
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 13:
Recurrent Neural Nets

http://courses.engr.illinois.edu/cs498jh4
mailto:juliahmr@illinois.edu

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Brie
f

Reca
p

2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

1D CNNs for text
Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]
We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— Filter size n = 2, stride = 2, no padding:
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Sequence Labeling
Input: a sequence of n tokens/words:
Pierre Vinken , 61 years old , will join IBM ‘s board as a
nonexecutive director Nov. 29  

Output: a sequence of n labels, such that  
each token/word is associated with a label:

POS-tagging: Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS
old_JJ ,_, will_MD join_VB IBM_NNP ‘s_POS board_NN as_IN
a_DT nonexecutive_JJ director_NN Nov._NNP 29_CD ._.

Named Entity Recognition: Pierre_B-PERS Vinken_I-PERS ,_O 61_O
years_O old_O ,_O will_O join_O IBM_B-ORG ‘s_O board_O
as_O a_O nonexecutive_O director_O Nov._B-DATE 29_I-
DATE ._O

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

 She promised to back the bill
w = w(1) w(2) w(3) w(4) w(5) w(6) 
  

t = t(1) t(2) t(3) t(4) t(5) t(6) 

 PRP VBD TO VB DT NN
 
What is the most likely sequence of tags t= t(1)…t(N) 
for the given sequence of words w= w(1)…w(N) ?
t* = argmaxt P(t | w)

Statistical POS tagging

5

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Hidden Markov Models (HMMs)
HMMs are the most commonly used generative models for POS tagging
(and other tasks, e.g. in speech recognition)
 
HMMs make specific independence assumptions in P(t) and P(w| t): 

1) P(t) is an n-gram (typically bigram or trigram) model over tags:

P(t(i) | t(i–1)) and P(t(i) | t(i–1), t(i–2)) are called transition probabilities

2) In P(w | t), each w(i) depends only on [is generated by/conditioned on] t(i):
  

 P(w(i) | t(i)) are called emission probabilities  

These probabilities don’t depend on the position in the sentence (i),  
but are defined over word and tag types.  
With subscripts i,j,k, to index word/tag types, they become P(ti | tj), P(ti | tj, tk), P(wi | tj)

Pbigram(t) = ∏
i

P(t(i) ∣ t(i−1)) Ptrigram(t) = ∏
i

P(t(i) ∣ t(i−1), t(i−2))

P(w ∣ t) = ∏
i

P(w(i) ∣ t(i))

6

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Today’s lecture
Part 1: Recurrent Neural Nets for various NLP tasks
 
Part 2: Practicalities:  
 Training RNNs 
 Generating with RNNs 
 Using RNNs in complex networks 

Part 3: Changing the recurrent architecture  
 to go beyond vanilla RNNs:  
 LSTMs, GRUs

7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 1: R

ecur
rent

Neur
al N

ets f
or

vari
ous

NLP
task

s

8

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Recurrent Neural Nets (RNNs)
Feedforward nets can only handle inputs and
outputs that have a fixed size. 

Recurrent Neural Nets (RNNs) handle variable
length sequences (as input and as output)

There are 3 main variants of RNNs,  
which differ in their internal structure:

Basic RNNs (Elman nets),  
Long Short-Term Memory cells (LSTMs)
Gated Recurrent Units (GRUs)

9

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

RNNs in NLP
RNNs are used for… 

… language modeling and generation, including… 
 … auto-completion and…
 … machine translation  

… sequence classification (e.g. sentiment analysis) 

… sequence labeling (e.g. POS tagging)

10

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Recurrent neural networks (RNNs)
Basic RNN: Process a sequence of T inputs  
and/or generate a sequence of T outputs  
by running a [variant of a feedforward] net T times.

