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DecoderEncoder

Encoder-Decoder (seq2seq) model
Task: Read an input sequence  
and return an output sequence
–Machine translation: translate source into target language
– Dialog system/chatbot: generate a response

Reading the input sequence: RNN Encoder
Generating the output sequence: RNN Decoder
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A more general view of seq2seq
Insight 1: Any function of the encoder’s output 
can be used as a representation of the context  
we want to condition the decoder on. 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Encoder-Decoder (seq2seq) model
The encoder computes various representations  
of the input sequence:

— The last hidden state of the encoder captures  
     the entire sequence
— The hidden state/output of each encoder element  
     captures a representation of the input sequence  
     up to that input token
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Encoder-Decoder (seq2seq) model
The decoder is a language model that generates an 
output sequence conditioned on the input sequence.

— Vanilla RNN: condition on the last hidden state
— Attention: condition on all hidden states
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A more general view of seq2seq
Insight 1: Any function of the encoder’s output 
can be used as a representation of the context  
we want to condition the decoder on. 
 
 
 
 
 
 
 

Insight 2: We can feed the context in at any time 
step during decoding (not just at the beginning).

6



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Representing context/history
The encoder maps each input element to a vector
(the corresponding hidden state)

Attention allows the decoder to “look at” the encoder 
hidden states. 

Challenge: 
Which encoder states should the decoder consider?
How can multiple encoder states be combined into a 
fixed-sized representation?
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Adding attention to the decoder
Basic idea: Feed a d-dimensional representation of the entire 
(arbitrary-length) input sequence into the decoder  
at each time step during decoding.

This representation of the input can be a weighted average of 
the encoder’s representation of the input (i.e. hidden states)

The averaging weights associated with each encoder element 
specify how much attention to pay to that element
 
Since different parts of the input may be more or less important 
for different parts of the output, we want to vary the weights 
over the input during the decoding process.
(Cf. Word alignments in machine translation)
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Adding attention to the decoder
We want to condition the output generation of the decoder on 
a context-dependent representation of the input sequence. 

Attention computes a probability distribution over the 
encoder’s hidden states that depends on the decoder’s 
current hidden state 

(This distribution is computed anew for each output symbol)

This attention distribution is used to compute a weighted 
average of the encoder’s hidden state vectors. 

This context-dependent embedding of the input sequence  
is fed into the output of the decoder RNN. 
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Attention, more formally
Define a probability distribution   
over the S elements of the input sequence  
that depends on the current output element t    

Use this distribution to compute a weighted average of the 
encoder’s output   or hidden states  

and feed that into the decoder.

α(t) = (α(t)
1 , . . . , α(t)

S )

∑
s=1..S

α(t)
s os ∑

s=1..S

α(t)
s hs
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Attention, more formally
1. Compute a probability distribution   
over the encoder’s hidden states   
that depends on the decoder’s current  

  

2. Use  to compute a weighted avg.  of the encoder’s :
                             

3. Use both  and  to compute a new output , e.g. as 
                           

α(t) = (α(t)
1 , . . . , α(t)

S )
h(s)

h(t)

α(t)
s =

exp(s(h(t), h(s)))
∑s′￼

exp(s(h(t), h(s′￼)))
α(t) c(t) h(s)

c(t) = ∑
s=1..S

α(t)
s h(s)

c(t) h(t) o(t)

o(t) = tanh(W1h(t) + W2c(t))
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Defining Attention Weights
Hard attention (degenerate case, non-differentiable):  
      is a one-hot vector  
     (e.g. 1 = most similar element to decoder’s vector, 0 = all other elements)

Soft attention (general case):   
       is not a one-hot

 — Use the dot product (no learned parameters):       
             

 — Learn a bilinear matrix W: 
                 

 — Learn separate weights for the hidden states: 
             

α(t) = (α(t)
1 , . . . , α(t)

S )

α(t) = (α(t)
1 , . . . , α(t)

S )

s(h(t), h(s)) = h(t) ⋅ h(s)

s(h(t), h(s)) = (h(t))TWh(s)

s(h(t), h(s)) = vT tanh(W1h(t) + W2h(s))
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