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What have we covered so far?
We have covered a broad overview of some basic 
techniques in NLP: 

— N-gram language models
— Logistic regression
— Word embeddings

Today, we’ll put all of these together 
to create a (much better) neural language model!
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Today’s class: Intro to neural nets
Part 1: Overview  

Part 2: What are neural nets?
What are feedforward networks?  
What is an activation function?  
Why do we want activation functions to be nonlinear?  

Part 3: Neural n-gram models
How can we use neural nets to model n-gram models?
How many parameters does such a model have?  
Is this better than traditional n-gram models? Why? Why not? 
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What is “deep learning”? 
Neural networks, typically with several hidden layers 

(depth = # of hidden layers)
Single-layer neural nets are linear classifiers
Multi-layer neural nets are more expressive  

Very impressive performance gains in computer vision 
(ImageNet), speech recognition and NLP over the last 
decade.

Neural nets have been around for many decades. 
Why did they suddenly make a comeback?

Fast computers (GPUs!) and (very) large datasets have made 
it possible to train these very complex models.  
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Why deep learning in NLP?
NLP was slower to catch on to deep learning  
than e.g. computer vision. 

Language seems challenging for neural nets:
Neural nets take (real-valued) vectors as inputs…
… but language consists of variable length sequences of 
discrete symbols  

But by now neural models have led to a similar 
fundamental paradigm shit in NLP.
We will talk about this a lot more later.

Today, we’ll just cover some basics. 
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What are neural networks?
A family of machine learning models that was 
originally inspired by how neurons (nerve cells) 
process information and learn.  

In NLP, neural networks are now widely used, e.g. for 
— Classification 

     (e.g. sentiment analysis)

— (Sequence) generation 
     (e.g. in machine translation, response generation for dialogue, etc.  

— Representation Learning (neural embeddings)
     (word embeddings, sequence embeddings, graph embeddings,…)

— Structure Prediction (incl. sequence labeling)
     (e.g. part-of-speech tagging, named entity recognition, parsing,…)
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The first computational neural networks: 
McCulloch & Pitts (1943)

Influential mathematical model of neural activity 
that aimed to capture the following assumptions:
– The neural system is a (directed) network of neurons  

(neurons = nerve cells)

– Neural activity consists of electric impulses that travel  
from neuron to neuron in this network  
Neurons receive input from other neurons

– Each neuron is activated (initiates an impulse)  
if the sum of the activations it receives (from other neurons) 
is above some threshold (‘all-or-none character’)

– This network of neurons may or may not have cycles  
(but the math is much easier without cycles)
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The Perceptron (Rosenblatt 1958)
A linear classifier based on a threshold activation function: 

         Return       iff     
                           iff       
 
 
 
 
 
 

Threshold activation is inspired by the “all-or-none character”  
(McCulloch & Pitts, 1943) of how neurons process information

Perceptron update rule: (online stochastic gradient descent)
If the predicted :        
Increment  (lower the slope of the decision boundary) when  should be +1, decrement  when it should be -1)

y = + 1 f(x) = wx + b > 0
y = − 1 f(x) = wx + b ≤ 0

̂y(i) ≠ y(i) w(i+1) = w(i) + ηy(i)x(i)
w y w
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Threshold Activation
y

f(x)

Linear classifier for x = (x1, x2)

x1

x2 f(x) < 0

f(x) > 0

 is 
orthogonal

to the 
decision 
boundary

w

w
Linear decision 

boundary:
line/hyperplane  

where 
f (x) = wx + b = 0

 makes  
the update rule easier  
to write than 

y ∈ {−1, + 1}

y ∈ {0,1}

Training:
Change weights 
when the model 

makes a mistake
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Notation for linear classifiers
Given -dimensional inputs : 

With an explicit bias term : 

    

Without an explicit bias term : 

               where 

(Decision boundary goes through origin of -dimensional space)

N x = (x1, …, xN)

b

f(x) = wx + b =
N

∑
i=1

wixi + b

b

f(x) = wx =
N

∑
i=0

wixi x0 = 1

(N+1)
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From Perceptrons to 
(Feedforward) Neural Nets

Fully Connected Feedforward Net

A perceptron can be seen as a single neuron  
(one output unit with a vector or layer of input units):  
 