Recurrence:  
The hidden state computed at the previous step (h(t-1))  
is fed into the hidden state at the current step (h(t))  
With H hidden units, this requires additional H2 parameters

11

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net

Time: t−1 t t+1➞ ➞

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Basic RNNs
Basic RNNs are feedforward nets where  
the hidden layer gets its input at time t…
… from the activations of the input layer  
 computed at the same time t, and
… from the activations of the same hidden layer  
 at the previous time t–1: 
 
 
 
 

The input may change at each time step t , 
but the feedforward net is the same at each time t

12

input

output

hidden

t+1t−1 t

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Each time step t corresponds to a feedforward net whose  
hidden layer h(t) gets input from the layer below (x(t)) and from
the output of the hidden layer at the previous time step h(t–1) 

 
 
 
 
 
 

Computing the vector of hidden states at time t

The i-th element of ht:

h(t) = g(Uh(t−1) + Wx(t))
h(t)

i = g(∑
j

Ujih(t−1)
j + ∑

k

Wkix(t)
k)

Basic RNNs

13

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A basic RNN unrolled in time

14

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

RNNs for language modeling
If our vocabulary consists of V words, the output layer
(at each time step) has V units, one for each word.

The softmax gives a distribution over the V words  
for the next word.

To compute the probability of string w(0)w(1)…w(n)w(n+1)

(where w(0) = <s>, and w(n+1) = <\s>), feed in w(i-1) as input
at time step i and compute

n+1

∏
i=1

P(w(i) ∣ w(0)…w(i−1))
15

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

RNNs for language generation
To generate w(0)w(1)…w(n)w(n+1) 

(where w(0) = <s>, and w(n+1) = <\s>)… 
 
…Give w(0) as first input, and
 
… Choose the next word w(i) according to the probability

…Feed the predicted word w(i) in as input  
 at the next time step.  

… Repeat until you generate <\s>

P(w(i) ∣ w(0)…w(i−1))

16

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

RNNs for language generation
AKA “autoregressive generation”

17

10 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

In a

<s>

RNN

hole

In a hole

?Sampled Word

Softmax

Embedding

Input Word

Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

RNN for Autocompletion

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

An RNN for Machine Translation

19

10.1 • NEURAL LANGUAGE MODELS AND GENERATION REVISITED 3

associated with this part of the process until we reach the end of the prefix.
Now, consider an ingenious extension of this idea from the world of machine

translation (MT), the task of automatically translating sentences from one language
into another. The primary resources used to train modern translation systems are
known as parallel texts, or bitexts. These are large text collections consisting of pairsbitexts
of sentences from different languages that are translations of one another. Tradition-
ally in MT, the text being translated is referred to as the source and the translation
output is called the target.

To extend language models and autoregressive generation to machine transla-
tion, we’ll first add an end-of-sentence marker at the end of each bitext’s source
sentence and then simply concatenate the corresponding target to it. These concate-
nated source-target pairs can now serve as training data for a combined language
model. Training proceeds as with any RNN-based language model. The network is
trained autoregressively to predict the next word in a set of sequences comprised of
the concatenated source-target bitexts, as shown in Fig. 10.2.

To translate a source text using the trained model, we run it through the network
performing forward inference to generate hidden states until we get to the end of the
source. Then we begin autoregressive generation, asking for a word in the context
of the hidden layer from the end of the source input as well as the end-of-sentence
marker. Subsequent words are conditioned on the previous hidden state and the
embedding for the last word generated.

vivait un

</s>

hobbit

vivait un hobbit

</s>

Source

hobbita livedthere

Target

</s>lived hobbita

Figure 10.2 Training setup for a neural language model approach to machine translation. Source-target bi-
texts are concatenated and used to train a language model.

Early efforts using this clever approach demonstrated surprisingly good results
on standard datasets and led to a series of innovations that were the basis for net-
works discussed in the remainder of this chapter. Chapter 11 provides an in-depth
discussion of the fundamental issues in translation as well as the current state-of-
the-art approaches to MT. Here, we’ll focus on the powerful models that arose from
these early efforts.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

DecoderEncoder

Encoder-Decoder (seq2seq) model
Task: Read an input sequence  
and return an output sequence
–Machine translation: translate source into target language
– Dialog system/chatbot: generate a response

Reading the input sequence: RNN Encoder
Generating the output sequence: RNN Decoder

20

input

hidden

output

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Encoder-Decoder (seq2seq) model
Encoder RNN:

reads in the input sequence
passes its last hidden state to the initial hidden state  
of the decoder

Decoder RNN:
generates the output sequence
typically uses different parameters from the encoder
may also use different input embeddings

21

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

RNNs for sequence classification
If we just want to assign one label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word
in the sequence as input to a feedforward net:

22

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Basic RNNs for sequence labeling
Sequence labeling (e.g. POS tagging):  
Assign one label to each element in the sequence.
 
