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Fully connected feedforward nets
Three kinds of layers,  
arranged in sequence: 

— Input layer  
     (what’s fed into the net) 
— Hidden layers  
     (intermediate computations)
— Output layer  
     (what the net returns)

Each layer consists of a number of units.
— Each hidden/output unit computes a real-valued activation 
— In a feedforward net, each (hidden/output) unit receives inputs 
     from the units in the immediately preceding layer
— In a fully connected feedforward net, each unit receives inputs 
     from all units in the immediately preceding layer
 Additional “Highway connections” that skip layers can be useful

3

Input layer: vector x

Hidden layer: vector h1

Hidden layer: vector hn

Output layer: vector y

…    …    …
…    …    … 
…    …    …. 
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Feedforward computations
The activation  of unit j in layer i is computed as 
                 

where 
—  is a (unit-specific) weight vector   
( = #units in ( )-th layer, because each connection into unit  is associated 
with one real-valued weight for each unit in the preceding layer)

—   is a (unit-specific) real-valued bias term  

—  is a (layer-specific) non-linear activation function

Each layer is defined by its number of units, ,  
a non-linear activation function  applied to all units in the layer,  
a learned matrix of weights , and a learned bias vector . 

xij
xij = g(wij ⋅ xi−1 + bij)

wij = (wij1, . . . , wijK)
K i − 1 j

bij

g()

N
g()

W b
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Nonlinear Activation Functions g()

Sigmoid (logistic function) 
Outputs in [0,1] range. Useful for output units (probabilities), interpolation

Hyperbolic tangent:   
Outputs in [-1,1] range. Useful for internal units

Hard tanh   htanh(x) =  −1 for x < −1, 1 for x > 1, x otherwise
Outputs in [-1,1] range. Approximates tanh

Rectified Linear Unit:    
   Outputs in [0, +∞]. Works very well for internal units. 

σ(x) =
1

1 + e−x

tanh(x) =
e2x − 1
e2x + 1

ReLU(x) = max(0,x)
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Binary Classification  
with a multilayer feedforward net
The output layer consists of a single unit  
with the sigmoid activation function

6

One output unit with 
sigmoid activation function 

 y = σ(wx + b) ∈ [0...1]
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Multi-Class Classification  
with a multilayer feedforward net
With  output classes, the output layer has  units  
with a softmax activation function: 

K K

7

Output layer:  
A vector  where the i-th 
element corresponds to the probability 
that the input has class i: 

such that we get a categorical 
distribution over all K classes

y = (y1, …, yK)

yi = softmax(zi) =
exp(zi)

∑K
k=1 exp(zk)
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Multi-Label Classification  
with a multilayer feedforward net
With  output classes,  output units  
with  sigmoid activation functions: 

K K
K

8

Output layer:  
A vector  where the i-th 
element corresponds to the probability 
that the input does (or doesn’t) have 
class i: 
         
We now have a separate probability for 
each possible class label.

y = (y1, …, yK)

yi = sigmoid(wixi + bi)
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Our first neural net for NLP:
A neural n-gram model
Given a fixed-size vocabulary V, an n-gram model 
predicts the probability of the n-th word  
following the preceding n–1 words:

How can we model this with a neural net? 
— Input layer: concatenate n–1 word vectors
— Output layer: a softmax over |V| units 

P(w(i) |w(i−1), w(i−2), …, wi−(n−1))

10
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An n-gram model  P(w | w1…wk)  
as a feedforward net (naively)
Assumptions: 
The vocabulary V contains V types (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words 

Our (naive) model: 
— [Naive]  
     Each input word wi ∈ V is a V-dimensional one-hot vector v(w)    
      → The input layer x = [v(w1),…,v(wk)] has V×k elements

— We assume one hidden layer h
— The output layer is a softmax over V elements  
            P(w | w1…wk) = softmax(hW2 + b2)

11
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An n-gram model  P(w | w1…wk)  
as a feedforward net (better)
Assumptions: 
The vocabulary V contains V types (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words 

