CS447: Natural Language Processing

http.//courses.engt.illinois.edu/cs447

Lecture 9:
Neural Nets for NLP

Julia Hockenmaier

Jjuliahmr@illinois.edu
3324 Siebel Center

http://courses.engr.illinois.edu/cs498jh4
mailto:juliahmr@illinois.edu

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 2

What have we covered so far?

We have covered a broad overview of some basic
techniques in NLP:

— N-gram language models

— Logistic regression
— Word embeddings

Today, we’ll put all of these together
to create a (much better) neural language model!

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 3

Today’s class: Intro to neural nets

Part 1: Overview

Part 2: What are neural nets?

What are feedforward networks?
What is an activation function?
Why do we want activation functions to be nonlinear?

Part 3: Neural n-gram models

How can we use neural nets to model n-gram models?

How many parameters does such a model have?
Is this better than traditional n-gram models? Why? Why not?

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 4

What is “deep learning”?

Neural networks, typically with several hidden layers
(depth = # of hidden layers)
Single-layer neural nets are linear classifiers
Multi-layer neural nets are more expressive

Very impressive performance gains in computer vision
(ImageNet), speech recognition and NLP over the last
decade.

Neural nets have been around for many decades.
Why did they suddenly make a comeback?

Fast computers (GPUs!) and (very) large datasets have made
It possible to train these very complex models.

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ S

Why deep learning in NLP?

NLP was slower to catch on to deep learning
than e.g. computer vision.

Language seems challenging for neural nets:
Neural nets take (real-valued) vectors as inputs...

... but language consists of variable length sequences of
discrete symbols

But by now neural models have led to a similar
fundamental paradigm shit in NLP.

We will kalle about bhis a Lot wore Laker.

Today, we'll just cover some basics,

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 7

What are neural networks?

A family of machine learning models that was
originally inspired by how neurons (nerve cells)
process information and learn.

In NLP, neural networks are now widely used, e.g. for
— Classification

(e.g. sentiment analysis)

— (Sequence) generation

(e.g. in machine translation, response generation for dialogue, etc.

— Representation Learning (neural embeddings)
(word embeddings, sequence embeddings, graph embeddings,...)

— Structure Prediction (incl. sequence labeling)
(e.g. part-of-speech tagging, named entity recognition, parsing,...)

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 8

The first computational neural networks:
McCulloch & Pitts (1943)

Influential mathematical model of neural activity
that aimed to capture the following assumptions:

— The neural system is a (directed) network of neurons
(neurons = nerve cells)

— Neural activity consists of electric impulses that travel

from neuron to neuron in this network
Neurons receive input from other neurons

— Each neuron is activated (initiates an impulse)
if the sum of the activations it receives (from other neurons)
Is above some threshold (‘all-or-none character’)

— This network of neurons may or may not have cycles
(but the math is much easier without cycles)

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 9

The Perceptron (Rosenblatt 1958)

A linear classifier based on a threshold activation function:
Return y=+1 iff f(xX)=wx+b>0

y=—1iff f(X)=wx+b<0

y € {—1,+ 1} makes
the update rule easier
to write than y € {0,1}

Linear classifier for x = (x, x,) Threshold Activation
A O f(x)>o0
os X0 o ® 02 f(x) y
orthogonal © X)<0
d;(t):itshiin — Linear decision
boundary ﬁ/ _ boundary: > fx)

% | line/hyperplane

X % where X

fx)=wx+b=0[1

Threshold activation is inspired by the “all-or-none character”

(McCulloch & Pitts, 1943) of how neurons process information

Training:

(Perceptron update rule: (online stochastic gradient descent) e
If the predicted j}(l) ;é y(l) W(i—l—l) — W(l) + ﬂy(l)X(l)/ makes a mistake

Increment w (lower the slope of the decision boundary) when y should be +1, decrement w when it should be -1)

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 10

Notation for linear classifiers

Given N-dimensional inputs X = (xy, ..., Xy):

p
With an explicit bias term b:

N
fX)=wx+b=) wx +b
=1

p
Without an explicit bias term b:
N
) =wx =) wy, where x, = |
=0

(Decision boundary goes through origin of (N+ 1)-dimensional space)

