
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 12: HMMs,
Sequence Labeling

http://courses.engr.illinois.edu/cs498jh4
mailto:juliahmr@illinois.edu

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Assessment updates
Peer-Grading:
Starting today, you will have one week after the
submission deadline to finish grading the submissions
assigned to you.

4th Credit Hour Lit Review:
We put a list of suggestions on Canvas (currently
buried under “Pages”), but these are not exhaustive.
We will ask you for a preliminary topic/list of papers
by March 12.

2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Hidden
 Marko

v

Mode
ls (H

MMs)  

for
POS

Tagg
ing

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

 She promised to back the bill
w = w(1) w(2) w(3) w(4) w(5) w(6) 
  

t = t(1) t(2) t(3) t(4) t(5) t(6) 

 PRP VBD TO VB DT NN
 
What is the most likely sequence of tags t= t(1)…t(N) 
for the given sequence of words w= w(1)…w(N) ?
t* = argmaxt P(t | w)

Statistical POS tagging

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

POS tagging with generative models
 
 
 
 

P(t,w): the joint distribution of the labels we want to predict (t)
and the observed data (w).
We decompose P(t,w) into P(t) and P(w | t) since these
distributions are easier to estimate. 

Models based on joint distributions of labels and observed data
are called generative models: think of P(t)P(w | t) as a stochastic
process that first generates the labels, and then generates the
data we see, based on these labels.

5

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Hidden Markov Models (HMMs)
HMMs are the most commonly used generative models for POS tagging
(and other tasks, e.g. in speech recognition)
 
HMMs make specific independence assumptions in P(t) and P(w| t): 

1) P(t) is an n-gram (typically bigram or trigram) model over tags:

P(t(i) | t(i–1)) and P(t(i) | t(i–1), t(i–2)) are called transition probabilities

2) In P(w | t), each w(i) depends only on [is generated by/conditioned on] t(i):
  

 P(w(i) | t(i)) are called emission probabilities  

These probabilities don’t depend on the position in the sentence (i),  
but are defined over word and tag types.  
With subscripts i,j,k, to index word/tag types, they become P(ti | tj), P(ti | tj, tk), P(wi | tj)

Pbigram(t) = ∏
i

P(t(i) ∣ t(i−1)) Ptrigram(t) = ∏
i

P(t(i) ∣ t(i−1), t(i−2))

P(w ∣ t) = ∏
i

P(w(i) ∣ t(i))

6

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Notation: ti/wi vs t(i)/w(i)

To make the distinction between the i-th word/tag in
the vocabulary/tag set and the i-th word/tag in the
sentence clear: 

Use superscript notation w(i) for the i-th token  
in the sentence/sequence 

and subscript notation wi for the i-th type  
in the inventory (tagset/vocabulary)

7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

HMMs as probabilistic automata

DT

JJ

NN

0.7

0.3

0.4

0.6

0.55

VBZ

0.45
0.5

the

0.2
a

0.1every

0.1some 0.1
no

0.01
able

...
...

0.003

zealous

...
...

0.002

zone

0.00024

abandonment

0.001

yields
...
...

0.02

acts

An HMM defines 
Transition probabilities:

 P(ti | tj)

Emission probabilities:

 P(wi | ti)

8

DT: Determiner
JJ: Adjective
NN: Common noun (singular)
VBZ: Verb (3rd pers sing. present tense)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How would the
automaton for a trigram

HMM with transition probabilities
P(ti | tjtk) look like?

 
What about unigrams  

 or n-grams?
???

???

9

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

DT

JJ

NN VBZq0

Encoding a trigram model as FSA

JJ_DT

NN_DT

JJ

NN VBZDT<S>

DT_<S><S>

JJ_JJ

NN_JJ

VBZ_NN

NN_NN

Bigram model:
States = Tag Unigrams

Trigram model:
States = Tag Bigrams

10

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

HMM definition

11

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1,qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1,qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1,qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1,qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1,qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

}

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

An example HMM

12

D N V A .
D 0.8 0.2
N 0.7 0.3
V 0.6 0.4
A 0.8 0.2
.