 

But each element of the input can be a neuron itself: 

12

Input layer: vector x

Output unit: scalar y = f(x)
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From Perceptrons to 
(Feedforward) Neural Nets
Neural nets replace the Perceptron’s linear threshold activation 
function with non-linear activation functions  …

  

… because non-linear classifiers are more expressive  
     than linear classifiers (e.g. can represent XOR [“exclusive or”]) 

… because any multilayer network of linear perceptrons  
    is equivalent to a single linear perceptron 

… and because learning requires us to set the weights of each unit
Recall Gradient descent (e.g. for logistic regression): 
Update the weights based on the gradient of the loss
In a multi-layer feedforward neural net, we need to pass the gradient of the loss  
back from the output through all layers (backpropagation):  
We need differentiable activation functions

g()
y = g(wx + b)
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Nonlinear Activation Functions g()

Sigmoid (logistic function) 
Outputs in [0,1] range. Useful for output units (probabilities), interpolation

Hyperbolic tangent:   
Outputs in [-1,1] range. Useful for internal units

Hard tanh   htanh(x) =  −1 for x < −1, 1 for x > 1, x otherwise
Outputs in [-1,1] range. Approximates tanh

Rectified Linear Unit:    
   Outputs in [0, +∞]. Works very well for internal units. 

σ(x) =
1

1 + e−x

tanh(x) =
e2x − 1
e2x + 1

ReLU(x) = max(0,x)
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Internal 
 (“hidden”)  
 computations

The data that is entered into the network

What the network returns

Multi-layer feedforward networks
We typically assume feedforward networks are 
organized into layers:

Input layer: vector x

 Hidden layer: vector h1

15

Hidden layer: vector hn

Output layer: vector y

…    …    …
…    …    … 
…    …    …. 
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Fully connected feedforward nets
Three kinds of layers,  
arranged in sequence: 

— Input layer  
     (what’s fed into the net) 
— Hidden layers  
     (intermediate computations)
— Output layer  
     (what the net returns)

Each layer consists of a number of units.
— Each hidden/output unit computes a real-valued activation 
— In a feedforward net, each (hidden/output) unit receives inputs 
     from the units in the immediately preceding layer
— In a fully connected feedforward net, each unit receives inputs 
     from all units in the immediately preceding layer
 Additional “Highway connections” that skip layers can be useful

16

Input layer: vector x

Hidden layer: vector h1

Hidden layer: vector hn

Output layer: vector y

…    …    …
…    …    … 
…    …    …. 
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Feedforward computations
The activation  of unit j in layer i is computed as 
                 

where 
—  is a (unit-specific) weight vector   
( = #units in ( )-th layer, because each connection into unit  is associated 
with one real-valued weight for each unit in the preceding layer)

—   is a (unit-specific) real-valued bias term  

—  is a (layer-specific) non-linear activation function

Each layer is defined by its number of units, ,  
a non-linear activation function  applied to all units in the layer,  
a learned matrix of weights , and a learned bias vector . 

xij
xij = g(wij ⋅ xi−1 + bij)

wij = (wij1, . . . , wijK)
K i − 1 j

bij

g()

N
g()

W b
17
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Binary Classification  
with a multilayer feedforward net
The output layer consists of a single unit  
with the sigmoid activation function

18

One output unit with 
sigmoid activation function 

 y = σ(wx + b) ∈ [0...1]
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Multi-Class Classification  
with a multilayer feedforward net
With  output classes, the output layer has  units  
with a softmax activation function: 

K K

19

Output layer:  
A vector  where the i-th 
element corresponds to the probability 
that the input has class i: 

such that we get a categorical 
distribution over all K classes

y = (y1, …, yK)

yi = softmax(zi) =
exp(zi)

∑K
k=1 exp(zk)
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Multi-Label Classification  
with a multilayer feedforward net
With  output classes,  output units  
with  sigmoid activation functions: 

K K
K

20

Output layer:  
A vector  where the i-th 
element corresponds to the probability 
that the input does (or doesn’t) have 
class i: 
         
We now have a separate probability for 
each possible class label.

