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Assessment updates
Peer-Grading:
Starting today, you will have one week after the 
submission deadline to finish grading the submissions 
assigned to you.

4th Credit Hour Lit Review:
We put a list of suggestions on Canvas (currently 
buried under “Pages”), but these are not exhaustive.
We will ask you for a preliminary topic/list of papers 
by March 12.
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       She     promised   to    back   the     bill
w =   w(1)         w(2)         w(3)     w(4)    w(5)     w(6) 
  

t  =    t(1)         t(2)            t(3)        t(4)     t(5)       t(6) 

        PRP     VBD          TO      VB    DT     NN
 
What is the most likely sequence of tags t= t(1)…t(N) 
for the given sequence of words w= w(1)…w(N) ?
t* = argmaxt P(t | w)

Statistical POS tagging
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POS tagging with generative models
 
 
 
 

P(t,w): the joint distribution of the labels we want to predict (t) 
and the observed data (w).
We decompose P(t,w) into P(t) and P(w | t) since these 
distributions are easier to estimate. 

Models based on joint distributions of labels and observed data 
are called generative models: think of P(t)P(w | t) as a stochastic 
process that first generates the labels, and then generates the 
data we see, based on these labels.
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Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):
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Hidden Markov Models (HMMs)
HMMs are the most commonly used generative models for POS tagging 
(and other tasks, e.g. in speech recognition)
 
HMMs make specific independence assumptions in P(t) and P(w| t): 

1) P(t) is an n-gram (typically bigram or trigram) model over tags: 
                    

P(t(i) | t(i–1)) and P(t(i) | t(i–1), t(i–2)) are called transition probabilities

2) In P(w | t), each w(i)  depends only on [is generated by/conditioned on] t(i):
       

   P(w(i) | t(i)) are called emission probabilities  
 
These probabilities don’t depend on the position in the sentence (i),  
but are defined over word and tag types.  
With subscripts i,j,k, to index word/tag types, they become P(ti | tj), P(ti | tj, tk), P(wi | tj)

Pbigram(t) = ∏
i

P(t(i) ∣ t(i−1)) Ptrigram(t) = ∏
i

P(t(i) ∣ t(i−1), t(i−2))

P(w ∣ t) = ∏
i

P(w(i) ∣ t(i))
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Notation: ti/wi vs t(i)/w(i)

To make the distinction between the i-th word/tag in 
the vocabulary/tag set and the i-th word/tag in the 
sentence clear: 

Use superscript notation w(i) for the i-th token  
in the sentence/sequence 

and subscript notation wi for the i-th type  
in the inventory (tagset/vocabulary) 

7
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HMMs as probabilistic automata
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An HMM defines 
Transition probabilities:

   P( ti | tj)

Emission probabilities:

   P( wi | ti )
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DT: Determiner
JJ: Adjective
NN: Common noun (singular)
VBZ:  Verb (3rd pers sing. present tense)
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How would the 
automaton for a trigram 

HMM with transition probabilities 
P(ti | tjtk) look like?

 
What about unigrams   

     or n-grams?
???

???
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DT

JJ

NN VBZq0

Encoding a trigram model as FSA

JJ_DT

NN_DT

JJ

NN VBZDT<S>

DT_<S><S>

JJ_JJ

NN_JJ

VBZ_NN

NN_NN

Bigram model:
States = Tag Unigrams

Trigram model:
States = Tag Bigrams
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HMM definition

11

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1, ....qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N 
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1, ....qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N 
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1, ....qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N 
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1, ....qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N 
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1, ....qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N 
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

}
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An example HMM

12

D N V A .
D 0.8 0.2
N 0.7 0.3
V 0.6 0.4
A 0.8 0.2
.

Transition Matrix A

the man ball throw
s

sees red blue .
D 1
N 0.7 0.3
V 0.6 0.4
A 0.8 0.2
. 1

Emission Matrix B

D N V A .
π 1

Initial state vector π

D N

V

A

.
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Building an HMM tagger
To build an HMM tagger, we have to: 

Train the model, i.e. estimate its parameters  
(the transition and emission probabilities)

Easy case: We have a corpus labeled with POS tags (supervised learning) 
Harder case: We have a corpus, but it’s just raw text without tags 
(unsupervised learning). In that case it really helps to have a dictionary of 
which POS tags each word can have  

Define and implement a tagging algorithm  
that finds the best tag sequence t*  
for each input sentence w:   
    t* = argmaxt P(t)P(w | t) 

[Viterbi]
13
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We count how often we see titj  and  wj_ti etc.  
in the data (use relative frequency estimates): 

Learning the transition probabilities:  
 

Learning the emission probabilities: 
 

Learning an HMM  
from labeled data

14

P (tj |ti) =
C(titj)
C(ti)

Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS 
old_JJ ,_, will_MD join_VB the_DT board_NN 

as_IN a_DT nonexecutive_JJ director_NN Nov._NNP 
29_CD ._.