Transition Matrix A

the man ball throw
s

sees red blue .
D 1
N 0.7 0.3
V 0.6 0.4
A 0.8 0.2
. 1

Emission Matrix B

D N V A .
π 1

Initial state vector π

D N

V

A

.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Building an HMM tagger
To build an HMM tagger, we have to: 

Train the model, i.e. estimate its parameters  
(the transition and emission probabilities)

Easy case: We have a corpus labeled with POS tags (supervised learning) 
Harder case: We have a corpus, but it’s just raw text without tags
(unsupervised learning). In that case it really helps to have a dictionary of
which POS tags each word can have  

Define and implement a tagging algorithm  
that finds the best tag sequence t*  
for each input sentence w:  
 t* = argmaxt P(t)P(w | t)

[Viterbi]
13

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

We count how often we see titj and wj_ti etc.  
in the data (use relative frequency estimates): 

Learning the transition probabilities:  
 

Learning the emission probabilities: 
 

Learning an HMM  
from labeled data

14

P (tj |ti) =
C(titj)
C(ti)

Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS
old_JJ ,_, will_MD join_VB the_DT board_NN

as_IN a_DT nonexecutive_JJ director_NN Nov._NNP
29_CD ._.

P (wj |ti) =
C(wj ti)

C(ti)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The
Vite

rbi

Algo
rithm

15

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

HMM decoding (Viterbi)
We are given a sentence w = w(1)…w(N)

	 w= “she promised to back the bill” 

We want to use an HMM tagger to find its POS tags t
t* = argmaxt P(w, t)
 = argmaxt P(t(1))·P(w(1)| t(1))·P(t(2)| t(1))·…·P(w(N)| t(N))

 
But: with T tags, w has O(TN) possible tag sequences!
To do this efficiently (in O(T2N) time), we will use a
dynamic programming technique called  
the Viterbi algorithm which exploits the independence
assumptions in the HMM.

16

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dynamic programming
Dynamic programming is a general technique to solve
certain complex search problems by memoization

1.) Recursively decompose the large search
problem into smaller subproblems  
that can be solved efficiently

–There is only a polynomial number of subproblems. 

2.) Store (memoize) the solutions of each
subproblem in a common data structure

–Processing this data structure takes polynomial time

17

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The Viterbi algorithm
A dynamic programming algorithm which finds the
best (=most probable) tag sequence t* for an input
sentence w: t* = argmaxt P(w | t)P(t) 

Complexity: linear in the sentence length.
With a bigram HMM, Viterbi runs in O(T2N) steps  
for an input sentence with N words and a tag set of T tags. 

The independence assumptions of the HMM tell us  
how to break up the big search problem  
(find t* = argmaxt P(w | t)P(t)) into smaller subproblems.  

The data structure used to store the solution of these
subproblems is the trellis.

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

States

Bookkeeping: the trellis

We use a N×T table (“trellis”) to keep track of the HMM. 
The HMM can assign one of the T tags to each of the N words.

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT
Words (“time steps”)

19

word w(i) has tag tj

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Viterbi: filling in the first column

We want to find the best (most likely) tag sequence  
for the entire sentence.
Each cell trellis[i][j] (corresponding to word w(i) with tag tj) contains:
— trellis[i][j].viterbi: the probability of the best sequence ending in tj
— trellis[i][j].backpointer: to the cell k in the previous column that
corresponds to the best tag sequence ending in tj

w(1)

DT

...

NNS

...

VBZ

20

π(DT) × P(w(1) ∣ DT)

π(NNS) × P(w(1) ∣ NNS)

π(VBZ) × P(w(1) ∣ VBZ)

: probability that a
sentence starts with DT 
 

: probability
that tag DT emits word w(1)

π(DT)

P(w(1) ∣ DT)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Initialization
For a bigram HMM:
Given an N-word sentence w(1)…w(N) and a tag set
consisting of T tags, create a trellis of size N×T

In the first column, initialize each cell trellis[1][k] as  
 trellis[1][k] := π(tk)P(w(1) | tk)
(there is only a single tag sequence for the first word
that assigns a particular tag to that word)

21

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

At any internal cell
– For each cell in the preceding column: multiply its Viterbi

probability with the transition probability to the current cell.
– Keep a single backpointer to the best (highest scoring) cell  

in the preceding column
–Multiply this score with the emission probability  

of the current word

22

w(n-1) w(n)

t1 P(w(1..n-1), t(n-1)=t1)
... ...
ti P(w(1..n-1), t(n-1)=ti)
... ...
tT P(w(1..n-1), tn-1=tT)

P(ti |t1)

P(ti | ti)

P(ti | tT)

trellis[n][i].viterbi = 
 P(w(n) | ti)

⋅Maxj(trellis[n-1][j].viterbi ⋅ P(ti |tj))

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

At the end of the sentence
In the last column (i.e. at the end of the sentence)
pick the cell with the highest entry, and trace back the
backpointers to the first word in the sentence.