y = (y1, …, yK)

yi = sigmoid(wixi + bi)
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Part
 3: 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Our first neural net for NLP:
A neural n-gram model
Given a fixed-size vocabulary V, an n-gram model 
predicts the probability of the n-th word  
following the preceding n–1 words:

How can we model this with a neural net? 
— Input layer: concatenate n–1 word vectors
— Output layer: a softmax over |V| units 

P(w(i) |w(i−1), w(i−2), …, wi−(n−1))

22
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An n-gram model  P(w | w1…wk)  
as a feedforward net (naively)
Assumptions: 
The vocabulary V contains V types (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words 

Our (naive) model: 
— [Naive]  
     Each input word wi ∈ V is a V-dimensional one-hot vector v(w)    
      → The input layer x = [v(w1),…,v(wk)] has V×k elements

— We assume one hidden layer h
— The output layer is a softmax over V elements  
            P(w | w1…wk) = softmax(hW2 + b2)

23
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An n-gram model  P(w | w1…wk)  
as a feedforward net (better)
Assumptions: 
The vocabulary V contains V types (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words 

Our (better) model: 
— [Better]  
     Each input word wi ∈ V is an n-dimensional dense embedding  
     vector v(w)  (with n≪V) 
      → The input layer x = [v(w1),…,v(wk)] has n×k elements

— We assume one hidden layer h
— The output layer is a softmax over V elements  
            P(w | w1…wk) = softmax(hW2 + b2)

24
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Our neural n-gram models
Architecture:

Input Layer:            x = [v(w1)….v(wk)]
Hidden Layer:         h = g(xW1 + b1)
Output Layer:          P(w | w1…wk) = softmax(hW2 + b2)

How many parameters do we need? [# of weights and biases]: 
Hidden layer with one-hot inputs: W1 ∈ R(k·V) × dim(h)      b1 ∈ Rdim(h) 

Hidden layer with dense inputs:    W1 ∈ R(k·n) ×dim(h)       b1 ∈ Rdim(h) 

Output layer (any inputs):   W2 ∈ Rdim(h)×V                  b2 ∈ RV

With V = 10K, n = 300 (word2vec), dim(h) = 300 
   k = 2 (trigram): W1 ∈ R20,000×300  or W1 ∈ R600×300   and b1∈ R300  
    k = 5 (six-gram): W1 ∈ R50,000×300 or W1 ∈ R1500×300 and b1∈ R300  
  W2 ∈ R300×10,000 b2 ∈ R10,000

Six-gram model with one-hot inputs: 27,000,460,000 parameters, 
                          with dense inputs:             3,460,000 parameters
Traditional six-gram model:  104x6 =  1024 parameters  
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Naive (one-hot input)  
neural n-gram model
Advantage over non-neural n-gram model: 

— The hidden layer captures interactions  
     among context words 

— Increasing the order of the n-gram requires only  
    a small linear increase in the number of parameters. 


        dim(W1) goes from (k·dim(V))·dim(h) to ((k+1)·dim(V))·dim(h)
— Increasing the vocabulary also leads only to  
    a linear increase in the number of parameters 

But: With a one-hot encoding and dim(V) ≈ 10K or so,  
this model still requires a LOT of parameters to learn.

And: The Markov assumption still holds
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Better (dense embeddings input)  
neural n-gram model
Advantage over non-neural n-gram model:

— Same as naive neural model, plus:  

Advantages over naive neural n-gram model: 

— We have far fewer parameters to learn

— Better generalizations: If similar input words have  
     similar embeddings, the model will predict similar    
     probabilities in similar contexts:  
     


But: This generalization only works if the contexts have similar 
words in the same position.
And: The Markov assumption still holds.

P(w | the doctor saw the) ≈ P(w |a nurse sees her)
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Neural n-gram models
Naive neural n-gram models (one-hot inputs) have 
similar shortcomings to standard n-gram models
–Models get very large (and sparse) as n increases
–We can’t generalize across similar contexts 
–Markov (independence) assumptions are too strict

Better neural n-gram models can be obtained with 
dense word embeddings:

— Models remain much smaller
— Embeddings may provide some (limited) generalization  
     across similar contexts

Future lectures: CBOW neural nets as a language 
model, recurrent language models
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