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Where are we at?
Neural architectures:

Basic feedforward nets
CNNs
RNNs (LSTMs, GRUs)

Today:
Transformers (in more detail than LSTMs, GRUs)

Next:
Using Transformers in large language models, for MT, etc
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Encoder-Decoder (seq2seq) model
The decoder is a language model that generates an 
output sequence conditioned on the input sequence.

— Vanilla RNN: condition on the last hidden state
— Attention: condition on all hidden states
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Attention weights
We want to feed a weighted average of  
all encoder hidden states into the decoder  
at each decoding time step

Weighted average:

 with  and 

The attention weights  form a probability distribution  
over the N elements of the encoder. 
We can use a different set of weights  
at each decoder time step

N

∑
n=1

αnhn

N

∑
n=1

αn = 1 ∀n : 0 ≤ αn ≤ 1

αn
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Adding attention to the decoder
Basic idea: Feed a d-dimensional representation of the entire 
(arbitrary-length) input sequence into the decoder  
at each time step during decoding.

This representation of the input can be a weighted average of 
the encoder’s representation of the input (i.e. hidden states)

The averaging weights associated with each encoder element 
specify how much attention to pay to that element
 
Since different parts of the input may be more or less important 
for different parts of the output, we want to vary the weights 
over the input during the decoding process.
(Cf. Word alignments in machine translation)
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Adding attention to the decoder
We want to condition the output generation of the decoder on 
a context-dependent representation of the input sequence. 

Attention computes a probability distribution over the 
encoder’s hidden states that depends on the decoder’s 
current hidden state 

(This distribution is computed anew for each output symbol)

This attention distribution is used to compute a weighted 
average of the encoder’s hidden state vectors. 

This context-dependent embedding of the input sequence  
is fed into the output of the decoder RNN. 
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Attention, more formally
Define a probability distribution   
over the S elements of the input sequence  
that depends on the current output element t    

Use this distribution to compute a weighted average of the 
encoder’s output   or hidden states  

and feed that into the decoder.

α(t) = (α(t)
1 , . . . , α(t)

S )

∑
s=1..S

α(t)
s os ∑

s=1..S

α(t)
s hs
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Lecture 12:  
Attention and Transformers
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Transformers
Sequence transduction model based on attention
(no convolutions or recurrence)
— easier to parallelize than recurrent nets
— faster to train than recurrent nets
— captures more long-range dependencies  
     than CNNs with fewer parameters
Transformers use stacked self-attention  
and position-wise, fully-connected layers  
for the encoder and decoder

Transformers form the basis of BERT, GPT(2-3), and 
other state-of-the-art neural sequence models.
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Seq2seq attention mechanisms
Define a probability distribution   
over the S elements of the input sequence  
that depends on the current output element t    

Use this distribution to compute a weighted average of the 
encoder’s output   or hidden states  

and feed that into the decoder.

α(t) = (α(t)
1 , . . . , α(t)

S )

∑
s=1..S

α(t)
s os ∑

s=1..S

α(t)
s hs
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Self-Attention
Attention so far (in seq2seq architectures):

In the decoder (which has access to the complete input 
sequence), compute attention weights over encoder positions  
that depend on each decoder position  

Self-attention:
If the encoder has access to the complete input sequence,  
we can also compute attention weights over encoder positions 
that depend on each encoder position

12

For each decoder position t…,   
   …Compute an attention weight for each encoder position s 
   …Renormalize these weights (that depend on t) w/ softmax 
       to get a new weighted avg. of the input sequence vectors

self-attention: 
encoder 
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Self-attention: Simple variant
Given T k-dimensional input vectors x(1)…x(i)…x(T), 
compute T k-dimensional output vectors y(1)…y(i)…y(T)

where each output y(i) is a weighted average of the input  
vectors, and where the weights wij  depend on y(i)  and x(j)

Computing weights wij   naively (no learned parameters)  
       Dot product:  

       Followed by softmax: 

y(i) = ∑
j=1..T

wijx( j)

w′ ij = ∑
k

x(i)
k x( j)

k

wij =
exp(w′ ij)

∑j exp(w′ ij)
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Towards more flexible self-attention
To compute , we must… 
    … take the element x(i) …
         …decide the weight  of each x(j) depending on x(i)

