
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 10:
Neural language models,
CNNs for natural language

http://courses.engr.illinois.edu/cs498jh4
mailto:juliahmr@illinois.edu

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Reca
p:

What
are

 

neur
al n

ets?

2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Fully connected feedforward nets
Three kinds of layers,  
arranged in sequence:

— Input layer  
 (what’s fed into the net)
— Hidden layers  
 (intermediate computations)
— Output layer  
 (what the net returns)

Each layer consists of a number of units.
— Each hidden/output unit computes a real-valued activation
— In a feedforward net, each (hidden/output) unit receives inputs 
 from the units in the immediately preceding layer
— In a fully connected feedforward net, each unit receives inputs 
 from all units in the immediately preceding layer
 Additional “Highway connections” that skip layers can be useful

3

Input layer: vector x

Hidden layer: vector h1

Hidden layer: vector hn

Output layer: vector y

… … …
… … …
… … ….

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Feedforward computations
The activation of unit j in layer i is computed as 

where
— is a (unit-specific) weight vector  
(= #units in ()-th layer, because each connection into unit is associated
with one real-valued weight for each unit in the preceding layer)

— is a (unit-specific) real-valued bias term

— is a (layer-specific) non-linear activation function

Each layer is defined by its number of units, ,  
a non-linear activation function applied to all units in the layer,  
a learned matrix of weights , and a learned bias vector .

xij
xij = g(wij ⋅ xi−1 + bij)

wij = (wij1, . . . , wijK)
K i − 1 j

bij

g()

N
g()

W b
4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Nonlinear Activation Functions g()

Sigmoid (logistic function)
Outputs in [0,1] range. Useful for output units (probabilities), interpolation

Hyperbolic tangent:
Outputs in [-1,1] range. Useful for internal units

Hard tanh htanh(x) = −1 for x < −1, 1 for x > 1, x otherwise
Outputs in [-1,1] range. Approximates tanh

Rectified Linear Unit:
 Outputs in [0, +∞]. Works very well for internal units.

σ(x) =
1

1 + e−x

tanh(x) =
e2x − 1
e2x + 1

ReLU(x) = max(0,x)

5

�� �� '&&%�'038"3% /&63"- /&5803,4
UJNFT UP QSPEVDF FYDFMMFOU SFTVMUT�ŉ ɩF 3F-6 VOJU DMJQT FBDI WBMVF x < 0 BU �� %FTQJUF JUT TJN�
QMJDJUZ
 JU QFSGPSNT XFMM GPS NBOZ UBTLT
 FTQFDJBMMZ XIFO DPNCJOFE XJUI UIF ESPQPVU SFHVMBSJ[BUJPO
UFDIOJRVF 	TFF 4FDUJPO ���
�

3F-6.x/ D NBY.0; x/ D
(

0 x < 0

x PUIFSXJTF: 	���

"T B SVMF PG UIVNC
 CPUI 3F-6 BOE UBOI VOJUT XPSL XFMM
 BOE TJHOJmDBOUMZ PVUQFSGPSN UIF
TJHNPJE� :PV NBZ XBOU UP FYQFSJNFOU XJUI CPUI UBOI BOE 3F-6 BDUJWBUJPOT
 BT FBDI POF NBZ
QFSGPSN CFUUFS JO EJĊFSFOU TFUUJOHT�

'JHVSF ��� TIPXT UIF TIBQFT PG UIF EJĊFSFOU BDUJWBUJPOT GVODUJPOT
 UPHFUIFS XJUI UIF TIBQFT
PG UIFJS EFSJWBUJWFT�

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

!f

!x

!f

!x

!f

!x

!f

!x

'JHVSF ���� "DUJWBUJPO GVODUJPOT 	UPQ
 BOE UIFJS EFSJWBUJWFT 	CPUUPN
�

��� -044 '6/$5*0/4
8IFO USBJOJOH B OFVSBM OFUXPSL 	NPSF PO USBJOJOH JO $IBQUFS �

 NVDI MJLF XIFO USBJOJOH B
MJOFBS DMBTTJmFS
 POF EFmOFT B MPTT GVODUJPO L. Oy; y/
 TUBUJOH UIF MPTT PG QSFEJDUJOH Oy XIFO UIF
USVF PVUQVU JT y � ɩF USBJOJOH PCKFDUJWF JT UIFO UP NJOJNJ[F UIF MPTT BDSPTT UIF EJĊFSFOU USBJOJOH
FYBNQMFT� ɩF MPTT L. Oy; y/ BTTJHOT B OVNFSJDBM TDPSF 	B TDBMBS
 UP UIF OFUXPSL�T PVUQVU Oy HJWFO
UIF USVF FYQFDUFE PVUQVU y � ɩF MPTT GVODUJPOT EJTDVTTFE GPS MJOFBS NPEFMT JO 4FDUJPO ����� BSF
SFMFWBOU BOE XJEFMZ VTFE BMTP GPS OFVSBM OFUXPSLT� 'PS GVSUIFS EJTDVTTJPO PO MPTT GVODUJPOT JO UIF
ŉɩF UFDIOJDBM BEWBOUBHFT PG UIF 3F-6 PWFS UIF TJHNPJE BOE UBOI BDUJWBUJPO GVODUJPOT JT UIBU JU EPFT OPU JOWPMWF FYQFOTJWF�
UP�DPNQVUF GVODUJPOT
 BOE NPSF JNQPSUBOUMZ UIBU JU EPFT OPU TBUVSBUF� ɩF TJHNPJE BOE UBOI BDUJWBUJPO BSF DBQQFE BU 1
 BOE
UIF HSBEJFOUT BU UIJT SFHJPO PG UIF GVODUJPOT BSF OFBS [FSP
 ESJWJOH UIF FOUJSF HSBEJFOU OFBS [FSP� ɩF 3F-6 BDUJWBUJPO EPFT
OPU IBWF UIJT QSPCMFN
 NBLJOH JU FTQFDJBMMZ TVJUBCMF GPS OFUXPSLT XJUI NVMUJQMF MBZFST
 XIJDI BSF TVTDFQUJCMF UP UIF WBOJTIJOH
HSBEJFOUT QSPCMFN XIFO USBJOFE XJUI UIF TBUVSBUJOH VOJUT�

Fig.:Y. Goldberg (2017) Neural Network Methods for Natural Language Processing

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Binary Classification  
with a multilayer feedforward net
The output layer consists of a single unit  
with the sigmoid activation function

6

One output unit with 
sigmoid activation function

 y = σ(wx + b) ∈ [0...1]

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Multi-Class Classification  
with a multilayer feedforward net
With output classes, the output layer has units  
with a softmax activation function:

K K

7

Output layer:  
A vector where the i-th
element corresponds to the probability
that the input has class i:

such that we get a categorical
distribution over all K classes

y = (y1, …, yK)

yi = softmax(zi) =
exp(zi)

∑K
k=1 exp(zk)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Multi-Label Classification  
with a multilayer feedforward net
With output classes, output units  
with sigmoid activation functions:

K K
K

8

Output layer:  
A vector where the i-th
element corresponds to the probability
that the input does (or doesn’t) have
class i:
  
We now have a separate probability for
each possible class label.

y = (y1, …, yK)

yi = sigmoid(wixi + bi)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 3: 

Neur
al n

-gra
m  

mode
ls

9

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Our first neural net for NLP:
A neural n-gram model
Given a fixed-size vocabulary V, an n-gram model
predicts the probability of the n-th word  
following the preceding n–1 words:

How can we model this with a neural net?
— Input layer: concatenate n–1 word vectors
— Output layer: a softmax over |V| units

P(w(i) |w(i−1), w(i−2), …, wi−(n−1))

10

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

An n-gram model P(w | w1…wk)  
as a feedforward net (naively)
Assumptions:
The vocabulary V contains V types (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words 