Our (better) model: 
— [Better]  
     Each input word wi ∈ V is an n-dimensional dense embedding  
     vector v(w)  (with n≪V) 
      → The input layer x = [v(w1),…,v(wk)] has n×k elements

— We assume one hidden layer h
— The output layer is a softmax over V elements  
            P(w | w1…wk) = softmax(hW2 + b2)

12
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Our neural n-gram models
Architecture:

Input Layer:            x = [v(w1)….v(wk)]
Hidden Layer:         h = g(xW1 + b1)
Output Layer:          P(w | w1…wk) = softmax(hW2 + b2)

How many parameters do we need? [# of weights and biases]: 
Hidden layer with one-hot inputs: W1 ∈ R(k·V) × dim(h)      b1 ∈ Rdim(h) 

Hidden layer with dense inputs:    W1 ∈ R(k·n) ×dim(h)       b1 ∈ Rdim(h) 

Output layer (any inputs):   W2 ∈ Rdim(h)×V                  b2 ∈ RV

With V = 10K, n = 300 (word2vec), dim(h) = 300 
   k = 2 (trigram): W1 ∈ R20,000×300  or W1 ∈ R600×300   and b1∈ R300  
    k = 5 (six-gram): W1 ∈ R50,000×300 or W1 ∈ R1500×300 and b1∈ R300  
  W2 ∈ R300×10,000 b2 ∈ R10,000

Six-gram model with one-hot inputs: 27,000,460,000 parameters, 
                          with dense inputs:             3,460,000 parameters
Traditional six-gram model:  104x6 =  1024 parameters  

13
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Naive (one-hot input)  
neural n-gram model
Advantage over non-neural n-gram model: 

— The hidden layer captures interactions  
     among context words 

— Increasing the order of the n-gram requires only  
    a small linear increase in the number of parameters. 


        dim(W1) goes from (k·dim(V))·dim(h) to ((k+1)·dim(V))·dim(h)
— Increasing the vocabulary also leads only to  
    a linear increase in the number of parameters 

But: With a one-hot encoding and dim(V) ≈ 10K or so,  
this model still requires a LOT of parameters to learn.

And: The Markov assumption still holds

14
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Better (dense embeddings input)  
neural n-gram model
Advantage over non-neural n-gram model:

— Same as naive neural model, plus:  

Advantages over naive neural n-gram model: 

— We have far fewer parameters to learn

— Better generalizations: If similar input words have  
     similar embeddings, the model will predict similar    
     probabilities in similar contexts:  
     


But: This generalization only works if the contexts have similar 
words in the same position.
And: The Markov assumption still holds.

P(w | the doctor saw the) ≈ P(w |a nurse sees her)

15
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Neural n-gram models
Naive neural n-gram models (one-hot inputs) have 
similar shortcomings to standard n-gram models
–Models get very large (and sparse) as n increases
–We can’t generalize across similar contexts 
–Markov (independence) assumptions are too strict

Better neural n-gram models can be obtained with 
dense word embeddings:

— Models remain much smaller
— Embeddings may provide some (limited) generalization  
     across similar contexts

Future lectures: CBOW neural nets as a language 
model, recurrent language models

16
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Word2Vec as language model
Instead of training a binary classifier for pairs of words, 
predict context words from the target (Skipgram)  
or the target word from context words (CBOW)

The output of this model is a distribution over words. 

(Mikolov et al. use a “hierarchical” softmax, based on a 
Huffman (binary tree) encoding of the (output) 
vocabulary, where the most common words have the 
shortest bit vector to be predicted. 

18
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CBOW vs Skipgram
CBOW (continuous bag of words):  
predict target word from surrounding context
Skipgram: Predict context words from target word

19
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Figure 2: Graphical representation of the CBOW model and Skip-gram model. In the CBOW model, the distributed
representations of context (or surrounding words) are combined to predict the word in the middle. In the Skip-gram
model, the distributed representation of the input word is used to predict the context.

ging (Collobert and Weston, 2008; Turian et al.,
2010; Socher et al., 2011; Socher et al., 2013; Col-
lobert et al., 2011; Huang et al., 2012; Mikolov et
al., 2013a).