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 11

From Perceptrons to
(Feedforward) Neural Nets

A perceptron can be seen as a single neuron
(one output unit with a vector or layer of input units):

Output unit: scalar y = f(X)

({' % Input layer: vector X

But each element of the mput can be a neuron itself:

f Fully Connected Feedforward Net

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 12

~

From Perceptrons to
(Feedforward) Neural Nets

4 . —
Neural nets replace the Perceptron’s linear threshold activation
function with non-linear activation functions g() ...

y = g(WX + D)

... because non-linear classifiers are more expressive
than linear classifiers (e.g. can represent XOR [“exclusive or”])

... because any multilayer network of linear perceptrons
IS equivalent to a single linear perceptron

... and because learning requires us to set the weights of each unit

Recall Gradient descent (e.g. for logistic regression):
Update the weights based on the gradient of the loss
In a multi-layer feedforward neural net, we need to pass the gradient of the loss
back from the output through all layers (backpropagation):
We need differentiable activation functions
I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 13

Nonlinear Activation Functions g()

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

1.0 1.0 1.0 1.0
0.5 / 0.5 0.5 0.5 /
0.0 0.0 0.0 0.0
0.5 0.5 0.5 0.5
-1 -1.0 -1 -1.0

.0 . .0 .
6 -4 -2 0 2 46 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 46

Fig.:Y. Goldberg (2017) Neural Network Methods for Natural Language Processing

Sigmoid (logistic function) s(x) = %
e—x

Outputs in [0,1] range. Useful for output units (probabilities), interpolation
e — 1

e + 1
Outputs in [-1,1] range. Useful for internal units

Hyperbolic tangent: tanh(x) =

Hard tanh htanh(x) = -1 for x < -1, 1 for x > 1, x otherwise
QOutputs in [-1,1] range. Approximates tanh

Rectified Linear Unit: ReLU(x) = max(0,x)
Outputs in [0, +o°]. Works very well for internal units.

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 14

Multi-layer feedforward networks

We typically assume feedforward networks are
orgamzed mto Iayers

Wka& &ke me&work re&urms -

0 : :
2«,...’ __Output layer: vectory |

= W"‘\ .-vq.—‘— =

‘}IV\Eerho&
L (Chidden”) oo

. ﬂt'»\ ,4!& N\

- —qwa—a—w‘—g‘

‘ ‘ ‘ ‘ Input Iayer vectorx

Ehat is entered into the network]

' computations]
f'? F ‘ ’ ‘ “Hidden Iayer vector h1 B

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

15

Fully connected feedforward nets

Three kinds of layers,
arranged in sequence: Output layer: vector y
— Input layer T
(what’s fed into the net)
— Hidden layers
(intermediate computations)
— Output layer
(what the net returns) Input layer: vector x

Hidden layer: vector hy

Hidden layer: vector h1

Each layer consists of a number of units.
— Each hidden/output unit computes a real-valued activation

— In a feedforward net, each (hidden/output) unit receives inputs
from the units in the immediately preceding layer

— In a fully connected feedforward net, each unit receives inputs
from all units in the immediately preceding layer

Additional “Highway connections” that skip layers can be useful

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 16

Feedforward computations

[The activation X;; of unit jin layer /is computed as
x; = 8(W; - X;_1 + by)

where
— W, = (W1, ..., W;ig) is @ (unit-specific) weight vector

(K= #units in (i — 1)-th layer, because each connection into unit j is associated
with one real-valued weight for each unit in the preceding layer)

— sz is a (unit-specific) real-valued bias term

— g2() is a (layer-specific) non-linear activation function

Each layer is defined by its number of units, /V,
a non-linear activation function g() applied to all units in the layer,
a learned matrix of weights W, and a learned bias vector b.

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 17

Binary Classification
with a multilayer feedforward net

The output layer consists of a single unit
with the sigmoid activation function

One output unit with
sigmoid activation function

I y = o(Wx + b) € [0...1]
A

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

18

Multi-Class Classification
with a multilayer feedforward net

With K output classes, the output layer has K units
with a softmax activation function:

Output layer:

Avectory = (yy, ..., Yx) Where the i-th
element corresponds to the probability
that the input has class .

exp(z;
Q y; = softmax(z;) = —— P(z)
Z k=1 cXp (Zk)

such that we get a categorical
distribution over all K classes

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 19

Multi-Label Classification
with a multilayer feedforward net

With K output classes, K output units
with K sigmoid activation functions:

Output layer:

Avectory = (yy, ..., Yx) Where the i-th
element corresponds to the probability
that the input does (or doesn’t) have

Q class i:

We now have a separate probability for
each possible class label.

