
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 15:
Transformers

http://courses.engr.illinois.edu/cs498jh4
mailto:juliahmr@illinois.edu

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Where are we at?
Neural architectures:

Basic feedforward nets
CNNs
RNNs (LSTMs, GRUs)

Today:
Transformers (in more detail than LSTMs, GRUs)

Next:
Using Transformers in large language models, for MT, etc

2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Reca
p: Se

q2se
q,

Atte
ntio

n

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Encoder-Decoder (seq2seq) model
The decoder is a language model that generates an
output sequence conditioned on the input sequence.

— Vanilla RNN: condition on the last hidden state
— Attention: condition on all hidden states

4

DecoderEncoder

input

hidden

output

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Attention weights
We want to feed a weighted average of  
all encoder hidden states into the decoder  
at each decoding time step

Weighted average:

 with and

The attention weights form a probability distribution  
over the N elements of the encoder.
We can use a different set of weights  
at each decoder time step

N

∑
n=1

αnhn

N

∑
n=1

αn = 1 ∀n : 0 ≤ αn ≤ 1

αn

5

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Adding attention to the decoder
Basic idea: Feed a d-dimensional representation of the entire
(arbitrary-length) input sequence into the decoder  
at each time step during decoding.

This representation of the input can be a weighted average of
the encoder’s representation of the input (i.e. hidden states)

The averaging weights associated with each encoder element
specify how much attention to pay to that element
 
Since different parts of the input may be more or less important
for different parts of the output, we want to vary the weights
over the input during the decoding process.
(Cf. Word alignments in machine translation)

6

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Adding attention to the decoder
We want to condition the output generation of the decoder on
a context-dependent representation of the input sequence.

Attention computes a probability distribution over the
encoder’s hidden states that depends on the decoder’s
current hidden state

(This distribution is computed anew for each output symbol)

This attention distribution is used to compute a weighted
average of the encoder’s hidden state vectors.

This context-dependent embedding of the input sequence  
is fed into the output of the decoder RNN.

7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Attention, more formally
Define a probability distribution  
over the S elements of the input sequence  
that depends on the current output element t  

Use this distribution to compute a weighted average of the
encoder’s output or hidden states  

and feed that into the decoder.

α(t) = (α(t)
1 , . . . , α(t)

S)

∑
s=1..S

α(t)
s os ∑

s=1..S

α(t)
s hs

8
hhttps://www.tensorflow.org/tutorials/text/nmt_with_attention

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Tran
sfor

mers

Vash
wani

et a
l. At

tent
ion

is al
l

you
need

, NI
PS 2

017

9

Lecture 12:  
Attention and Transformers

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Transformers
Sequence transduction model based on attention
(no convolutions or recurrence)
— easier to parallelize than recurrent nets
— faster to train than recurrent nets
— captures more long-range dependencies  
 than CNNs with fewer parameters
Transformers use stacked self-attention  
and position-wise, fully-connected layers  
for the encoder and decoder

Transformers form the basis of BERT, GPT(2-3), and
other state-of-the-art neural sequence models.

10

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Seq2seq attention mechanisms
Define a probability distribution  
over the S elements of the input sequence  
that depends on the current output element t  

Use this distribution to compute a weighted average of the
encoder’s output or hidden states  

and feed that into the decoder.

α(t) = (α(t)
1 , . . . , α(t)

S)

∑
s=1..S

α(t)
s os ∑

s=1..S

α(t)
s hs

11
hhttps://www.tensorflow.org/tutorials/text/nmt_with_attention

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Self-Attention
Attention so far (in seq2seq architectures):

In the decoder (which has access to the complete input
sequence), compute attention weights over encoder positions  
that depend on each decoder position  

Self-attention:
If the encoder has access to the complete input sequence,  
we can also compute attention weights over encoder positions
that depend on each encoder position

12

For each decoder position t…,
 …Compute an attention weight for each encoder position s
 …Renormalize these weights (that depend on t) w/ softmax
 to get a new weighted avg. of the input sequence vectors

self-attention:
encoder

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Self-attention: Simple variant
Given T k-dimensional input vectors x(1)…x(i)…x(T),
compute T k-dimensional output vectors y(1)…y(i)…y(T)

where each output y(i) is a weighted average of the input
vectors, and where the weights wij depend on y(i) and x(j)

Computing weights wij naively (no learned parameters)  
 Dot product:

 Followed by softmax:

y(i) = ∑
j=1..T

wijx(j)

w′ ij = ∑
k

x(i)
k x(j)

k

wij =
exp(w′ ij)

∑j exp(w′ ij)

13

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Towards more flexible self-attention
To compute , we must…
 … take the element x(i) …
 …decide the weight of each x(j) depending on x(i)

 … average all elements x(j) according to their weights 

Observation 1: Dot product-based weights are large when
x(i), x(j) are similar. But we may want a more flexible approach.
Idea 1: Learn attention weights that depend on x(i) and x(j)  

in a manner that works best for the task
 
Observation 2: This weighted average is still just a simple
function of the original x(j)s
Idea 2: Learn weights that re-weight the elements of x(j)  

in a manner that works best for the task

y(i) = ∑j=1..T wijx(j)

wij

wij

14

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Self-attention with queries, keys, values
Let’s add learnable parameters (three weight matrices),  
that allow us turn any input vector into three versions:
— Query vector to compute averaging weights at pos. i
— Key vector: to compute averaging weights of pos. i
— Value vector: to compute the value of pos. i to be averaged

The attention weight of the j-th position used in the weighted average  
at the i-th position depends on the query of i and the key of j:

The new output vector for the i-th position depends on  
the attention weights and value vectors of all input positions j:

k × k W
x(i)

q(i) = Wqx(i)

k(i) = Wkx(i)

v(i) = Wvx(i)

w(i)
j =

exp(q(i)k(j))
∑j exp(q(i)k(j))

=
exp(∑l q(i)

l k(j)
l)

∑j exp(∑l q(i)
l k(j)

l)

y(i) = ∑
j=1..T

w(i)
j v(j)

15

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Transformer Architecture
Non-Recurrent Encoder-Decoder  
architecture

— No hidden states
— Context information  
 captured via attention
 and positional encodings
— Consists of stacks of layers 
 with various sublayers

16

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Encoder
A stack of N=6 identical layers  
All layers and sublayers are 512-dimensional
  
Each layer consists of two sublayers
— one multi-head self attention layer
— one position-wise feed forward layer

Each sublayer is followed by an “Add & Norm” layer:
… a residual connection
 (the input is added to the output of the sublayer)
… followed by a normalization step  
 (using the mean and standard deviation of its activations)

x + Sublayer(x)
x

LayerNorm(x + Sublayer(x))
17

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Decoder
A stack of N=6 identical layers 
All layers and sublayers are 512-dimensional
  
Each layer consists of three sublayers
— one masked multi-head self attention layer
 over decoder output  
 (masked, i.e. ignoring future tokens)
— one multi-headed attention layer  
 over encoder output
— one position-wise feed forward layer  

Each sublayer has a residual connection  
and is normalized: LayerNorm(x + Sublayer(x))

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Multi-head attention
Just like we use multiple filters (channels) in CNNs,  
we can use multiple attention heads that each have
their own sets of key/value/query matrices.

19

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Multi-Head attention
— Learn h different  
 linear projections of Q, K, V
— Compute attention  
 separately on each of  
 these h versions
— Concatenate the resultant vectors
— Project this concatenated vector 
 back down to a lower dimensionality 
 with a weight matrix W
— Each attention head  
 can use relatively low dimensionality

20

MultiHead(Q, K, V) = Concat(head1, …, headh)W

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Scaling attention weights
Value of dot product grows with vector dimension k
To scale back the dot product, divide the weights  
by before normalization:k

w(i)
j =

exp(q(i)k(j))/ k

∑j (exp(q(i)k(j))/ k)

21

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Position-wise feedforward nets
Each layer in the encoder and decoder contains  
a feedforward sublayer FFN(x) that consists of… 

… one fully connected layer with a ReLU activation  
 (that projects the 512 elements to 2048 dimensions), 

… followed by another fully connected layer  
 (that projects these 2048 elements back down to 512 dimensions)
 

Here x is the vector representation of the current position.
This is similar to 1x1 convolutions in a CNN.

FFN(x) = max (0,xW1 + b1) + W2 + b2

22

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Positional Encoding
How does this model  
capture sequence order?

Positional encodings have the same dimensionality
as word embeddings (512) and are added in.

Each dimension i is a sinusoid whose frequency
depends on i, evaluated at position j  
(sinusoid = a sine or cosine function with a different frequency)

 PE(j,2i) = sin(j
100002i/d) PE(j,2i+1) = cos(j

100002i/d)
23