Our (naive) model:
— [Naive]  
 Each input word wi ∈ V is a V-dimensional one-hot vector v(w)  
 → The input layer x = [v(w1),…,v(wk)] has V×k elements

— We assume one hidden layer h
— The output layer is a softmax over V elements  
 P(w | w1…wk) = softmax(hW2 + b2)

11

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

An n-gram model P(w | w1…wk)  
as a feedforward net (better)
Assumptions:
The vocabulary V contains V types (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words 

Our (better) model:
— [Better]  
 Each input word wi ∈ V is an n-dimensional dense embedding  
 vector v(w) (with n≪V) 
 → The input layer x = [v(w1),…,v(wk)] has n×k elements

— We assume one hidden layer h
— The output layer is a softmax over V elements  
 P(w | w1…wk) = softmax(hW2 + b2)

12

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Our neural n-gram models
Architecture:

Input Layer: x = [v(w1)….v(wk)]
Hidden Layer: h = g(xW1 + b1)
Output Layer: P(w | w1…wk) = softmax(hW2 + b2)

How many parameters do we need? [# of weights and biases]:
Hidden layer with one-hot inputs: W1 ∈ R(k·V) × dim(h) b1 ∈ Rdim(h) 

Hidden layer with dense inputs: W1 ∈ R(k·n) ×dim(h) b1 ∈ Rdim(h) 

Output layer (any inputs): W2 ∈ Rdim(h)×V b2 ∈ RV

With V = 10K, n = 300 (word2vec), dim(h) = 300 
 k = 2 (trigram): W1 ∈ R20,000×300 or W1 ∈ R600×300 and b1∈ R300  
 k = 5 (six-gram): W1 ∈ R50,000×300 or W1 ∈ R1500×300 and b1∈ R300  
 W2 ∈ R300×10,000 b2 ∈ R10,000

Six-gram model with one-hot inputs: 27,000,460,000 parameters, 
 with dense inputs: 3,460,000 parameters
Traditional six-gram model: 104x6 = 1024 parameters

13

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Naive (one-hot input)  
neural n-gram model
Advantage over non-neural n-gram model:

— The hidden layer captures interactions  
 among context words

— Increasing the order of the n-gram requires only  
 a small linear increase in the number of parameters.

 dim(W1) goes from (k·dim(V))·dim(h) to ((k+1)·dim(V))·dim(h)
— Increasing the vocabulary also leads only to  
 a linear increase in the number of parameters 

But: With a one-hot encoding and dim(V) ≈ 10K or so,  
this model still requires a LOT of parameters to learn.

And: The Markov assumption still holds

14

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Better (dense embeddings input)  
neural n-gram model
Advantage over non-neural n-gram model:

— Same as naive neural model, plus:  

Advantages over naive neural n-gram model:

— We have far fewer parameters to learn

— Better generalizations: If similar input words have  
 similar embeddings, the model will predict similar  
 probabilities in similar contexts:  

But: This generalization only works if the contexts have similar
words in the same position.
And: The Markov assumption still holds.

P(w | the doctor saw the) ≈ P(w |a nurse sees her)

15

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Neural n-gram models
Naive neural n-gram models (one-hot inputs) have
similar shortcomings to standard n-gram models
–Models get very large (and sparse) as n increases
–We can’t generalize across similar contexts
–Markov (independence) assumptions are too strict

Better neural n-gram models can be obtained with
dense word embeddings:

— Models remain much smaller
— Embeddings may provide some (limited) generalization  
 across similar contexts

Future lectures: CBOW neural nets as a language
model, recurrent language models

16

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 3: 

Word
2Vec

 as

lang
uage

 mode
l

17

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word2Vec as language model
Instead of training a binary classifier for pairs of words,
predict context words from the target (Skipgram)  
or the target word from context words (CBOW)

The output of this model is a distribution over words.

(Mikolov et al. use a “hierarchical” softmax, based on a
Huffman (binary tree) encoding of the (output)
vocabulary, where the most common words have the
shortest bit vector to be predicted.