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 20

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 21

Our first neural net for NLP:
A neural n-gram model

Given a fixed-size vocabulary V, an n-gram model
predicts the probability of the n-th word
following the preceding n—1 words:

How can we model this with a neural net?
— Input layer: concatenate n—1 word vectors

— Output layer: a softmax over VI units

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

22

An n-gram model P(w | wy...wx)
as a feedforward net (naively)

Assumptions:

The vocabulary V contains Vtypes (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words

Our (naive) model:

— [Naive]
Each input word w; € V is a V-dimensional one-hot vector v(w)
— The input layer x = [v(w)),...,v(wr)] has Vxk elements

— We assume one hidden layer h

— The output layer is a softmax over V elements
P(w | wi...wx) = softmax(hW2 + b2)

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 23

An n-gram model P(w | wi...w)
as a feedforward net (better)

Assumptions:

The vocabulary V contains Vtypes (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words

Our (better) model:

— [Better]
Each input word w; € V is an n-dimensional dense embedding
vector v(w) (with n<V)

— The input layer x = [v(w)1),...,v(wr)] has nxk elements
— We assume one hidden layer h

— The output layer is a softmax over V elements
P(w | wi...wx) = softmax(hW2 + b2)

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 24

Our neural n-gram models

4)
Architecture:
Input Layer: X = [v(w1)....v(Wy)]
Hidden Layer: h = g(xW! + bl)
Output Layer: Pw | wi...wx) = softmax(hW2 + b2))

 How many parameters do we need? [# of weights and biases]: A

Hidden layer with one-hot inputs: W1 & R(k-V)xdim) — pl & Rdim(h)
Hidden layer with dense inputs: W1 & R(k-n)xdim(h) — pl & Rdim(h)
Output layer (any inputs): W2 & Rdim(bxV b2 & RV

With V = 10K, n = 300 (word2vec), dim(h) = 300
k =2 (trigram): W1 e R20,000x300 or W1 € R600x300 gnd b1e RB300
k = 5 (six-gram): W1 e R50,000x300 or W1 ¢ R1500x300 gnd be R300
W2 ¢ RB300x10,000 h2 < R10,000

Six-gram model with one-hot inputs: 27,000,460,000 parameters,
with dense inputs: 3,460,000 parameters

Traditional six-gram model: 1046 = 1024 parameters

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

25

Naive (one-hot input)
neural n-gram model

Advantage over non-neural n-gram model:
— The hidden layer captures interactions
among context words

— Increasing the order of the n-gram requires only
a small linear increase in the number of parameters.

dim(W1) goes from (k - dim(V)) - dim(h) to ((k+1) - dim(V)) - dim(h)
— Increasing the vocabulary also leads only to
a linear increase in the number of parameters

But: With a one-hot encoding and dim(V) = 10K or so,
this model still requires a LOT of parameters to learn.

And: The Markov assumption still holds

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 20

Better (dense embeddings input)
neural n-gram model

Advantage over non-neural n-gram model:
— Same as naive neural model, plus:

Advantages over naive neural n-gram model:

— We have far fewer parameters to learn

— Better generalizations: If similar input words have
similar embeddings, the model will predict similar
probabilities in similar contexts:

P(w | the doctor saw the) ~ P(w | a nurse sees her)

But: This generalization only works if the contexts have similar
words in the same position.

And: The Markov assumption still holds.

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 27

Neural n-gram models

Naive neural n-gram models (one-hot inputs) have
similar shortcomings to standard n-gram models

— Models get very large (and sparse) as n increases

— We can’t generalize across similar contexts

— Markov (independence) assumptions are too strict

Better neural n-gram models can be obtained with
dense word embeddings:
— Models remain much smaller

— Embeddings may provide some (limited) generalization
across similar contexts

Future lectures: CBOW neural nets as a language
model, recurrent language models

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

28