P (wj |ti) =
C(wj ti)

C(ti)
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HMM decoding (Viterbi)
We are given a sentence w = w(1)…w(N)


	 w= “she promised to back the bill” 

We want to use an HMM tagger to find its POS tags t
t* = argmaxt P(w, t)
    = argmaxt  P(t(1))·P(w(1)| t(1))·P(t(2)| t(1))·…·P(w(N)| t(N))

 
But: with T tags, w has O(TN)  possible tag sequences!  
To do this efficiently (in O(T2N) time), we will use a 
dynamic programming technique called  
the Viterbi algorithm which exploits the independence 
assumptions in the HMM. 

16
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Dynamic programming
Dynamic programming is a general technique to solve 
certain complex search problems by memoization

1.) Recursively decompose the large search 
problem into smaller subproblems  
that can be solved efficiently

–There is only a polynomial number of subproblems. 

2.) Store (memoize) the solutions of each 
subproblem in a common data structure

–Processing this data structure takes polynomial time

17
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The Viterbi algorithm
A dynamic programming algorithm which finds the 
best (=most probable) tag sequence t* for an input 
sentence w: t* = argmaxt P(w | t)P(t) 

Complexity: linear in the sentence length.
With a bigram HMM, Viterbi runs in O(T2N) steps  
for an input sentence with N words and a tag set of T tags. 

The independence assumptions of the HMM tell us  
how to break up the big search problem  
(find t* = argmaxt P(w | t)P(t)) into smaller subproblems.  

The data structure used to store the solution of these 
subproblems is the trellis.

18
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States

Bookkeeping: the trellis

We use a N×T table (“trellis”) to keep track of the HMM. 
The HMM can assign one of the T tags to each of the N words.

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT
Words (“time steps”)

19

word w(i) has tag tj
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Viterbi: filling in the first column

We want to find the best (most likely) tag sequence  
for the entire sentence. 
Each cell trellis[i][j] (corresponding to word w(i) with tag tj) contains:
— trellis[i][j].viterbi: the probability of the best sequence ending in tj 
— trellis[i][j].backpointer: to the cell k in the previous column that 
corresponds to the best tag sequence ending in tj

w(1)

DT   

...

NNS

...

VBZ

20

π(DT) × P(w(1) ∣ DT)

π(NNS) × P(w(1) ∣ NNS)

π(VBZ) × P(w(1) ∣ VBZ)

: probability that a 
sentence starts with DT 
 

: probability 
that tag DT emits word w(1) 

π(DT)

P(w(1) ∣ DT)
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Initialization
For a bigram HMM:
Given an N-word sentence w(1)…w(N) and a tag set 
consisting of T tags, create a trellis of size N×T 

In the first column, initialize each cell trellis[1][k] as  
      trellis[1][k] := π(tk)P(w(1) | tk)
(there is only a single tag sequence for the first word 
that assigns a particular tag to that word)

21
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At any internal cell
– For each cell in the preceding column: multiply its Viterbi 

probability with the transition probability to the current cell. 
– Keep a single backpointer to the best (highest scoring) cell  

in the preceding column
–Multiply this score with the emission probability  

of the current word

22

w(n-1) w(n)

t1 P(w(1..n-1), t(n-1)=t1)
... ...
ti P(w(1..n-1), t(n-1)=ti)          
... ...
tT P(w(1..n-1), tn-1=tT)

P(ti |t1)

P(ti | ti)

P(ti | tT)

trellis[n][i].viterbi = 
 P(w(n) | ti)


⋅Maxj( trellis[n-1][j].viterbi ⋅ P(ti |tj) )
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At the end of the sentence
In the last column (i.e. at the end of the sentence)
pick the cell with the highest entry, and trace back the 
backpointers to the first word in the sentence.

23
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w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT

 Retrieving t* = argmaxt P(t,w)

By keeping one backpointer from each cell to the cell  
in the previous column that yields the highest probability,  

we can retrieve the most likely tag sequence when we’re done. 
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w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT

Computing P(t,w) for one tag sequence

P(w(1) | t1)

P(w(2) | tj)

P(w(i) | ti)

P(t(1)=t1)

P(tj | t1)

P(ti | t…)

P(t..| ti)

P(w(i+1) | ti+1)

P(w(N) | tj )

P(tj | t..)