RNN Architecture: 
Each time step has a distribution over output classes 
 
 
 
 
 
 

Extension: add a CRF layer to capture dependencies among labels of adjacent tokens.
23

10 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Janet will back

RNN

the bill

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

RNNs for sequence labeling
In sequence labeling, we want to assign  
a label or tag t(i) to each word w(i)

Now the output layer gives a (softmax) distribution  
over the T possible tags,  
and the hidden layer contains information  
about the previous words and the previous tags.  

To compute the probability of a tag sequence t(1)…t(n)

for a given string w(1)…w(n), feed in w(i) (and possibly
t(i-1)) as input at time step i and compute  
P(t(i) | w(1)…w(i-1), t(1)…t(i-1))

24

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 2: 

Recu
rren

t Ne
ural

Net
Prac

tica
litie

s

25

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

RNN Practicalities
This part will discuss how to train and use RNNs.
We will also discuss how to go beyond basic RNNs.

The last part used a simple RNN with one layer to illustrate
how RNNs can be used for different NLP tasks.
In practice, more complex architectures are common.  

Three complementary ways to extend basic RNNs:
— Using RNNs in more complex networks  
 (bidirectional RNNs, stacked RNNs) [This Part]
— Modifying the recurrent architecture  
 (LSTMs, GRUs) [Part 3]
— Adding attention mechanisms [Next Lecture]

26

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Using RNNs in more
complex architectures

27

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Stacked RNNs
We can create an RNN that has “vertical” depth  
(at each time step) by stacking multiple RNNs:

28

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Bidirectional RNNs
Unless we need to generate a sequence, we can run  
two RNNs over the input sequence,  
one in the forward direction, and one in the backward direction.
Their hidden states will capture different context information 
 
 
 
 
 
 

To obtain a single hidden state at time t:  
 where is typically concatenation

h(t)
bi = h(t)

fw ⊕ h(t)
bw

⊕

29

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Bidirectional RNNs for sequence classification

Combine…
…the forward RNN’s hidden state for the last word, and
…the backward RNN’s hidden state for the first word
into a single vector

30

9.4 • MANAGING CONTEXT IN RNNS: LSTMS AND GRUS 15

Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

hn_forw

h1_back

Softmax

Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
to many language applications. To see this, consider the following example in the
context of language modeling.

(9.15) The flights the airline was cancelling were full.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Training and
Generating
Sequences with RNNs

31

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How to generate with an RNN
Greedy decoding:  
Always pick the word with the highest probability

(if you start from <s>, this only generates a single sentence) 

Sampling:  
Sample a word according to the given distribution

Beam search decoding:
Keep a number of hypotheses after each time step
— Fixed-width beam: keep the top k hypotheses
— Variable-width beam: keep all hypotheses whose  
 score is with a certain factor of the best score

32

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Beam Decoding (fixed width k=4)

33

Keep the k best options around at each time step.
Operate breadth-first: keep the k best next hypotheses among
the best continuations for each of the current k hypotheses.
Reduce beam width every time a sequence is completed (EOS)

EOS

EOS EOS

EOS

1st output

2nd output

3rd output

4th output

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Training RNNs for generation
Maximum likelihood estimation (MLE):
Given training samples , find the parameters
that assign the largest probability to these training samples:

 
 
Since is factored into ,
we can train models to assign a higher probability to  
the word that occurs in the training data after
than any other word :

This is also called teacher forcing.

w(1)w(2)…w(T) θ*

θ* = argmaxθPθ(w(1)w(2)…w(T)) = argmaxθ ∏
t=1..T

Pθ(w(t) |w(1)…w(t−1))

Pθ(w(1)w(2)…w(T)) Pθ(w(t) |w(1)…w(t−1))

w(t) w(1)…w(t−1)

wi ∈ V
∀i=1...|V|Pθ(w(t) ∣ w(1)…w(t−1)) ≥ Pθ(wi ∣ w(1)…w(t−1))

34

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Teacher forcing
Each training sequence
turns into training items:
 
Give as input to the RNN,
and train it to maximize the probability of  

(as you would in standard classification,  
or when training an n-gram language model).

w(1)w(2)…w(T)

T

w(1)w(2)…w(t−1)

w(t)

