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Fully connected feedforward nets

Three kinds of layers,
arranged in sequence: T Output layer: vector y
— Input layer
(what'’s fed into the net)

— Hidden layers
(intermediate computations)

— Output layer
(what the net returns) Input layer: vector x

Hidden layer: vector hy

Hidden layer: vector h4

Each layer consists of a number of units.
— Each hidden/output unit computes a real-valued activation

— In a feedforward net, each (hidden/output) unit receives inputs
from the units in the Immediately preceding layer

— In a fully connected feedforward net, each unit receives inputs
from all units in the immediately preceding layer

Additional “Highway connections” that skip layers can be useful
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Feedforward computations

[ The activation X;j of unit jin layer /is computed as
Xij = g(wij X T bij)

where
— W;; = (wl-jl, . ,wle) is a (unit-specific) weight vector

(K= #units in (i — 1)-th layer, because each connection into unit j is associated
with one real-valued weight for each unit in the preceding layer)

— sz is a (unit-specific) real-valued bias term

— g2() is a (layer-specific) non-linear activation function

Each layer is defined by its number of units, /V,
a non-linear activation function g() applied to all units in the layer,
a learned matrix of weights W, and a learned bias vector b.
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Nonlinear Activation Functions g()

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

1.0 1.0 1.0 1.0
0.5 / 0.5 0.5 0.5 /
0.0 0.0 0.0 0.0
-0.5 -0.5 -0.5 -0.5
-1.0 -1.0 -1.0 -1.0
6 -4 -2 0 2 4 6 6 -4 -2 0 2 46 6-4-2 0 2 46 6 -4 -2 0 2 46
Fig.:Y. Goldberg (2017) Neural Network Methods for Natural Language Processing

Sigmoid (logistic function) o(x) = 1 +1
e—x

Outputs in [0,1] range. Useful for output units (probabilities), interpolation
e?* — 1

e? + 1
Outputs in [-1,1] range. Useful for internal units

Hyperbolic tangent: tanh(x) =

Hard tanh htanh(x) = -1 for x < -1, 1 for x > 1, X otherwise
Outputs in [-1,1] range. Approximates tanh

Rectified Linear Unit: ReLU(x) = max(0,x)
Outputs in [0, +oo]. Works very well for internal units.
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Binary Classification
with a multilayer feedforward net

The output layer consists of a single unit
with the sigmoid activation function

One output unit with
sigmoid activation function

I y = o(wx + b) € [0...1]
A
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Multi-Class Classification
with a multilayer feedforward net

With K output classes, the output layer has K units
with a softmax activation function:

Output layer:

Avectory = (y¢, ..., Yg) Where the i-th
element corresponds to the probability
that the input has class .

: SXP(Z;
yi — SOftmaX(Zi) — K P ( l)
21 SXP(21)

such that we get a categorical
distribution over all K classes
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Multi-Label Classification
with a multilayer feedforward net

With K output classes, K output units
with K sigmoid activation functions:

Output layer:

Avectory = (yy, ..., Yx) Where the i-th
element corresponds to the probability
that the input does (or doesn’t) have

O class I

We now have a separate probability for
each possible class label.
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Our first neural net for NLP:
A neural n-gram model

Given a fixed-size vocabulary V, an n-gram model
predicts the probability of the n-th word
following the preceding n—1 words:

P(w® | wl=D (=2 ==y
How can we model this with a neural net?
— Input layer: concatenate n—1 word vectors

— Output layer: a softmax over VI units
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An n-gram model P(w | wi...wx)
as a feedforward net (naively)

Assumptions:

The vocabulary V contains Vtypes (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words

Our (naive) model:

— [Naive]
Each input word w; € V is a V-dimensional one-hot vector v(w)
— The input layer x = [v(w1),...,v(wx)] has Vxk elements

— We assume one hidden layer h

— The output layer is a softmax over V elements
P(w | wi...wx) = softmax(hW?2 + b?)
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An n-gram model P(w | wi...wx)
as a feedforward net (better)

Assumptions:

The vocabulary V contains Vtypes (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words

Our (better) model:

— [Better]
Each input word w; € V is an n-dimensional dense embedding
vector v(w) (with n<V)

— The input layer x = [v(w1),...,v(wi)] has nxk elements
— We assume one hidden layer h

— The output layer is a softmax over V elements
P(w | wi...wx) = softmax(hW?2 + b?)
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Our neural n-gram models

(

Architecture:
Input Layer: X = [v(W1)....v(Wy)]
Hidden Layer: h = g(xW! + bl)
Pw I wi...wx) = softmax(hW?2 + b?)