25

One path through the trellis = one tag sequence
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Viterbi
trellis[i][j].viterbi (word w(j), tag tj) stores the probability 
of the best tag sequence for w(1)…w(i) that ends in tj 

trellis[i][j].viterbi = max P(w(1)…w(i), t(1)…, t(i) = tj )

We can recursively compute trellis[i][j].viterbi from the 
entries in the previous column trellis[i-1][j].viterbi
trellis[i][j].viterbi =   
        P(w(i)| tj) ⋅Maxk( trellis[i-1][k].viterbiP(tj | tk) )


At the end of the sentence, we pick the highest 
scoring entry in the last column of the trellis

26



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/ 27

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

max
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Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
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Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
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Janet will back the bill
DT
RB
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JJ
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DT
RB
NN
JJ
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NNP



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/ 32

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
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Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
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Janet will back the bill
DT
RB
NN
JJ
VB
MD
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Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max
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Janet will back the bill
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Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

Janet_NNP will_MD back_VB the_DT bill_NN
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The Viterbi algorithm
Viterbi( w1…n){


for t (1...T)  // INITIALIZATION: first column 
   trellis[1][t].viterbi = p_init[t] × p_emit[t][w1]

for i (2...n){  // RECURSION: every other column

    for t (1....T){

        trellis[i][t] = 0

        for t’ (1...T){ 
             tmp = trellis[i-1][t’].viterbi × p_trans[t’][t]

             if (tmp > trellis[i][t].viterbi){ 

                  trellis[i][t].viterbi = tmp

                  trellis[i][t].backpointer = t’}} 

        trellis[i][t].viterbi ×= p_emit[t][wi]}}

t_max = NULL, vit_max = 0;  // FINISH: find the best cell in the last column

for t (1...T)

    if (trellis[n][t].vit > vit_max){t_max = t; vit_max = trellis[n][t].value }

return unpack(n, t_max);

}

40
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Viterbi
Each cell trellis[i][j] (word w(i) with tag tj) contains:
— The Viterbi probability trellis[i][j].viterbi:  
     The maximum probability P(w(1)…w(i), t(1),…, t(i) = tj )  
     of any tag sequence that ends in  tj   for the prefix w(1)…(i)

— A backpointer trellis[i][j].backpointer = k*  
     to the cell trellis[i–1][k*] in the preceding column  
     that corresponds to the tag 
To fill trellis[i][j], find the best cell in the previous column (trellis[i–1][k*]) 
based on the previous column and the transition probabilities P(tj | tk)

k* for trellis[i][j] :=  Maxk ( trellis[i–1][k] ⋅ P(tj | tk) )

The entry in trellis[i][j] includes the emission probability P(w(i)| tj)


trellis[i][j] :=  P(w(i) | tj) ⋅ (trellis[i–1][k*] ⋅ P(tj | tk*))

We also associate a backpointer from trellis[i][j] to trellis[i–1][k*]
Finally, return the highest scoring entry in the last column of the trellis  
(= for the last word) and follow its backpointers

41
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Sequ
ence

 

Labe
ling
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POS tagging

43

Pierre Vinken , 61 years old , will join IBM ‘s board 
as a nonexecutive director Nov. 29 .

Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS old_JJ ,_, 
will_MD join_VB IBM_NNP ‘s_POS board_NN as_IN a_DT 
nonexecutive_JJ director_NN Nov._NNP 29_CD ._.

Task: assign POS tags to words
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Noun phrase (NP) chunking

44

Pierre Vinken , 61 years old , will join IBM ‘s board 
as a nonexecutive director Nov. 29 .

[NP Pierre Vinken] , [NP 61 years] old , will join  
[NP IBM] ‘s [NP board] as [NP a nonexecutive director]  
[NP Nov. 2] .

Task: identify all non-recursive NP chunks
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The BIO encoding
We define three new tags:
– B-NP: beginning of a noun phrase chunk
– I-NP: inside of a noun phrase chunk
– O: outside of a noun phrase chunk

45

[NP Pierre Vinken] , [NP 61 years] old , will join  
[NP IBM] ‘s [NP board] as [NP a nonexecutive director]  
[NP Nov. 2] .

Pierre_B-NP Vinken_I-NP ,_O 61_B-NP years_I-NP 
old_O ,_O will_O join_O IBM_B-NP ‘s_O board_B-NP as_O 
a_B-NP nonexecutive_I-NP director_I-NP Nov._B-NP  
29_I-NP ._O
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Shallow parsing

46

Pierre Vinken , 61 years old , will join IBM ‘s board 
as a nonexecutive director Nov. 29 .

