0.3 \mathrm{C} \\ =0.2 \\ =0 . d_{e}^{1} \end{gathered}$		$\frac{1}{-\sqrt{V P}}$	eats
		$\begin{array}{\|c\|c\|} \hline \text { Noun } & \text { NP } \\ \hline 1.0 & 0.2 \\ \hline \end{array}$		$\begin{gathered} \mathrm{N} \\ 0.2 \cdot 9.2 \cdot 0.2 \\ \text { on } \\ =0.008 \end{gathered}$	pie
			$\begin{aligned} & \text { Prep- }-1.0 \\ & 1.0 \end{aligned}$		with
				$\begin{array}{\|l\|} \hline \text { Noun (NP } \\ 1.0 \\ \hline 10.2 \end{array}$	cream

```
(S (NP (N John))
(VP (VP (Verb eats)
(NP (Noun pie)))
(PP (Prep with)
(NP (Noun cream)))))
```

shortcomings of PCFEs

How well can a PCFG model the distribution of trees?

PCFGs make independence assumptions:
Only the label of a node determines what children it has.
Factors that influence these assumptions: Shape of the trees:
A corpus with flat trees (i.e. few nodes/sentence) results in a model with few independence assumptions.

Labeling of the trees:
A corpus with many node labels (nonterminals) results in a model with few independence assumptions.

Example 1: flat trees

S -> Pierre Vinken

What sentences would a PCFG estimated from this corpus generate?

Example 2: deep trees, few labels

What sentences would a PCFG estimated from this corpus generate?

Example 3: deep trees, many labels

What sentences would a PCFG estimated from this corpus generate?

Two ways to improve performance

... change the (internal) grammar:

- Parent annotation/state splits:

Not all NPs/VPs/DTs/... are the same.
It matters where they are in the tree
... change the probability model:
-Lexicalization:
Words matter!
-Markovization:
Generalizing the rules

The parent transformation

PCFGs assume the expansion of any nonterminal is independent of its parent.

But this is not true: NP subjects more likely to be modified than objects.
We can change the grammar by adding the name of the parent node to each nonterminal

(b)

Lexicalization

PCFGs can't distinguish between
"eat sushi with chopsticks" and "eat sushi with tuna".

We need to take words into account!
$\mathrm{P}\left(\mathrm{VP}_{\text {eat }} \rightarrow \mathrm{VP} \mathrm{PP}_{\text {with chopsticks }} \mid \mathrm{VP}_{\text {eat }}\right)$
vs. $\mathrm{P}\left(\mathrm{VP}_{\text {eat }} \rightarrow \mathrm{VP}_{\mathrm{PP}}^{\text {with tuna }} \mid \mathrm{VP}_{\text {eat }}\right)$
Problem: sparse data ($\mathrm{PP}_{\text {with }}$ fatty'whitel... tuna....) Solution: only take head words into account!

Assumption: each constituent has one head word.

Lexicalized PCFGs

At the root (start symbol S), generate the head word of the sentence, w_{s}, with $\mathrm{P}\left(\mathrm{w}_{\mathrm{s}}\right)$

Lexicalized rule probabilities:
Every nonterminal is lexicalized: X_{wx}
Condition rules $\mathrm{X}_{\mathrm{wx}} \rightarrow \alpha \mathrm{Y} \beta$ on the lexicalized LHS $\mathrm{X}_{\mathrm{w} x}$
$\mathrm{P}\left(\mathrm{X}_{\mathrm{w} x} \rightarrow \alpha \mathrm{Y} \beta \mid \mathrm{X}_{\mathrm{wx}}\right)$

Word-word dependencies:
For each nonterminal Y in RHS of a rule $\mathrm{X}_{\mathrm{wx}} \rightarrow \alpha \mathrm{Y} \beta$, condition w_{Y} (the head word of Y) on X and w_{x} :
$\mathrm{P}\left(w_{\mathrm{Y}} \mid \mathrm{Y}, \mathrm{X}, w_{\mathrm{X}}\right)$

Dealing with unknown words

A lexicalized PCFG assigns zero probability to any word that does not appear in the training data.

Solution:

Training: Replace rare words in training data with a token 'UNKNOWN'.

Testing: Replace unseen words with 'UNKNOWN'

Markov PCFGs (Collins parser)

The RHS of each CFG rule consists of: one head $\mathrm{H}_{\mathrm{x}}, n$ left sisters L_{i} and m right sisters R_{i} :

$$
X \rightarrow \underbrace{L_{n} \ldots L_{1}}_{\text {left sisters }} H_{X} \underbrace{R_{1} \ldots R_{m}}_{\text {right sisters }}
$$

Replace rule probabilities with a generative process: For each nonterminal X

- generate its head H_{x} (nonterminal or terminal)
-then generate its left sisters $L_{1 . . n}$ and a STOP symbol conditioned on H_{x}
-then generate its right sisters $\mathrm{R}_{1 \ldots \mathrm{n}}$ and a STOP symbol conditioned on H_{x}
penn Treebanth parsing