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

CBOW vs Skipgram
CBOW (continuous bag of words):  
predict target word from surrounding context
Skipgram: Predict context words from target word

19

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT PROJECTION OUTPUT

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

 CBOW Skip-gram

Figure 2: Graphical representation of the CBOW model and Skip-gram model. In the CBOW model, the distributed
representations of context (or surrounding words) are combined to predict the word in the middle. In the Skip-gram
model, the distributed representation of the input word is used to predict the context.

ging (Collobert and Weston, 2008; Turian et al.,
2010; Socher et al., 2011; Socher et al., 2013; Col-
lobert et al., 2011; Huang et al., 2012; Mikolov et
al., 2013a).

It was recently shown that the distributed repre-
sentations of words capture surprisingly many lin-
guistic regularities, and that there are many types of
similarities among words that can be expressed as
linear translations (Mikolov et al., 2013c). For ex-
ample, vector operations “king” - “man” + “woman”
results in a vector that is close to “queen”.

Two particular models for learning word repre-
sentations that can be efficiently trained on large
amounts of text data are Skip-gram and CBOW
models introduced in (Mikolov et al., 2013a). In the
CBOW model, the training objective of the CBOW
model is to combine the representations of surround-
ing words to predict the word in the middle. The
model architectures of these two methods are shown
in Figure 2. Similarly, in the Skip-gram model, the
training objective is to learn word vector representa-
tions that are good at predicting its context in the
same sentence (Mikolov et al., 2013a). It is un-

like traditional neural network based language mod-
els (Bengio et al., 2003; Mnih and Hinton, 2008;
Mikolov et al., 2010), where the objective is to pre-
dict the next word given the context of several pre-
ceding words. Due to their low computational com-
plexity, the Skip-gram and CBOW models can be
trained on a large corpus in a short time (billions of
words in hours). In practice, Skip-gram gives bet-
ter word representations when the monolingual data
is small. CBOW however is faster and more suitable
for larger datasets (Mikolov et al., 2013a). They also
tend to learn very similar representations for lan-
guages. Due to their similarity in terms of model
architecture, the rest of the section will focus on de-
scribing the Skip-gram model.

More formally, given a sequence of training
words w1, w2, w3, . . . , wT , the objective of the Skip-
gram model is to maximize the average log probabil-
ity

1

T

TX

t=1

 kX

j=�k

log p(wt+j |wt)

�
(1)

where k is the size of the training window (which

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

CBOW (as neural LM)
– Learn D-dimensional embeddings for each (context) word
– Predict target word based on the sum (average) of the

embeddings of the words in its context with a standard
neural language model
– Return trained context embeddings

20

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT PROJECTION OUTPUT

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

 CBOW Skip-gram

Figure 2: Graphical representation of the CBOW model and Skip-gram model. In the CBOW model, the distributed
representations of context (or surrounding words) are combined to predict the word in the middle. In the Skip-gram
model, the distributed representation of the input word is used to predict the context.

ging (Collobert and Weston, 2008; Turian et al.,
2010; Socher et al., 2011; Socher et al., 2013; Col-
lobert et al., 2011; Huang et al., 2012; Mikolov et
al., 2013a).

It was recently shown that the distributed repre-
sentations of words capture surprisingly many lin-
guistic regularities, and that there are many types of
similarities among words that can be expressed as
linear translations (Mikolov et al., 2013c). For ex-
ample, vector operations “king” - “man” + “woman”
results in a vector that is close to “queen”.