It was recently shown that the distributed repre-
sentations of words capture surprisingly many lin-
guistic regularities, and that there are many types of
similarities among words that can be expressed as
linear translations (Mikolov et al., 2013c). For ex-
ample, vector operations “king” - “man” + “woman”
results in a vector that is close to “queen”.

Two particular models for learning word repre-
sentations that can be efficiently trained on large
amounts of text data are Skip-gram and CBOW
models introduced in (Mikolov et al., 2013a). In the
CBOW model, the training objective of the CBOW
model is to combine the representations of surround-
ing words to predict the word in the middle. The
model architectures of these two methods are shown
in Figure 2. Similarly, in the Skip-gram model, the
training objective is to learn word vector representa-
tions that are good at predicting its context in the
same sentence (Mikolov et al., 2013a). It is un-

like traditional neural network based language mod-
els (Bengio et al., 2003; Mnih and Hinton, 2008;
Mikolov et al., 2010), where the objective is to pre-
dict the next word given the context of several pre-
ceding words. Due to their low computational com-
plexity, the Skip-gram and CBOW models can be
trained on a large corpus in a short time (billions of
words in hours). In practice, Skip-gram gives bet-
ter word representations when the monolingual data
is small. CBOW however is faster and more suitable
for larger datasets (Mikolov et al., 2013a). They also
tend to learn very similar representations for lan-
guages. Due to their similarity in terms of model
architecture, the rest of the section will focus on de-
scribing the Skip-gram model.

More formally, given a sequence of training
words w1, w2, w3, . . . , wT , the objective of the Skip-
gram model is to maximize the average log probabil-
ity

1

T

TX

t=1

 kX

j=�k

log p(wt+j |wt)

�
(1)

where k is the size of the training window (which
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CBOW (as neural LM)
– Learn D-dimensional embeddings for each (context) word 
– Predict target word based on the sum (average) of the 

embeddings of the words in its context with a standard 
neural language model 
– Return trained context embeddings

20
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Figure 2: Graphical representation of the CBOW model and Skip-gram model. In the CBOW model, the distributed
representations of context (or surrounding words) are combined to predict the word in the middle. In the Skip-gram
model, the distributed representation of the input word is used to predict the context.

ging (Collobert and Weston, 2008; Turian et al.,
2010; Socher et al., 2011; Socher et al., 2013; Col-
lobert et al., 2011; Huang et al., 2012; Mikolov et
al., 2013a).

It was recently shown that the distributed repre-
sentations of words capture surprisingly many lin-
guistic regularities, and that there are many types of
similarities among words that can be expressed as
linear translations (Mikolov et al., 2013c). For ex-
ample, vector operations “king” - “man” + “woman”
results in a vector that is close to “queen”.

Two particular models for learning word repre-
sentations that can be efficiently trained on large
amounts of text data are Skip-gram and CBOW
models introduced in (Mikolov et al., 2013a). In the
CBOW model, the training objective of the CBOW
model is to combine the representations of surround-
ing words to predict the word in the middle. The
model architectures of these two methods are shown
in Figure 2. Similarly, in the Skip-gram model, the
training objective is to learn word vector representa-
tions that are good at predicting its context in the
same sentence (Mikolov et al., 2013a). It is un-

like traditional neural network based language mod-
els (Bengio et al., 2003; Mnih and Hinton, 2008;
Mikolov et al., 2010), where the objective is to pre-
dict the next word given the context of several pre-
ceding words. Due to their low computational com-
plexity, the Skip-gram and CBOW models can be
trained on a large corpus in a short time (billions of
words in hours). In practice, Skip-gram gives bet-
ter word representations when the monolingual data
is small. CBOW however is faster and more suitable
for larger datasets (Mikolov et al., 2013a). They also
tend to learn very similar representations for lan-
guages. Due to their similarity in terms of model
architecture, the rest of the section will focus on de-
scribing the Skip-gram model.