23

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 24

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT

 Retrieving t* = argmaxt P(t,w)

By keeping one backpointer from each cell to the cell  
in the previous column that yields the highest probability,  

we can retrieve the most likely tag sequence when we’re done.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT

Computing P(t,w) for one tag sequence

P(w(1) | t1)

P(w(2) | tj)

P(w(i) | ti)

P(t(1)=t1)

P(tj | t1)

P(ti | t…)

P(t..| ti)

P(w(i+1) | ti+1)

P(w(N) | tj)

P(tj | t..)

25

One path through the trellis = one tag sequence

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Viterbi
trellis[i][j].viterbi (word w(j), tag tj) stores the probability
of the best tag sequence for w(1)…w(i) that ends in tj

trellis[i][j].viterbi = max P(w(1)…w(i), t(1)…, t(i) = tj)

We can recursively compute trellis[i][j].viterbi from the
entries in the previous column trellis[i-1][j].viterbi
trellis[i][j].viterbi =  
 P(w(i)| tj) ⋅Maxk(trellis[i-1][k].viterbiP(tj | tk))

At the end of the sentence, we pick the highest
scoring entry in the last column of the trellis

26

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 27

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

max

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 28

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 29

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 30

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 31

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 32

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 33

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 34

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 35

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 36

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 37

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 38

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 39

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

Janet_NNP will_MD back_VB the_DT bill_NN

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The Viterbi algorithm
Viterbi(w1…n){

for t (1...T) // INITIALIZATION: first column 
 trellis[1][t].viterbi = p_init[t] × p_emit[t][w1]

for i (2...n){ // RECURSION: every other column

 for t (1....T){

 trellis[i][t] = 0

 for t’ (1...T){ 
 tmp = trellis[i-1][t’].viterbi × p_trans[t’][t]

 if (tmp > trellis[i][t].viterbi){

 trellis[i][t].viterbi = tmp

 trellis[i][t].backpointer = t’}}

 trellis[i][t].viterbi ×= p_emit[t][wi]}}

t_max = NULL, vit_max = 0; // FINISH: find the best cell in the last column

for t (1...T)

 if (trellis[n][t].vit > vit_max){t_max = t; vit_max = trellis[n][t].value }

return unpack(n, t_max);

}

40

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Viterbi
Each cell trellis[i][j] (word w(i) with tag tj) contains:
— The Viterbi probability trellis[i][j].viterbi:  
 The maximum probability P(w(1)…w(i), t(1),…, t(i) = tj)  
 of any tag sequence that ends in tj for the prefix w(1)…(i)

— A backpointer trellis[i][j].backpointer = k*  
 to the cell trellis[i–1][k*] in the preceding column  
 that corresponds to the tag
To fill trellis[i][j], find the best cell in the previous column (trellis[i–1][k*])
based on the previous column and the transition probabilities P(tj | tk)

k* for trellis[i][j] := Maxk (trellis[i–1][k] ⋅ P(tj | tk))

The entry in trellis[i][j] includes the emission probability P(w(i)| tj)

trellis[i][j] := P(w(i) | tj) ⋅ (trellis[i–1][k*] ⋅ P(tj | tk*))

We also associate a backpointer from trellis[i][j] to trellis[i–1][k*]
Finally, return the highest scoring entry in the last column of the trellis  
(= for the last word) and follow its backpointers

41

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Sequ
ence

Labe
ling

42

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

POS tagging

43

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS old_JJ ,_,
will_MD join_VB IBM_NNP ‘s_POS board_NN as_IN a_DT
nonexecutive_JJ director_NN Nov._NNP 29_CD ._.

Task: assign POS tags to words

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Noun phrase (NP) chunking

44

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

[NP Pierre Vinken] , [NP 61 years] old , will join  
[NP IBM] ‘s [NP board] as [NP a nonexecutive director]  
[NP Nov. 2] .

Task: identify all non-recursive NP chunks

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The BIO encoding
We define three new tags:
– B-NP: beginning of a noun phrase chunk
– I-NP: inside of a noun phrase chunk
– O: outside of a noun phrase chunk

45

[NP Pierre Vinken] , [NP 61 years] old , will join  
[NP IBM] ‘s [NP board] as [NP a nonexecutive director]  
[NP Nov. 2] .