Two particular models for learning word repre-
sentations that can be efficiently trained on large
amounts of text data are Skip-gram and CBOW
models introduced in (Mikolov et al., 2013a). In the
CBOW model, the training objective of the CBOW
model is to combine the representations of surround-
ing words to predict the word in the middle. The
model architectures of these two methods are shown
in Figure 2. Similarly, in the Skip-gram model, the
training objective is to learn word vector representa-
tions that are good at predicting its context in the
same sentence (Mikolov et al., 2013a). It is un-

like traditional neural network based language mod-
els (Bengio et al., 2003; Mnih and Hinton, 2008;
Mikolov et al., 2010), where the objective is to pre-
dict the next word given the context of several pre-
ceding words. Due to their low computational com-
plexity, the Skip-gram and CBOW models can be
trained on a large corpus in a short time (billions of
words in hours). In practice, Skip-gram gives bet-
ter word representations when the monolingual data
is small. CBOW however is faster and more suitable
for larger datasets (Mikolov et al., 2013a). They also
tend to learn very similar representations for lan-
guages. Due to their similarity in terms of model
architecture, the rest of the section will focus on de-
scribing the Skip-gram model.

More formally, given a sequence of training
words w1, w2, w3, . . . , wT , the objective of the Skip-
gram model is to maximize the average log probabil-
ity

1

T

TX

t=1

 kX

j=�k

log p(wt+j |wt)

�
(1)

where k is the size of the training window (which

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Skipgram (as neural LM)
– Learn D-dimensional embeddings for each target word
– Predict all context words based on the target word

embedding
– Return trained target embeddings

21

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT PROJECTION OUTPUT

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

 CBOW Skip-gram

Figure 2: Graphical representation of the CBOW model and Skip-gram model. In the CBOW model, the distributed
representations of context (or surrounding words) are combined to predict the word in the middle. In the Skip-gram
model, the distributed representation of the input word is used to predict the context.

ging (Collobert and Weston, 2008; Turian et al.,
2010; Socher et al., 2011; Socher et al., 2013; Col-
lobert et al., 2011; Huang et al., 2012; Mikolov et
al., 2013a).

It was recently shown that the distributed repre-
sentations of words capture surprisingly many lin-
guistic regularities, and that there are many types of
similarities among words that can be expressed as
linear translations (Mikolov et al., 2013c). For ex-
ample, vector operations “king” - “man” + “woman”
results in a vector that is close to “queen”.

Two particular models for learning word repre-
sentations that can be efficiently trained on large
amounts of text data are Skip-gram and CBOW
models introduced in (Mikolov et al., 2013a). In the
CBOW model, the training objective of the CBOW
model is to combine the representations of surround-
ing words to predict the word in the middle. The
model architectures of these two methods are shown
in Figure 2. Similarly, in the Skip-gram model, the
training objective is to learn word vector representa-
tions that are good at predicting its context in the
same sentence (Mikolov et al., 2013a). It is un-

like traditional neural network based language mod-
els (Bengio et al., 2003; Mnih and Hinton, 2008;
Mikolov et al., 2010), where the objective is to pre-
dict the next word given the context of several pre-
ceding words. Due to their low computational com-
plexity, the Skip-gram and CBOW models can be
trained on a large corpus in a short time (billions of
words in hours). In practice, Skip-gram gives bet-
ter word representations when the monolingual data
is small. CBOW however is faster and more suitable
for larger datasets (Mikolov et al., 2013a). They also
tend to learn very similar representations for lan-
guages. Due to their similarity in terms of model
architecture, the rest of the section will focus on de-
scribing the Skip-gram model.

More formally, given a sequence of training
words w1, w2, w3, . . . , wT , the objective of the Skip-
gram model is to maximize the average log probabil-
ity

1

T

TX

t=1

 kX

j=�k

log p(wt+j |wt)

�
(1)

where k is the size of the training window (which

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Conv
olut

iona
l

Neur
al N

ets

22

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dense  
(Fully-Connected)

Networks
[last lecture] 

 

Sparse Networks
(with shared parameters: CNNs)

[3 parameters, applied 4 times, overlapping inputs]

[4 parameters, applied 3 times, non-overlapping inputs]

Convolutional Neural Nets (ConvNets, CNNs)

23

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Convolutional Neural Nets
2D CNNs are a standard architecture for image data.
Neocognitron (Fukushima, 1980):  
 CNN with convolutional and downsampling (pooling) layers

CNNs are inspired by receptive fields in the visual
cortex: Individual neurons respond to small regions
(patches) of the visual field.
Neurons in deeper layers respond to larger regions.
Neurons in the same layer share the same weights.
This parameter tying allows CNNs to handle variable
size inputs with a fixed number of parameters.
CNNs can be used as input to fully connected nets.
In NLP, CNNs are mainly used for classification.