More formally, given a sequence of training
words w1, w2, w3, . . . , wT , the objective of the Skip-
gram model is to maximize the average log probabil-
ity

1

T

TX

t=1

 kX

j=�k

log p(wt+j |wt)

�
(1)

where k is the size of the training window (which
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Skipgram (as neural LM)
– Learn D-dimensional embeddings for each target word 
– Predict all context words based on the target word 

embedding 
– Return trained target embeddings

21
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Figure 2: Graphical representation of the CBOW model and Skip-gram model. In the CBOW model, the distributed
representations of context (or surrounding words) are combined to predict the word in the middle. In the Skip-gram
model, the distributed representation of the input word is used to predict the context.

ging (Collobert and Weston, 2008; Turian et al.,
2010; Socher et al., 2011; Socher et al., 2013; Col-
lobert et al., 2011; Huang et al., 2012; Mikolov et
al., 2013a).

It was recently shown that the distributed repre-
sentations of words capture surprisingly many lin-
guistic regularities, and that there are many types of
similarities among words that can be expressed as
linear translations (Mikolov et al., 2013c). For ex-
ample, vector operations “king” - “man” + “woman”
results in a vector that is close to “queen”.

Two particular models for learning word repre-
sentations that can be efficiently trained on large
amounts of text data are Skip-gram and CBOW
models introduced in (Mikolov et al., 2013a). In the
CBOW model, the training objective of the CBOW
model is to combine the representations of surround-
ing words to predict the word in the middle. The
model architectures of these two methods are shown
in Figure 2. Similarly, in the Skip-gram model, the
training objective is to learn word vector representa-
tions that are good at predicting its context in the
same sentence (Mikolov et al., 2013a). It is un-

like traditional neural network based language mod-
els (Bengio et al., 2003; Mnih and Hinton, 2008;
Mikolov et al., 2010), where the objective is to pre-
dict the next word given the context of several pre-
ceding words. Due to their low computational com-
plexity, the Skip-gram and CBOW models can be
trained on a large corpus in a short time (billions of
words in hours). In practice, Skip-gram gives bet-
ter word representations when the monolingual data
is small. CBOW however is faster and more suitable
for larger datasets (Mikolov et al., 2013a). They also
tend to learn very similar representations for lan-
guages. Due to their similarity in terms of model
architecture, the rest of the section will focus on de-
scribing the Skip-gram model.

More formally, given a sequence of training
words w1, w2, w3, . . . , wT , the objective of the Skip-
gram model is to maximize the average log probabil-
ity

1

T

TX

t=1

 kX

j=�k

log p(wt+j |wt)

�
(1)

where k is the size of the training window (which
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Dense  
(Fully-Connected) 

Networks
[last lecture] 

 

Sparse Networks
(with shared parameters: CNNs)

[3 parameters, applied 4 times, overlapping inputs]                     

[4 parameters, applied 3 times, non-overlapping inputs]

Convolutional Neural Nets (ConvNets, CNNs)

23
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Convolutional Neural Nets
2D CNNs are a standard architecture for image data.
Neocognitron (Fukushima, 1980):  
     CNN with convolutional and downsampling (pooling) layers

CNNs are inspired by receptive fields in the visual 
cortex: Individual neurons respond to small regions 
(patches) of the visual field. 
Neurons in deeper layers respond to larger regions.
Neurons in the same layer share the same weights. 
This parameter tying allows CNNs to handle variable 
size inputs with a fixed number of parameters.
CNNs can be used as input to fully connected nets. 
In NLP, CNNs are mainly used for classification. 

24
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A toy example

A 3x4 black-and-white image is a 3x4 matrix of pixels.

25

a b c d
e f g h
i j k l
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Applying a 2x2 filter

A  filter is an -size matrix that can be applied to 
-size patches of the input image. 