Pierre_B-NP Vinken_I-NP ,_O 61_B-NP years_I-NP
old_O ,_O will_O join_O IBM_B-NP ‘s_O board_B-NP as_O
a_B-NP nonexecutive_I-NP director_I-NP Nov._B-NP  
29_I-NP ._O

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Shallow parsing

46

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

[NP Pierre Vinken] , [NP 61 years] old , [VP will join]  
[NP IBM] ‘s [NP board] [PP as] [NP a nonexecutive
director] [NP Nov. 2] .

Task: identify all non-recursive NP,  
verb (“VP”) and preposition (“PP”) chunks

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The BIO encoding for shallow parsing
We define several new tags:
– B-NP B-VP B-PP: beginning of an NP, “VP”, “PP” chunk
– I-NP I-VP I-PP: inside of an NP, “VP”, “PP” chunk
– O: outside of any chunk

47

Pierre_B-NP Vinken_I-NP ,_O 61_B-NP years_I-NP
old_O ,_O will_B-VP join_I-VP IBM_B-NP ‘s_O board_B-NP
as_B-PP a_B-NP nonexecutive_I-NP director_I-NP Nov._B-
NP 29_I-NP ._O

[NP Pierre Vinken] , [NP 61 years] old , [VP will join]  
[NP IBM] ‘s [NP board] [PP as] [NP a nonexecutive
director] [NP Nov. 2] .

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Named Entity Recognition

48

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

[PERS Pierre Vinken] , 61 years old , will join  
[ORG IBM] ‘s board as a nonexecutive director  
[DATE Nov. 2] .

Task: identify all mentions of named entities 
 (people, organizations, locations, dates)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The BIO encoding for NER
We define many new tags:
– B-PERS, B-DATE, …: beginning of a mention of a person/

date...
– I-PERS, I-DATE, …: inside of a mention of a person/date...
– O: outside of any mention of a named entity

49

Pierre_B-PERS Vinken_I-PERS ,_O 61_O years_O old_O ,_O
will_O join_O IBM_B-ORG ‘s_O board_O as_O a_O
nonexecutive_O director_O Nov._B-DATE 29_I-DATE ._O

[PERS Pierre Vinken] , 61 years old , will join  
[ORG IBM] ‘s board as a nonexecutive director  
[DATE Nov. 2] .

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Sequence Labeling
Input: a sequence of n tokens/words:
Pierre Vinken , 61 years old , will join IBM ‘s board as a
nonexecutive director Nov. 29  

Output: a sequence of n labels, such that  
each token/word is associated with a label:

POS-tagging: Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS
old_JJ ,_, will_MD join_VB IBM_NNP ‘s_POS board_NN as_IN
a_DT nonexecutive_JJ director_NN Nov._NNP 29_CD ._.

Named Entity Recognition: Pierre_B-PERS Vinken_I-PERS ,_O 61_O
years_O old_O ,_O will_O join_O IBM_B-ORG ‘s_O board_O
as_O a_O nonexecutive_O director_O Nov._B-DATE 29_I-
DATE ._O

50

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

BIO encodings in general
BIO encoding can be used to frame any task  
that requires the identification of non-overlapping  
and non-nested text spans as a sequence labeling
problem, e.g.:  

— NP chunking
— Shallow Parsing
— Named entity recognition

51

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Sequence labeling algorithms
Statistical models:

— Maximum Entropy Markov Models (MEMMs)
— Conditional Random Fields (CRFs)

Neural models:
— Recurrent networks (or transformers)  
 that predict a label at each time step, 
 possibly with a CRF output layer.

52

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Maximum Entropy Markov Models
MEMMs use a logistic regression (“Maximum Entropy”) classifier
for each P(t(i) |w(i), t(i−1))  
 
 

Here, t(i): label of the i-th word vs. ti = i-th label in the inventory 

This requires the definition of a feature function f(t(i−1), w(i))  
that returns an n-dimensional feature vector  
for predicting label t(i)=tj given inputs t(i−1) and w(i)

 
Training returns weights λjk for each feature j  
used to predict label tk

53

P(t(i) = tk | t(i�1),w(i)) =
exp(Â j l jk f j(t(i�1),w(i))

Âl exp(Â j l jl f j(t(i�1),w(i))

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Conditional Random Fields (CRFs)
Conditional Random Fields have the same
mathematical definition as MEMMs, but: 

—CRFS are trained globally to maximize  
 the probability of the overall sequence,
— MEMMs are trained locally to maximize  
 the probability of each individual label

This requires dynamic programming
— Training: akin to the Forward-Backward algorithm  
 used to train HMMs from unlabeled sequences)
— Decoding: Viterbi

54