24

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A toy example

A 3x4 black-and-white image is a 3x4 matrix of pixels.

25

a b c d
e f g h
i j k l

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

A filter is an -size matrix that can be applied to
-size patches of the input image.

This operation is called convolution, but it works just like a
dot product of vectors.

N×N N×N
N×N

26

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

27

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same filter to all -size patches
of the input image.
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

28

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same filter to all -size patches
of the input image.
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

29

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same filter to all -size patches
of the input image.
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

30

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same filter to all -size patches
of the input image.
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

31

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same filter to all -size patches
of the input image.
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

We’ve turned a 3x4 matrix into a 2x3 matrix,  
so our image has shrunk.
Can we preserve the size of the input?

32

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

0w + 0x + 0y + az 0w + 0x + ay + bz 0w + 0x + by + cz 0w + 0x + cy + dz
0w + ax + 0y + ez aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
0w + ex + 0y + iz ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz

0 0 0 0 0
0 0w + 0x + 0y + az 0w + 0x + ay + bz 0w + 0x + by + cz 0w + 0x + cy + dz
0 0w + ax + 0y + ez aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
0 0w + ex + 0y + iz ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz

a b c d
e f g h
i j k l

Zero padding

33

0 0 0 0 0
0 a b c d
0 e f g h
0 i j k l

[w x
y z]

If we pad each matrix with 0s, we can maintain the
same size throughout the network

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

0 0 0 0 0
0 g(az) g(ay + bz) g(by + cz) g(cy + dz)
0 g(ax + ez) g(aw + bx + ey + fz) g(bw + cx + f y + gz) g(cw + dx + gy + hz)
0 g(ex + iz) g(ew + fx + iy + jz) g(fw + gx + jy + kz) g(gw + hx + ky + lz)

After the nonlinear activation function

34

0 0 0 0 0
0 a b c d
0 e f g h
0 i j k l

[w x
y z]

NB: Convolutional layers are typically followed by
ReLUs.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Second
Hidden
Layer

First
Hidden
Layer

Input  
Data

Second  
Convolution

First  
Convolution

Going from layer to layer…

35

0 0 0 0 0
0 a b c d
0 e f g h
0 i j k l

[w x
y z]

[w1 x1
y1 z1]0 0 0 0 0

0 a1 b1 c1 d1

0 e1 f1 g1 h1

0 i1 j1 k1 l1

0 0 0 0 0
0 a2 b2 c2 d2

0 e2 f2 g2 h2

0 i2 j2 k2 l2

One element in the 2nd
layer corresponds to a
3x3 patch in the input:
The “receptive field”

gets larger in each layer

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Changing the stride
Stride = the step size for sliding across the image

Stride = 1: Consider all patches [see previous example]
Stride = 2: Skip one element between patches
Stride = 3: Skip two elements between patches,…

A larger stride size yields a smaller output image.

 Input: Filter:

 Stride = 2:

0 0 0 0
a b c d
e f g h
i j k l

[w x
y z]

[0w + 0x + ay + bz 0w + 0x + cy + dz
ew + fx + iy + jz gw + hx + ky + lz]

36

[Note that different zero-padding  
may be required with a different  
stride]

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Handling color images: channels
Color images have a number of color channels:

Each pixel in an RGB image is a (red, green, blue)
triplet: ◼︎=(255, 0, 0) or ◼︎=(120, 5, 155)

An RGB image is a tensor  
 height width depth  
 #channels = depth of the image

Convolutional filters are applied to all channels  
of the input
We still specify filter size in terms of the image patch, because the
#channels is a function of the data (not a parameter we control)
We still talk about 2 2 or 3 3 etc. filters, although with channels,
they apply to a region (and have weights)

N×M N×M×3
× ×

× × C
N × N × C N × N × C

37

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Channels in internal layers
So far, we have just applied a single filter  
to get to the next layer.
 