35

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Problems with teacher forcing
Exposure bias:
When we train an RNN for sequence generation, the prefix

 that we condition on comes from the original data
When we use an RNN for sequence generation, the prefix

 that we condition on is also generated by the RNN,

— The model is used on data that may look quite different  
from the data it was trained on.
— The model is not trained to predict the best next token  
within a generated sequence, or to predict the best sequence
— Errors at earlier time-steps propagate through the sequence.

y(1)…y(t−1)

y(1)…y(t−1)

36

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Remedies
Minimum risk training:

(Shen et al. 2016, https://www.aclweb.org/anthology/P16-1159.pdf)
— define a loss function (e.g. negative BLEU) to compare  
 generated sequences against gold sequences
—Minimize risk (expected loss on training data) such that candidates
outputs with a smaller loss (higher BLEU score) have higher probability.

Reinforcement learning-based approaches:
(Ranzato et al. 2016 https://arxiv.org/pdf/1511.06732.pdf)
— use BLEU as a reward (i.e. like MRT)
— perhaps pre-train model first with standard teacher forcing.

GAN-based approaches (“professor forcing”)
(Goyal et al. 2016, http://papers.nips.cc/paper/6099-professor-forcing-a-
new-algorithm-for-training-recurrent-networks.pdf)
— combine standard RNN with an adversarial model that aims to
distinguish original from generated sequences

37

https://www.aclweb.org/anthology/P16-1159.pdf
https://arxiv.org/pdf/1511.06732.pdf
http://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf
http://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf
http://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 3: 

RNN
 Var

iant
s

38

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

RNN variants: LSTMs, GRUs
Long Short-Term Memory networks (LSTMs)  
are RNNs with a more complex recurrent architecture

Gated Recurrent Units (GRUs)  
are a simplification of LSTMs 

Both contain “Gates” to control how much of the input  
or previous hidden state to forget or remember 

39

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

From RNNs to LSTMs
In Vanilla (Elman) RNNs, the current hidden state  
is a nonlinear function of the previous hidden state  
and the current input :

 

With g=tanh (the original definition): 
⇒ Models suffer from the vanishing gradient problem:  
they can’t be trained effectively on long sequences.

With g=ReLU 
⇒ Models suffer from the exploding gradient problem:  
they can’t be trained effectively on long sequences.

h(t)

h(t−1)

x(t)

h(t) = g(Uh(t−1) + Wx(t) + bh)

40

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

From RNNs to LSTMs
LSTMs (Long Short-Term Memory networks)  
were introduced to overcome the vanishing gradient problem.  
 Hochreiter and Schmidhuber, Neural Computation 9(8), 1997  
 https://www.bioinf.jku.at/publications/older/2604.pdf

Like RNNs, LSTMs contain a hidden state that gets passed  
through the network and updated at each time step

LSTMs contain an additional cell state that also gets passed
through the network and updated at each time step

LSTMs contain three different gates (input/forget/output)  
that read in the previous hidden state and current input  
to decide how much of the past hidden and cell states to keep.

These gates mitigate the vanishing/exploding gradient problem
41

https://www.bioinf.jku.at/publications/older/2604.pdf

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Recap: Activation functions

Hyperbolic Tangent:

 
Rectified Linear Unit: ReLU(x) = max(0, x)  

Sigmoid (logistic function):

tanh(x) =
exp(2x) − 1
exp(2x) + 1

∈ [−1, + 1]

∈ [0, +∞]

σ(x) =
1

1 + exp(−x)
∈ [0,1]

42

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-3 -2 -1 0 1 2 3

1/(1+exp(-x))
tanh(x)

max(0,x)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

RNN variants: LSTMs, GRUs
Long Short-Term Memory networks (LSTMs) are RNNs  
with a more complex recurrent architecture
Gated Recurrent Units (GRUs) are a simplification of LSTMs 

Both contain “Gates” to control how much of the input or past
hidden state to forget or remember 

A gate performs element-wise multiplication of
 a) a d-dimensional sigmoid layer g  
 (all elements between 0 and 1), and
 b) a d-dimensional input vector u 

Result: d-dimensional output vector v which is like the input u,  
 but elements where gi ≈ 0 are (partially) “forgotten”

43

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Gating: element-wise product

A gate performs element-wise multiplication of
 a) a d-dimensional sigmoid layer g  
 (all elements between 0 and 1), and
 b) a d-dimensional input vector u 

