
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 14:
Attention Mechanisms

http://courses.engr.illinois.edu/cs498jh4
mailto:juliahmr@illinois.edu

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

DecoderEncoder

Encoder-Decoder (seq2seq) model
Task: Read an input sequence  
and return an output sequence
–Machine translation: translate source into target language
– Dialog system/chatbot: generate a response

Reading the input sequence: RNN Encoder
Generating the output sequence: RNN Decoder

2

input

hidden

output

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A more general view of seq2seq
Insight 1: Any function of the encoder’s output
can be used as a representation of the context  
we want to condition the decoder on. 
 
 
 
 
 
 
 

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Encoder-Decoder (seq2seq) model
The encoder computes various representations  
of the input sequence:

— The last hidden state of the encoder captures  
 the entire sequence
— The hidden state/output of each encoder element  
 captures a representation of the input sequence  
 up to that input token

4

Encoder

input

hidden

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Encoder-Decoder (seq2seq) model
The decoder is a language model that generates an
output sequence conditioned on the input sequence.

— Vanilla RNN: condition on the last hidden state
— Attention: condition on all hidden states

5

DecoderEncoder

input

hidden

output

5

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A more general view of seq2seq
Insight 1: Any function of the encoder’s output
can be used as a representation of the context  
we want to condition the decoder on. 
 
 
 
 
 
 
 

Insight 2: We can feed the context in at any time
step during decoding (not just at the beginning).

6

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Representing context/history
The encoder maps each input element to a vector
(the corresponding hidden state)

Attention allows the decoder to “look at” the encoder
hidden states.

Challenge:
Which encoder states should the decoder consider?
How can multiple encoder states be combined into a
fixed-sized representation?

7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Adding attention to the decoder
Basic idea: Feed a d-dimensional representation of the entire
(arbitrary-length) input sequence into the decoder  
at each time step during decoding.

This representation of the input can be a weighted average of
the encoder’s representation of the input (i.e. hidden states)

The averaging weights associated with each encoder element
specify how much attention to pay to that element
 
Since different parts of the input may be more or less important
for different parts of the output, we want to vary the weights
over the input during the decoding process.
(Cf. Word alignments in machine translation)

8

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Adding attention to the decoder
We want to condition the output generation of the decoder on
a context-dependent representation of the input sequence.

Attention computes a probability distribution over the
encoder’s hidden states that depends on the decoder’s
current hidden state

(This distribution is computed anew for each output symbol)

This attention distribution is used to compute a weighted
average of the encoder’s hidden state vectors.

This context-dependent embedding of the input sequence  
is fed into the output of the decoder RNN.

9

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Attention, more formally
Define a probability distribution  
over the S elements of the input sequence  
that depends on the current output element t  

Use this distribution to compute a weighted average of the
encoder’s output or hidden states  

and feed that into the decoder.

α(t) = (α(t)
1 , . . . , α(t)

S)

∑
s=1..S

α(t)
s os ∑

s=1..S

α(t)
s hs

10
hhttps://www.tensorflow.org/tutorials/text/nmt_with_attention

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Attention, more formally
1. Compute a probability distribution  
over the encoder’s hidden states  
that depends on the decoder’s current

2. Use to compute a weighted avg. of the encoder’s :

3. Use both and to compute a new output , e.g. as 

α(t) = (α(t)
1 , . . . , α(t)

S)
h(s)

h(t)

α(t)
s =

exp(s(h(t), h(s)))
∑s′￼

exp(s(h(t), h(s′￼)))
α(t) c(t) h(s)

c(t) = ∑
s=1..S

α(t)
s h(s)

c(t) h(t) o(t)

o(t) = tanh(W1h(t) + W2c(t))

11

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Defining Attention Weights
Hard attention (degenerate case, non-differentiable):  
 is a one-hot vector  
 (e.g. 1 = most similar element to decoder’s vector, 0 = all other elements)

Soft attention (general case):  
 is not a one-hot

 — Use the dot product (no learned parameters):  

 — Learn a bilinear matrix W: 

 — Learn separate weights for the hidden states: 

α(t) = (α(t)
1 , . . . , α(t)

S)

α(t) = (α(t)
1 , . . . , α(t)

S)

s(h(t), h(s)) = h(t) ⋅ h(s)

s(h(t), h(s)) = (h(t))TWh(s)

s(h(t), h(s)) = vT tanh(W1h(t) + W2h(s))
12