This operation is called convolution, but it works just like a 
dot product of vectors.

N×N N×N
N×N

26

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz ]

a b c d
e f g h
i j k l
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Applying a 2x2 filter

27

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz ]

a b c d
e f g h
i j k l

We can apply the same  filter to all -size patches 
of the input image. 
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N
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Applying a 2x2 filter

28

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz ]

a b c d
e f g h
i j k l

We can apply the same  filter to all -size patches 
of the input image. 
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N
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Applying a 2x2 filter
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[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz ]

a b c d
e f g h
i j k l

We can apply the same  filter to all -size patches 
of the input image. 
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N
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Applying a 2x2 filter

30

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz ]

a b c d
e f g h
i j k l

We can apply the same  filter to all -size patches 
of the input image. 
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N
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Applying a 2x2 filter
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[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same  filter to all -size patches 
of the input image. 
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N
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Applying a 2x2 filter

We’ve turned a 3x4 matrix into a 2x3 matrix,  
so our image has shrunk. 
Can we preserve the size of the input?

32

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

0w + 0x + 0y + az 0w + 0x + ay + bz 0w + 0x + by + cz 0w + 0x + cy + dz
0w + ax + 0y + ez aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
0w + ex + 0y + iz ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz

0 0 0 0 0
0 0w + 0x + 0y + az 0w + 0x + ay + bz 0w + 0x + by + cz 0w + 0x + cy + dz
0 0w + ax + 0y + ez aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
0 0w + ex + 0y + iz ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz

a b c d
e f g h
i j k l

Zero padding

33

0 0 0 0 0
0 a b c d
0 e f g h
0 i j k l

[w x
y z]

If we pad each matrix with 0s, we can maintain the 
same size throughout the network
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0 0 0 0 0
0 g(az) g(ay + bz) g(by + cz) g(cy + dz)
0 g(ax + ez) g(aw + bx + ey + fz) g(bw + cx + f y + gz) g(cw + dx + gy + hz)
0 g(ex + iz) g(ew + fx + iy + jz) g( fw + gx + jy + kz) g(gw + hx + ky + lz)

After the nonlinear activation function

34

0 0 0 0 0
0 a b c d
0 e f g h
0 i j k l

[w x
y z]

NB: Convolutional layers are typically followed by 
ReLUs.
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Second
Hidden
Layer

First
Hidden
Layer

Input  
Data

Second  
Convolution

First  
Convolution

Going from layer to layer…

35

0 0 0 0 0
0 a b c d
0 e f g h
0 i j k l

[w x
y z]

[w1 x1
y1 z1]0 0 0 0 0

0 a1 b1 c1 d1

0 e1 f1 g1 h1

0 i1 j1 k1 l1

0 0 0 0 0
0 a2 b2 c2 d2

0 e2 f2 g2 h2

0 i2 j2 k2 l2

One element in the 2nd 
layer corresponds to a 
3x3 patch in the input:
The “receptive field” 

gets larger in each layer
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Changing the stride
Stride = the step size for sliding across the image

Stride = 1: Consider all patches [see previous example]
Stride = 2: Skip one element between patches
Stride = 3: Skip two elements between patches,… 

A larger stride size yields a smaller output image. 

            Input:         Filter: 

         Stride = 2: 

0 0 0 0
a b c d
e f g h
i j k l

[w x
y z]

[0w + 0x + ay + bz 0w + 0x + cy + dz
ew + fx + iy + jz gw + hx + ky + lz]

36

[Note that different zero-padding  
may be required with a different  
stride]



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Handling color images: channels
Color images have a number of color channels:

Each pixel in an RGB image is a (red, green, blue) 
triplet:  ◼︎=(255, 0, 0) or ◼︎=(120, 5, 155)

An  RGB image is a  tensor  
                                height  width  depth  
                      #channels = depth of the image 

Convolutional filters are applied to all channels  
of the input
We still specify filter size in terms of the image patch, because the 
#channels is a function of the data (not a parameter we control) 
We still talk about 2 2 or 3 3 etc. filters, although with  channels, 
they apply to a  region (and have  weights)

N×M N×M×3
× ×

× × C
N × N × C N × N × C

37
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Channels in internal layers
So far, we have just applied a single  filter  
to get to the next layer. 
 