Result: d-dimensional output vector v which is like the input u,  
 but elements where gi ≈ 0 are (partially) “forgotten”

44

v = g ⊗ u = [g1u1, g2u2, …, gdud]

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Gating mechanisms
Gates are trainable layers with a sigmoid activation function  
often determined by the current input and the (last) hidden state eg.:

 is a vector of (Bernoulli) probabilities ()

Unlike traditional (0,1) gates, neural gates are differentiable (we can train them)  

 is combined with another vector (of the same dimensionality)
by element-wise multiplication (Hadamard product):
If , , and if ,
Each has its own set of trainable parameters to determine how much of to keep

Gates can also be used to form  
linear combinations of two input vectors :
— Addition of two independent gates:
— Linear interpolation (coupled gates):

x(t) h(t−1)

g(t)
k = σ(Wkx(t) + Ukh(t−1) + bk)

g ∀i : 0 ≤ gi ≤ 1

g u
v = g ⊗ u

gi ≈ 0 vi ≈ 0 gi ≈ 1 vi ≈ ui
gi ui

t, u
v = g1⊗t + g2⊗u
v = g ⊗t + (1 − g)⊗u

45

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Long Short-Term Memory Networks (LSTMs)

At time , the LSTM cell reads in
— a c-dimensional previous cell state vector
— an h-dimensional previous hidden state vector
— a d-dimensional current input vector
At time , the LSTM cell returns
— a c-dimensional new cell state vector
— an h-dimensional new hidden state vector  
 (which may also be passed to an output layer)

t
c(t−1)

h(t−1)

x(t)

t
c(t)

h(t)

46

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

c(t-1) c(t)

h(t-1) h(t)

x(t-1)

h(t)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

LSTM operations
Based on the previous cell state , previous hidden state  
and the current input , the LSTM computes: 

… A new intermediate cell state that depends on and :  
  

… Three gates , which each depend on and :
 — The forget gate decides  
 how much of the last to remember in the new cell state:
 — The input gate decides  
 how much of the intermediate to use in the new cell state:
 – The output gate decides  
 how much of the new to use in the next hidden state:

The new cell state is a linear combination  
of cell states and that depends on forget gate and input gate  
The new hidden state depends on and the output gate

c(t−1) h(t−1)

x(t)

c̃(t) h(t−1) x(t)

c̃(t) = tanh(Wcx(t) + Uch(t−1) + bc)
f(t), i(t), o(t) h(t−1) x(t)

f(t) = σ(Wf x(t) + Uf h(t−1) + bf)
c(t−1) f(t) ⊗ c(t−1)

i(t) = σ(Wix(t) + Uih(t−1) + bi)
c̃(t) i(t) ⊗ c̃(t)

o(t) = σ(Wox(t) + Uoh(t−1) + bo)
c(t) h(t) = o(t) ⊗ c(t)

c(t) = tanh(f(t) ⊗ c(t−1) + i(t) ⊗ c̃(t))
c(t−1) c̃(t) f(t) i(t)

h(t) = o(t) ⊗ c(t) c(t) o(t)

47

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Gated Recurrent Units (GRUs)
Based on and , a GRU computes:

— a reset gate to determine how much of to keep in

— an intermediate hidden state that depends on and
 []

— an update gate to determine how much of to keep in

— a new hidden state as a linear interpolation of and  
 with weights determined by the (coupled) update gate

 
Cho et al. (2014) Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
https://arxiv.org/pdf/1406.1078.pdf

h(t−1) x(t)

r(t) h(t−1) h̃(t)

r(t) = σ(Wrx(t) + Urh(t−1) + br)
h̃(t) x(t) r(t) ⊗ h(t−1)

h̃(t) = ϕ(Whx(t) + Uh(r(t) ⊗ h(t−1)) + br) ϕ = tanh or ReLU

z(t) h(t−1) h(t)

z(t) = σ(Wzx(t) + Uzh(t−1) + br)
h(t) h(t−1) h̃(t)

z(t)

h(t) = z(t) ⊗ h(t−1) + (1 − z(t)) ⊗ h̃(t)

48

https://arxiv.org/pdf/1406.1078.pdf

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

LSTMs vs GRUs
LSTMs are more expressive than GRUs  
and basic RNNs (they’re better at learning long-range
dependencies)

But GRUs are easier to train than LSTMs  
(useful when training data is limited)

49