         … average all elements x(j) according to their weights 

Observation 1: Dot product-based weights are large when 
x(i), x(j) are similar. But we may want a more flexible approach. 
Idea 1: Learn attention weights  that depend on x(i) and x(j)  

in a manner that works best for the task
 
Observation 2: This weighted average is still just a simple 
function of the original x(j)s
Idea 2: Learn weights that re-weight the elements of x(j)  

in a manner that works best for the task

y(i) = ∑j=1..T wijx( j)

wij

wij
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Self-attention with queries, keys, values
Let’s add learnable parameters (three  weight matrices ),  
that allow us turn any input vector  into three versions: 
— Query vector  to compute averaging weights at pos. i 
— Key vector:  to compute averaging weights of pos. i
— Value vector:  to compute the value of pos. i to be averaged

The attention weight of the j-th position used in the weighted average  
at the i-th position depends on the query of i and the key of j:   

The new output vector for the i-th position depends on  
the attention weights and value vectors of all input positions j: 

k × k W
x(i)

q(i) = Wqx(i)

k(i) = Wkx(i)

v(i) = Wvx(i)

w(i)
j =

exp(q(i)k( j))
∑j exp(q(i)k( j))

=
exp(∑l q(i)

l k( j)
l )

∑j exp(∑l q(i)
l k( j)

l )

y(i) = ∑
j=1..T

w(i)
j v( j)
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Transformer Architecture
Non-Recurrent Encoder-Decoder  
architecture

— No hidden states
— Context information  
    captured via attention
    and positional encodings
— Consists of stacks of layers 
    with various sublayers
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Encoder
A stack of N=6 identical layers  
All layers and sublayers are 512-dimensional 
  
Each layer consists of two sublayers
— one multi-head self attention layer
— one position-wise feed forward layer

Each sublayer is followed by an “Add & Norm”  layer:
… a residual connection 
      (the input  is added to the output of the sublayer)
… followed by a normalization step  
    (using the mean and standard deviation of its activations)
         

x + Sublayer(x)
x

LayerNorm(x + Sublayer(x))
17
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Decoder
A stack of N=6 identical layers 
All layers and sublayers are 512-dimensional
  
Each layer consists of three sublayers
— one masked multi-head self attention layer
    over decoder output  
    (masked, i.e. ignoring future tokens)
— one multi-headed attention layer  
     over encoder output
— one position-wise feed forward layer  

Each sublayer has a residual connection  
and is normalized: LayerNorm(x + Sublayer(x))
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Multi-head attention
Just like we use multiple filters (channels) in CNNs,  
we can use multiple attention heads that each have 
their own sets of key/value/query matrices.
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Multi-Head attention
— Learn h different  
     linear projections of Q, K, V
— Compute attention  
     separately on each of  
     these h versions
— Concatenate the resultant vectors
— Project this concatenated vector 
     back down to a lower dimensionality 
     with a weight matrix W 
— Each attention head  
     can use relatively low dimensionality 

20

MultiHead(Q, K, V ) = Concat(head1, …, headh)W
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Scaling attention weights
Value of dot product grows with vector dimension k 
To scale back the dot product, divide the weights  
by  before normalization:k

w(i)
j =

exp(q(i)k( j))/ k

∑j (exp(q(i)k( j))/ k)
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Position-wise feedforward nets
Each layer in the encoder and decoder contains  
a feedforward sublayer FFN(x) that consists of… 

… one fully connected layer with a ReLU activation  
     (that projects the 512 elements to 2048 dimensions), 

… followed by another fully connected layer  
     (that projects these 2048 elements back down to 512 dimensions)  
 

Here x is the vector representation of the current position.
This is similar to 1x1 convolutions in a CNN.

FFN(x) = max (0,xW1 + b1) + W2 + b2
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Positional Encoding
How does this model  
capture sequence order? 

Positional encodings have the same dimensionality 
as word embeddings (512) and are added in.

Each dimension i is a sinusoid whose frequency 
depends on i, evaluated at position j  
(sinusoid = a sine or cosine function with a different frequency)

 PE( j,2i) = sin( j
100002i/d ) PE( j,2i+1) = cos( j

100002i/d )
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