Output Layer:

" How many parameters do we need? [# of weights and biases]:

Hidden layer with one-hot inputs: W1 & Rk V) xdim() — phl & Rdim(h)
Hidden layer with dense inputs: W! & Rk-n)xdimth) — pl & Rdim(h)
Output layer (any 1inputs): W2 & Rdim(bxv b2 € RV

With V = 10K, n = 300 (word2vec), dim(h) = 300
kK =2 (trigram): W1 € R20,000x300 gr W1 ¢ R600x300 gnd b1e R300
K =5 (six-gram): W1 e R50.000x300 gr W1 ¢ R1500x300 gnd b1 R300
W2 ¢ R300x10,000 ph2 < R10,000
Six-gram model with one-hot inputs: 27,000,460,000 parameters,
with dense inputs: 3,460,000 parameters

Traditional six-gram model: 1046 = 1024 parameters
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Naive (one-hot input)
neural n-gram model

Advantage over non-neural n-gram model:

— The hidden layer captures interactions
among context words

— Increasing the order of the n-gram requires only
a small linear increase in the number of parameters.
dim(W1) goes from (k- dim(V)) - dim(h) to ((k+1) - dim(V)) - dim(h)
— Increasing the vocabulary also leads only to
a linear increase in the number of parameters

But: With a one-hot encoding and dim(V) = 10K or so,
this model still requires a LOT of parameters to learn.

And: The Markov assumption still holds
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Better (dense embeddings input)
neural n-gram model

Advantage over non-neural n-gram model:
— Same as naive neural model, plus:

Advantages over naive neural n-gram model:

— We have far fewer parameters to learn

— Better generalizations: If similar input words have
similar embeddings, the model will predict similar
probabilities in similar contexts:

P(w | the doctor saw the) ~ P(w |a nurse sees her)

But: This generalization only works if the contexts have similar
words in the same position.

And: The Markov assumption still holds.
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Neural n-gram models

Naive neural n-gram models (one-hot inputs) have
similar shortcomings to standard n-gram models
— Models get very large (and sparse) as n increases
— We can’t generalize across similar contexts
— Markov (independence) assumptions are too strict

Better neural n-gram models can be obtained with
dense word embeddings:

— Models remain much smaller

— Embeddings may provide some (limited) generalization
across similar contexts

Future lectures: CBOW neural nets as a language
model, recurrent language models
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Word2Vec as language model

Instead of training a binary classifier for pairs of words,
predict context words from the target (Skipgram)
or the target word from context words (CBOW)

The output of this model is a distribution over words.

(Mikolov et al. use a “hierarchical” softmax, based on a

Huffman (binary tree) encoding of the (output)
vocabulary, where the most common words have the
shortest bit vector to be predicted.
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CBOW vs Skipgram

CBOW (continuous bag of words):
predict target word from surrounding context

Skipgram: Predict context words from target word

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT
w(t-2) w(t-2)
w(t-1) w(t-1)

R w(t) w(t) —
wt+1) 7/( \\ wit+1)
w(t+2) w(t+2)
cCBOwW Skip-gram
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CBOW (as neural LM)

— Learn D-dimensional embeddings for each (context) word

— Predict target word based on the sum (average) of the
embeddings of the words in its context with a standard
neural language model

— Return trained context embeddings

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

SUM

w(t+1)

N\

w(t+2)

CBOW
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Skipgram (as neural LM)

— Learn D-dimensional embeddings for each target word

— Predict all context words based on the target word
embedding

— Return trained target embeddings

INPUT PROJECTION  OUTPUT

w(t-2)

w(t) —

\ w(t+1)

w(t-1)

w(t+2)

Skip-gram
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Convolutional Neural Nets (ConvNets, CNNSs)

[4 parameters, applied 3 times, non-overlapping inputs]

Sparse Networks
(with shared parameters: CNNSs)

Q
Q

O
®
5 &ETTI

[3 parameters, applied 4 times, overlapping inputs]

Dense
(Fully-Connected)
Networks
[last lecture]
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Convolutional Neural Nets

2D CNNs are a standard architecture for image data.

Neocognitron (Fukushima, 1980):
CNN with convolutional and downsampling (pooling) layers

CNNs are inspired by receptive fields in the visual
cortex: Individual neurons respond to small regions
(patches) of the visual field.