But we could run different filters (with
different weights) to define a layer with channels.

(If we initialize their weights randomly, they will learn different
properties of the input)

The hidden layers of CNNs have often  
a large number of channels.

(Useful trick: 1x1 convolutions increase or decrease the nr. of
channels without affecting the size of the visual field)

N×N

K N×N
K

38

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Pooling Layers
Pooling layers reduce the size of the representation, and are often
used following a pair of conv+ReLU layers

Each pooling layer returns a 3D tensor of the same depth as its
input (but with smaller height & width) and is defined by
— a filter size (what region gets reduced to a single value)
— a stride (step size for sliding the window across the input)
— a pooling function (max pooling, avg pooling, min pooling, …)

Pooling units don’t have weights, but simply return the maximum/
minimum/average value of their inputs

Typically, pooling layers only receive input from a single channel.
So they don’t reduce the depth (#channels).

39

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Max-pooling
Max-pooling in our example  
with a 2x2 filter and stride=2: 
 
 
 

 Input: 2x2 MaxPooling

 Stride = 2:

0 0 0 0
a b c d
e f g h
i j k l

[max(0,0,a, b) max(0,0,c, d)
max(e, f, i, j) max(g, h, k, l)]

40

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

(2D) CNNs
An image is a 2D (width × height) matrix of pixels (e.g. RGB values)
=> it is a 3D tensor: color channels (“depth”) × width × height
Each convolutional layer returns a 3d tensor, and is defined by:

— the depth (#filters) of its output
— a filter size (the square size of the input regions for each filter),
— a stride (the step size for how to slide filters across the input)
— zero padding (how many 0s are added around edges of input)

=> Filter size, stride, zero padding define the width/height of the output
Each unit in a convolutional layer
— receives input from a square region/patch (across w×h)  
 in the preceding layer (across all depth channels)
— returns the dot product of the input activations and its weights
Within a layer, all units at the same depth use the same weights
Convolutional layers are often followed by ReLU activations
http://cs231n.github.io/convolutional-networks/

41

http://cs231n.github.io/convolutional-networks/

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

1D CNNs for text
Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]
We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— Filter size n = 2, stride = 2, no padding:
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

42

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

1D CNNs for text classification
Input: a variable length sequence of word vectors 
(#channels/depth = dimensionality of word vectors)

Zero padding: Add zero vectors (or to BOS/EOS)  
to beginning and/or end of sentence (and/or hidden layers) 

Filters: N-dimensional vectors (sliding windows of N-grams)
Filter size N in the first layer: size of the N-grams we consider  

Conv. layers typically have a ReLU (or tanh) activation
Maxpooling layers reduce the dimensionality.

CNN depth: how many layers do we use?  

The last CNN layer (a tensor) needs to be
reshaped (flattened) into a -dimensional vector  
to be fed into a dense feedforward net for classification

H×W×D
(H×W×D)

43

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Understanding CNNs for text classification
Jacovi et al.’18 https://www.aclweb.org/anthology/W18-5408/

— Different filters detect (suppress) different types of ngrams
— Max-pooling removes irrelevant n-grams
— In a single-layer CNN with max-pooling, each filter output  
 can be traced back to a single input ngram
— Each filter can also be associated with a class it predicts
— The positions in a filter check whether specific  
 types of words are present or absent in the input
— Filters can produce erroneous output  
 (abnormally high activations) on artificial input

44

https://www.aclweb.org/anthology/W18-5408/

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Readings and nice illustrations
https://www.deeplearningbook.org/contents/convnets.html
https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://github.com/vdumoulin/conv_arithmetic/blob/master/
README.md

45

https://www.deeplearningbook.org/contents/convnets.html
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