The Penn Treebank

The first publicly available syntactically annotated corpus
Wall Street Journal (50,000 sentences, 1 million words) also Switchboard, Brown corpus, ATIS

The annotation:

- POS-tagged (Ratnaparkhi's MXPOST)
- Manually annotated with phrase-structure trees
- Richer than standard CFG: Traces and other null elements used to represent non-local dependencies (designed to allow extraction of predicate-argument structure), although these are typically removed when we do parsing [more on non-local dependencies and traces later in the semester]

The standard data set for English phrase-structure parsers

The Treebank label set

48 preterminals (tags):

- 36 POS tags, 12 other symbols (punctuation etc.)
- Simplified version of Brown tagset (87 tags) (cf. Lancaster-Oslo/Bergen (LOB) tag set: 126 tags)

14 nonterminals:

Standard inventory (S, NP, VP, PP, ADJP, ADVP, SBAR,...)
Many nonterminals have function tags indicating their syntactic roles (NP-SBJ: subject NP) or what role they play (e.g. PP-LOC: locative PP, i.e. indicating a location ["in NYC"] PP-DIR: directional PP, indicating a direction ["to NYC"], ADVP-MNR: manner adverb ["slowly"]).
For historical reasons, these function tags are typically removed before parsing.

A simple example

Relatively flat structures:

- There is no noun level
- VP arguments and adjuncts appear at the same level

Function tags, e.g. -SBJ (subject), -MNR (manner)

A more realistic (partial) example

Until Congress acts, the government hasn't any authority to issue new debt obligations of any kind, the Treasury said

The Penn Treebank CFG

The Penn Treebank uses very flat rules, e.g.:

```
NP }->\mathrm{ DT JJ NN
NP }->\mathrm{ DT JJ NNS
NP }->\mathrm{ DT JJ NN NN
NP }->\mathrm{ DT JJ JJ NN
NP }->\mathrm{ DT JJ CD NNS
NP }->\mathrm{ RB DT JJ NN NN
NP }->\mathrm{ RB DT JJ JJ NNS
NP }->\mathrm{ DT JJ JJ NNP NNS
NP }->\mathrm{ DT NNP NNP NNP NNP JJ NN
NP }->\mathrm{ DT JJ NNP CC JJ JJ NN NNS
NP }->\mathrm{ RB DT JJS NN NN SBAR
NP }->\mathrm{ DT VBG JJ NNP NNP CC NNP
NP }->\mathrm{ DT JJ NNS , NNS CC NN NNS NN
NP }->\mathrm{ DT JJ JJ VBG NN NNP NNP FW NNP
NP }->\mathrm{ NP JJ , JJ '` SBAR ', NNS
```

Basic PCFGs don't work well on the Penn Treebank

- Many of these rules appear only once.
- But many of these rules are very similar. Can we generalize by not treating each rule as atomic?

Summary

The Penn Treebank has a large number of very flat rules.
Accurate parsing requires modifications to basic PCFG models:

- Generalizing across similar rules ("Markov PCFGs")
- Modeling word-word dependencies
(although this does not help as much as people used to think)
- Refining the nonterminals to capture more context

How much of this transfers to other treebanks or languages?

$\sqrt[5]{5}$ CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Noun phrases (NPs)

Simple NPs:

[He] sleeps. (pronoun)
[John] sleeps. (proper name)
[A student] sleeps. (determiner + noun)
[A tall student] sleeps.
(det + adj + noun)
[Snow] falls. (noun)
Complex NPs:
[The student in the back] sleeps. (NP + PP)
[The student who likes MTV] sleeps. (NP + Relative Clause)

The NP fragment

```
NP -> Pronoun
NP -> ProperName
NP -> Det Noun
NP }->\mathrm{ Noun
NP -> NP PP
NP -> NP RelClause
Noun -> AdjP Noun
Noun -> N
N }->\mathrm{ {class,... student, snow, ...}
Det }->\mathrm{ {a, the, every,.. }
Pronoun }->\mathrm{ {he, she,...}
ProperName -> {John, Mary,...}
```


Adjective phrases (AdjP) and prepositional phrases (PP)

```
AdjP -> Adj
AdjP -> Adv AdjP
Adj }->\mathrm{ {big, small, red,...}
Adv }->\mathrm{ {very, really,...}
PP -> P NP
P }->\mathrm{ {with, in, above,...}
```


The verb phrase (VP)

He [eats].
He [eats sushi].
He [gives John sushi].
He [gives sushi to John].
He [eats sushi with chopsticks].
He [somtimes eats].
VP \rightarrow V
$\mathrm{VP} \rightarrow \mathrm{V}$ NP
$\mathrm{VP} \rightarrow \mathrm{V}$ NP NP
$\mathrm{VP} \rightarrow \mathrm{V}$ NP PP
$\mathrm{VP} \rightarrow \mathrm{VP}$ PP
VP \rightarrow AdvP VP
$\mathrm{V} \rightarrow$ \{eats, sleeps gives,...\}

Capturing subcategorization

He [eats].