Neurons in deeper layers respond to larger regions.
Neurons in the same layer share the same weights.

This parameter tying allows CNNs to handle variable
size inputs with a fixed number of parameters.

CNNs can be used as input to fully connected nets.
In NLP, CNNs are mainly used for classification.
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A toy example

a b d
e f h
] [

SR O

l

A 3x4 black-and-white image is a 3x4 matrix of pixels.
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Applying a 2x2 filter

w X
A
[

aw+bx+ey+fz bw+cex+fy+gz cw+dx+ gy + hz

d
€

SR O

l

b
f
J

ew+fx+iy+jz fwHgx+jy+kz gw+hx+ky+lz

A NXN filter is an N X N-size matrix that can be applied to
N X N-size patches of the input image.

This operation is called convolution, but it works just like a
dot product of vectors.
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Applying a 2x2 filter

d
€

& 0 O

l

b
f
J

aw +bx+ey+fz bw+cx+fy-

.
h
i

ew + fx -

iy +jz fw-

w X

v

-0z ew+dx+ gy + hz

- gx +jy -

-kz gw+ hx+ky+ 1z

We can apply the same N XN filter to all N X N-size patches
of the input image.

We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.
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We can apply the same N XN filter to all N X N-size patches
of the input image.

We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.
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Applying a 2x2 filter
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Applying a 2x2 filter

d lW )C]
2 yo<
[

d
€
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b
f
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aw+bx+ey+fz bw+cex+fy+gz cw+dx+ gy + hz

ew+fx+iy+jz fwHgx+jy+kz gwHhx+ky+iz

We can apply the same N XN filter to all N X N-size patches
of the input image.

We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.
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Applying a 2x2 filter

w X
I
[

aw+bx+ey+fz bw+cex+fy+gz cw+dx+ gy + hz
ew+fx+iy+jz fwHgx+jy+kz gw+hx+ky+liz

d
€

b
f
J

& 00 O

l

We've turned a 3x4 matrix into a 2x3 matrix,
SO our image has shrunk.

Can we preserve the size of the input?
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Zero padding
0O 0 O 0O O
O a b ¢ d lw x]
0 ¢ f g h Y <
0 i j k [
0 0 0 0 0

0 Ow+0x+0y+az Ow+0Ox+ay+bz Ow+0x+by+cz Ow+0x+cy+dz
0 Ow+ax+0y+ez aw+bx+ey+fz bw+cx+fy+gz cw+dx+gy+ hz
0 Ow+ex+0y+iz ew+jfx+iy+jz fw+gx+jy+kz gw+hx+ky+liz

If we pad each matrix with 0s, we can maintain the
same size throughout the network
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After the nonlinear activation function

00000 w X
O a b ¢ d y Z
O e f g h
0 i j k I
0 0 0 ) 0 0
0  glaz) glay + b2) g(by + cz) g(cy +dz)

0 glax+ez) glaw+bx+ey+fz) glbw+cx+fy+gz) glcw+dx+ gy + hz)
0 glex+iz) glew+fx+iy+jz) g(fw+gx+jy+kz) glgw+hx+ky+lz) |

NB: Convolutional layers are typically followed by
Rel Us.
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Going from layer to layer...

O 0 0 0 O lw xl _—
Input O N Y <] Convolution

0 e f gh

0 i j k I

W; X
First 0.a, b, ¢ d, [ ] Second

i Y1 21| Convolution
Hidden 0 %
La "
yer |
0 i
=

X X One el tin the 2nd |

ne element in the 2nd |

a-edcccl) nd 0 ay by ¢ 4 layer correspondsto a

agen 0 e f & h 3x3 patch in the input:

Layer The “receptive field”

0 kz 12 gets larger in each layer |

LN VUPSIY N S G ) .




Changing the stride

Stride = the step size for sliding across the image
Stride = 1: Consider all patches [see previous example]
Stride = 2: Skip one element between patches
Stride = 3: Skip two elements between patches,...