[NP Pierre Vinken] , [NP 61 years] old , [VP will join]  
[NP IBM] ‘s [NP board] [PP as] [NP a nonexecutive 
director] [NP Nov. 2] .

Task: identify all non-recursive NP,  
verb (“VP”) and preposition (“PP”) chunks
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The BIO encoding for shallow parsing
We define several new tags:
– B-NP B-VP B-PP: beginning of an NP, “VP”, “PP” chunk
– I-NP I-VP I-PP: inside of an NP, “VP”, “PP” chunk
– O: outside of any chunk

47

Pierre_B-NP Vinken_I-NP ,_O 61_B-NP years_I-NP 
old_O ,_O will_B-VP join_I-VP IBM_B-NP ‘s_O board_B-NP 
as_B-PP a_B-NP nonexecutive_I-NP director_I-NP Nov._B-
NP 29_I-NP ._O

[NP Pierre Vinken] , [NP 61 years] old , [VP will join]  
[NP IBM] ‘s [NP board] [PP as] [NP a nonexecutive 
director] [NP Nov. 2] .



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Named Entity Recognition

48

Pierre Vinken , 61 years old , will join IBM ‘s board 
as a nonexecutive director Nov. 29 .

[PERS Pierre Vinken] , 61 years old , will join  
[ORG IBM] ‘s board as a nonexecutive director  
[DATE Nov. 2] .

Task: identify all mentions of named entities 
 (people, organizations, locations, dates)
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The BIO encoding for NER
We define many new tags:
– B-PERS, B-DATE, …:  beginning of a mention of a person/

date...
– I-PERS, I-DATE, …: inside of a mention of a person/date...
– O: outside of any mention of a named entity

49

Pierre_B-PERS Vinken_I-PERS ,_O 61_O years_O old_O ,_O 
will_O join_O IBM_B-ORG ‘s_O board_O as_O a_O 
nonexecutive_O director_O Nov._B-DATE 29_I-DATE ._O

[PERS Pierre Vinken] , 61 years old , will join  
[ORG IBM] ‘s board as a nonexecutive director  
[DATE Nov. 2] .
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Sequence Labeling
Input: a sequence of n tokens/words:
Pierre Vinken , 61 years old , will join IBM ‘s board as a 
nonexecutive director Nov. 29  

Output: a sequence of n labels, such that  
each token/word is associated with a label:

POS-tagging: Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS 
old_JJ ,_, will_MD join_VB IBM_NNP ‘s_POS board_NN as_IN 
a_DT nonexecutive_JJ director_NN Nov._NNP 29_CD ._.

Named Entity Recognition: Pierre_B-PERS Vinken_I-PERS ,_O 61_O 
years_O old_O ,_O will_O join_O IBM_B-ORG ‘s_O board_O 
as_O a_O nonexecutive_O director_O Nov._B-DATE 29_I-
DATE ._O

50



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

BIO encodings in general
BIO encoding can be used to frame any task  
that requires the identification of non-overlapping  
and non-nested text spans as a sequence labeling 
problem, e.g.:  

— NP chunking
— Shallow Parsing
— Named entity recognition
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Sequence labeling algorithms
Statistical models:

— Maximum Entropy Markov Models (MEMMs)
— Conditional Random Fields (CRFs)

Neural models:
— Recurrent networks (or transformers)  
    that predict a label at each time step, 
    possibly with a CRF output layer.
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Maximum Entropy Markov Models
MEMMs use a logistic regression (“Maximum Entropy”) classifier 
for each P(t(i) |w(i), t(i−1))  
 
 

Here, t(i): label of the i-th word vs.  ti = i-th label in the inventory 

This requires the definition of a feature function f(t(i−1), w(i))   
that returns an n-dimensional feature vector  
for predicting label t(i)=tj  given inputs t(i−1) and w(i) 

 
Training returns weights λjk  for each feature j  
used to predict label tk

53

P(t(i) = tk | t(i�1),w(i)) =
exp(Â j l jk f j(t(i�1),w(i))

Âl exp(Â j l jl f j(t(i�1),w(i))
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Conditional Random Fields (CRFs)
Conditional Random Fields have the same 
mathematical definition as MEMMs, but: 

—CRFS are trained globally to maximize  
    the probability of the overall sequence,
— MEMMs are trained locally to maximize  
    the probability of each individual label

This requires dynamic programming 
— Training: akin to the Forward-Backward algorithm  
     used to train HMMs from unlabeled sequences)
— Decoding: Viterbi
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