He [eats sushi]. \downarrow
He [gives John sushi]. \downarrow
He [eats sushi with chopsticks]. $\sqrt{ }$
*He [eats John sushi]. ???

```
VP -> Vintrans
VP -> Vtrans NP
VP }->\mathrm{ V ditrans NP NP
VP -> VP PP
Vintrans }->\mathrm{ {eats, sleeps}
Vtrans }->\mathrm{ {eats}
Vditrans }->\mathrm{ {gives}
```


Sentences

[He eats sushi].
[Sometimes, he eats sushi].
[In Japan, he eats sushi].

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& S \rightarrow \text { AdvP } S \\
& S \rightarrow P P S
\end{aligned}
$$

Capturing agreement

[He eats sushi].
*[I eats sushi]. ???
*[They eats sushi]. ???
$\mathrm{S} \rightarrow \mathrm{NP}_{3 \mathrm{sg}} \mathrm{VP}_{3 \mathrm{sg}}$
$\mathrm{S} \rightarrow \mathrm{NP}_{1 \mathrm{sg}} \mathrm{VP}_{1 \mathrm{sg}}$
$S \rightarrow N P_{3 p l} V P_{3 p l}$

We would need features to capture agreement:
(number, person, case,...)

Complex VPs

In English, simple tenses have separate forms:
Present tense: the girl eats sushi
Simple past tense: the girl ate sushi
Complex tenses, progressive aspect and passive voice consist of auxiliaries and participles:

Past perfect tense: the girl has eaten sushi
Future perfect tense: the girl will have eaten sushi

Passive voice: the sushi is/was/will be/... eaten by the girl Progressive aspect: the girl is/was/will be eating sushi

VPs redefined

He [has [eaten sushi]].
The sushi [was [eaten by him]].

VP \rightarrow Vhave $V_{\text {pastPart }}$
VP \rightarrow Vbe VPpass
VPpastPart $\rightarrow V_{\text {pastPart }}$ NP
VPpass $\rightarrow V_{\text {pastPart }} P P$
$V_{\text {have }} \rightarrow$ \{has $\}$
$V_{\text {pastPart }} \rightarrow$ \{eaten, seen\}

We would need even more nonterminals (e.g. $\mathrm{VP}_{\text {pastpart) }}$! N.B.: We call $\mathrm{VP}_{\text {pastPart, }} \mathrm{VP}_{\text {pass }}$, etc. `untensed' VPs

Subordination

He says [he eats sushi].
He says [that [he eats sushi]].

```
VP }->\mp@subsup{V}{\mathrm{ comp }}{}\textrm{S
VP }->\mathrm{ Vcomp SBAR
SBAR -> COMP S
V comp }->\mathrm{ {says, think, believes}
COMP }->\mathrm{ {that}
```


Coordination

[He eats sushi] but [she drinks tea] [John] and [Mary] eat sushi.
He [eats sushi] and [drinks tea]
He [sells and buys] shares
He eats [at home or at a restaurant]

$$
\begin{array}{ll}
S & \rightarrow S \text { conj } S \\
N P & \rightarrow N P \text { conj NP } \\
V P & \rightarrow V P \text { conj VP } \\
V & \rightarrow V \operatorname{conj} V \\
P P & \rightarrow P P \text { conj } P P
\end{array}
$$

Relative clauses

Relative clauses modify noun phrases:
the girl [that eats sushi] (NP $\rightarrow \mathrm{NP}$ RelClause)
Relative clauses lack an NP that is understood to be filled by the NP they modify:
'the girl that eats sushi' implies 'the girl eats sushi'

Subject relative clauses lack a subject: 'the girl that eats sushi’

$$
\text { RelClause } \rightarrow \text { RelPron VP } \quad \text { [sentence w/o sbj = VP] }
$$

Object relative clauses lack an object: 'the sushi that the girl eats' Define "slash categories" s-NP, vP-NP that are missing object NPs

```
RelClause }->\mathrm{ RelPron S-NP
S-NP }->\mathrm{ NP VP-NP
VP-NP }\quad->\quad\mp@subsup{V}{\mathrm{ trans}}{
VP-NP }->\mathrm{ VP-NP PP
```


Yes/No questions

Yes/no questions consist of an auxiliary, a subject and an (untensed) verb phrase:
does she eat sushi?
have you eaten sushi?

YesNoQ \rightarrow Aux NP VPinf
YesNoQ \rightarrow Aux NP VPpastPart

Wh-questions

Subject wh-questions consist of an wh-word, an auxiliary and an (untensed) verb phrase:

Who has eaten the sushi?
WhQ \rightarrow WhPron Aux VPpastPart

Object wh-questions consist of an wh-word, an auxiliary, an NP and an (untensed) verb phrase that is missing an object.

What does Mary eat?
WhQ \rightarrow WhPron Aux NP VPinf-NP