A larger stride size yields a smaller output image.
0 0
a b

Filter: [

W X
vz

Input:

OO
Stride = 2: | e BT
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Handling color images: channels

Color images have a number of color channels:

Each pixel in an RGB image is a (red, green, blue)
triplet: ®=(255, 0, 0) or B=(120, 5, 155)

An NXM RGB image is a N XM X3 tensor
height X width X depth
#channels = depth of the image

Convolutional filters are applied to all channels
of the input

We still specify filter size in terms of the image patch, because the
#channels is a function of the data (not a parameter we control)

We still talk about 2X2 or 3X3 etc. filters, although with C channels,
they apply to a N X N X C region (and have N X N X C weights)
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Channels in internal layers

So far, we have just applied a single N XN filter
to get to the next layer.

But we could run K different N XV filters (with
different weights) to define a layer with K channels.

(If we initialize their weights randomly, they will learn different
properties of the input)

The hidden layers of CNNs have often
a large number of channels.

(Useftul trick: 1x1 convolutions increase or decrease the nr. of
channels without affecting the size of the visual field)
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Pooling Layers

Pooling layers reduce the size of the representation, and are often
used following a pair of conv+ReLU layers

Each pooling layer returns a 3D tensor of the same depth as its
input (but with smaller height & width) and is defined by

— a filter size (what region gets reduced to a single value)
— a stride (step size for sliding the window across the input)
— a pooling function (max pooling, avg pooling, min pooling, ...)

Pooling units don’t have weights, but simply return the maximum/
minimum/average value of their inputs

Typically, pooling layers only receive input from a single channel.
So they don’t reduce the depth (#channels).
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Max-pooling

Max-pooling in our example
with a 2x2 filter and stride=2:

Input: 2x2 MaxPooling

‘max(0,0,a, b)
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(2D) CNNs

An image is a 2D (width x height) matrix of pixels (e.g. RGB values)
=> it is a 3D tensor: color channels (“depth”) x width x height
Each convolutional layer returns a 3d tensor, and is defined by:

— the depth (#filters) of its output

— a filter size (the square size of the input regions for each filter),

— a stride (the step size for how to slide filters across the input)

— zero padding (how many Os are added around edges of input)
=> Filter size, stride, zero padding define the width/height of the output
Each unit in a convolutional layer

— receives input from a square region/patch (across wxh)
in the preceding layer (across all depth channels)

— returns the dot product of the input activations and its weights
Within a layer, all units at the same depth use the same weights
Convolutional layers are often followed by RelLU activations
http://cs231n.github.io/convolutional-networks/
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http://cs231n.github.io/convolutional-networks/

1D CNNSs for text

Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]

We can use a 1D CNN to slide a window of n tokens across:
— Filter size n = 3, stride = 1, no padding

The quick brown
The quick brown
The quick brown
The quick brown
The quick brown
The quick brown

— Filter size n = 2, stride = 2, no padding:

fox
fox
fox
fox
fox
fox

jumps
jumps
jumps
jumps
jumps
jumps

The quick brown fox jumps

The quick brown fox jumps

The quick brown fox jumps

The quick brown fox jumps

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

over
over
over
over
over

over

over
over
over

over

the
the
the
the
the
the

the
the
the
the

lazy
lazy
lazy
lazy
lazy
lazy

lazy
lazy
lazy
lazy

dog
dog
dog
dog
dog
dog

dog
dog
dog
dog

42



1D CNNSs for text classification

Input: a variable length sequence of word vectors
(#channels/depth = dimensionality of word vectors)

Zero padding: Add zero vectors (or to BOS/EOS)
to beginning and/or end of sentence (and/or hidden layers)

Filters: N-dimensional vectors (sliding windows of N-grams)
Filter size N in the first layer: size of the N-grams we consider

Conv. layers typically have a RelLU (or tanh) activation

Maxpooling layers reduce the dimensionality.
CNN depth: how many layers do we use?

The last CNN layer (a HX WX D tensor) needs to be
reshaped (flattened) into a (HX WX D)-dimensional vector

to be fed into a dense feedforward net for classification
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Understanding CNNs for text classification
Jacovi et al.’18 https://www.aclweb.org/anthology/W18-5408/

— Different filters detect (suppress) different types of ngrams
— Max-pooling removes irrelevant n-grams

— In a single-layer CNN with max-pooling, each filter output
can be traced back to a single input nhgram

— Each filter can also be associated with a class it predicts

— The positions in a filter check whether specific
types of words are present or absent in the input

— Filters can produce erroneous output
(abnormally high activations) on artificial input
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Readings and nice illustrations

https://www.deeplearningbook.org/contents/convnets.html

https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://github.com/vdumoulin/conv_arithmetic/blob/master/
README.md
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