But we could run  different  filters (with 
different weights) to define a layer with  channels. 

(If we initialize their weights randomly, they will learn different 
properties of the input)

The hidden layers of CNNs have often  
a large number of channels. 

(Useful trick: 1x1 convolutions increase or decrease the nr. of 
channels without affecting the size of the visual field)

N×N

K N×N
K

38
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Pooling Layers
Pooling layers reduce the size of the representation, and are often 
used following a pair of conv+ReLU layers

Each pooling layer returns a 3D tensor of the same depth as its 
input (but with smaller height & width) and is defined by
— a filter size (what region gets reduced to a single value)
— a stride (step size for sliding the window across the input)
— a pooling function (max pooling, avg pooling, min pooling, …)

Pooling units don’t have weights, but simply return the maximum/
minimum/average value of their inputs

Typically, pooling layers only receive input from a single channel.
So they don’t reduce the depth (#channels). 

39
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Max-pooling
Max-pooling in our example  
with a 2x2 filter and stride=2: 
 
 
 

            Input:         2x2 MaxPooling

         Stride = 2: 

0 0 0 0
a b c d
e f g h
i j k l

[max(0,0,a, b) max(0,0,c, d)
max(e, f, i, j) max(g, h, k, l)]

40
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(2D) CNNs
An image is a 2D (width × height) matrix of pixels (e.g. RGB values)
=> it is a 3D tensor: color channels (“depth”) × width × height
Each convolutional layer returns a 3d tensor, and is defined by:

— the depth (#filters) of its output
— a filter size (the square size of the input regions for each filter), 
— a stride (the step size for how to slide filters across the input)
— zero padding (how many 0s are added around edges of input)

=> Filter size, stride, zero padding define the width/height of the output 
Each unit in a convolutional layer 
— receives input from a square region/patch (across w×h)  
     in the preceding layer (across all depth channels)
— returns the dot product of the input activations and its weights
Within a layer, all units at the same depth use the same weights
Convolutional layers are often followed by ReLU activations 
http://cs231n.github.io/convolutional-networks/

41
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1D CNNs for text
Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]
We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— Filter size n = 2, stride = 2, no padding:
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

42
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1D CNNs for text classification
Input: a variable length sequence of word vectors 
(#channels/depth = dimensionality of word vectors)

Zero padding: Add zero vectors (or to BOS/EOS)  
to beginning and/or end of sentence (and/or hidden layers) 

Filters: N-dimensional vectors (sliding windows of N-grams)
Filter size N in the first layer: size of the N-grams we consider  

Conv. layers typically have a ReLU (or tanh) activation 
Maxpooling layers reduce the dimensionality.

CNN depth: how many layers do we use?  

The last CNN layer (a  tensor) needs to be 
reshaped (flattened) into a -dimensional vector  
to be fed into a dense feedforward net for classification

H×W×D
(H×W×D)

43
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Understanding CNNs for text classification
Jacovi et al.’18  https://www.aclweb.org/anthology/W18-5408/

— Different filters detect (suppress) different types of ngrams 
— Max-pooling removes irrelevant n-grams 
— In a single-layer CNN with max-pooling, each filter output  
    can be traced back to a single input ngram
— Each filter can also be associated with a class it predicts  
— The positions in a filter check whether specific  
     types of words are present or absent in the input
— Filters can produce erroneous output  
    (abnormally high activations) on artificial input

44
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Readings and nice illustrations
https://www.deeplearningbook.org/contents/convnets.html
https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53 
https://github.com/vdumoulin/conv_arithmetic/blob/master/
README.md 
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