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Let’s look at words again…. 
So far, we’ve looked at…
… the structure of words (morphology)
… the distribution of words (language modeling)

This week, we are looking at the meaning of words 
(lexical semantics).

Today, we will consider: 
… the distributional hypothesis as a way to  
     identify words with similar meanings
… two kinds of vector representations of words 
     that are inspired by the distributional hypothesis
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Today’s lecture
 
Part 1: Lexical Semantics  
            and the Distributional Hypothesis  

Part 2: Distributional similarities  
           (from words to sparse vectors) 

Part 3: Word embeddings  
           (from words to dense vectors) 
 

Reading: Chapter 6, Jurafsky and Martin (3rd ed).
3
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Different approaches  
to lexical semantics

Roughly speaking, NLP draws on two different types 
of approaches to capture the meaning of words: 

The lexicographic tradition aims to capture the 
information represented in lexicons, dictionaries, etc.

The distributional tradition aims to capture the 
meaning of words based on large amounts of raw text 

4
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The lexicographic tradition
Uses resources such as lexicons, thesauri, ontologies etc. 
that capture explicit knowledge about word meanings.  

Assumes words have discrete word senses:
bank1 = financial institution; bank2 = river bank, etc.  

May capture explicit relations between word (senses):  
“dog” is a “mammal”, “cars” have “wheels” etc.

5
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The Distributional Tradition
 
Uses large corpora of raw text to learn the meaning of words 
from the contexts in which they occur.  

Maps words to (sparse) vectors that capture corpus statistics  

Contemporary variant: use neural nets to learn dense vector 
“embeddings” from very large corpora

(this is a prerequisite for most neural approaches to NLP)

If each word type is mapped to a single vector, this ignores the 
fact that words have multiple senses or parts-of-speech  

6
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Language understanding requires knowing 
when words have similar meanings

Question answering: 

Q: “How tall is Mt. Everest?” 
Candidate A: “The official height of Mount Everest is 
29029 feet”

“tall” is similar to “height”

7
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Plagiarism detection

8

Language understanding requires knowing 
when words have similar meanings
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How do we represent words  
to capture word similarities?
As atomic symbols?

[e.g. as in a traditional n-gram language model, or  
when we use them as explicit features in a classifier]

This is equivalent to very high-dimensional one-hot vectors: 
 aardvark=[1,0,…,0], bear=[0,1,000],…, zebra=[0,…,0,1] 

No: height/tall are as different as height/cat

As very high-dimensional sparse vectors?
[to capture so-called distributional similarities]

As lower-dimensional dense vectors?
[“word embeddings” —  important prerequisite for neural NLP]

9
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Vector representations of words
“Traditional” distributional similarity approaches 
represent words as sparse vectors
– Each dimension represents one specific context 
– Vector entries are based on word-context co-occurrence 

statistics (counts or PMI values)
 
Alternative, dense vector representations: 
–We can use Singular Value Decomposition to turn these 

sparse vectors into dense vectors (Latent Semantic Analysis)
–We can also use neural models to explicitly learn a dense 

vector representation (embedding) (word2vec, Glove, etc.) 

Sparse vectors = most entries are zero 
Dense vectors = most entries are non-zero

10
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What should word representations 
capture?

Vector representations of words were originally 
motivated by attempts to capture lexical semantics 
(the meaning of words) so that words that have 
similar meanings have similar representations

These representations may also capture some 
morphological or syntactic properties of words  
(parts of speech, inflections, stems etc.). 

11
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The Distributional Hypothesis
Zellig Harris (1954):

“oculist and eye-doctor … occur in almost the same 
environments”
“If A and B have almost identical environments we say that 
they are synonyms.”

John R. Firth 1957:
You shall know a word by the company it keeps. 

The contexts in which a word appears  
tells us a lot about what it means.

Words that appear in similar contexts have similar meanings

12
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Why do we care about word contexts?

We don’t know exactly what tezgüino is, but since we 
understand these sentences, it’s likely an alcoholic drink.  

Could we automatically identify that tezgüino is like beer?
A large corpus may contain sentences such as:   
     Beer makes you drunk      

But there are also red herrings:  
  Everybody likes chocolate    Everybody likes babies 

13

What is tezgüino?
A bottle of tezgüino is on the table. 
Everybody likes tezgüino. 
Tezgüino makes you drunk. 
We make tezgüino out of corn.  
(Lin, 1998; Nida, 1975)

Corpus
A bottle of wine is on the table. 
There is a beer bottle on the table 
Beer makes you drunk. 
We make bourbon out of corn. 
Everybody likes chocolate 
Everybody likes babies
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Two ways NLP uses context for semantics

Distributional similarities (vector-space semantics): 
Use the set of all contexts in which words  
(= word types) appear to measure their similarity

Assumption: Words that appear in similar contexts (tea, coffee) 
have similar meanings.  

Word sense disambiguation (future lecture) 
Use the context of a particular occurrence of a word 
(token) to identify which sense it has. 

Assumption: If a word has multiple distinct senses  
(e.g. plant: factory or green plant), each sense will  
appear in different contexts. 

14
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Distributional Similarities 
Basic idea:  
Measure the semantic similarity of words in terms of 
the similarity of the contexts in which they appear

How? 
Represent words as vectors such that

— each vector element (dimension)  
     corresponds to a different context
— the vector for any particular word captures  
     how strongly it is associated with each context
Compute the semantic similarity of words  
as the similarity of their vectors.

16



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Distributional similarities
Distributional similarities use the set of contexts  
in which words appear to measure their similarity.

They represent each word w as a vector w
w = (w1, …, wN) ∈ RN 

in an N-dimensional vector space.
– Each dimension corresponds to a particular context cn

– Each element wn of w captures the degree to which  
the word w is associated with the context cn.
–  wn depends on the co-occurrence counts of w and cn

The similarity of words w and u is given by  
the similarity of their vectors w and u 

17
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The Information Retrieval perspective: 
The Term-Document Matrix
In IR, we search a collection of N documents 

— We can represent each word in the vocabulary V as an  
     N-dim. vector indicating which documents it appears in.
— Conversely, we can represent each document as a  
     V-dimensional vector indicating which words appear in it.

Finding the most relevant document for a query: 
— Queries are also (short) documents 
— Use the similarity of a query’s vector and the    
     documents’ vectors to compute which document  
     is most relevant to the query.  

Intuition: Documents are similar to each other  
if they contain the same words. 

18
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Term-Document Matrix
 
 
 
 
 
 
A Term-Document Matrix is a 2D table:
– Each cell contains the frequency (count) of the term (word) t 

in document d:  tft,d 
– Each column is a vector of counts over words,  

representing a document
– Each row is a vector of counts over documents,  

representing a word

19

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0
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Term-Document Matrix
 
 
 
 
 
Each column vector = a document

Each entry corresponds to one word in the vocabulary
Each row vector = a word

Each entry corresponds to one document in the corpus
 
Two documents are similar if their vectors are similar
Two words are similar if their vectors are similar

20

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0
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Now back to lexical semantics
For information retrieval, the term-document matrix  
is useful because it can be used to compute  
the similarity of documents in terms of the words  
they contain, or of words in terms of the documents  
in which they appear.

But we can adapt this approach to implement  
a model of the distributional hypothesis  
if we treat each context as a column in our matrix. 

21
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What is a ‘context’?
There are many different definitions of context  
that yield different kinds of similarities:

Contexts defined by nearby words: 
How often does w appear near the word drink?
Near = “drink appears within a window of ±k words of w”,  
or “drink appears in the same document/sentence as w”
This yields fairly broad thematic similarities. 

Contexts defined by grammatical relations:
How often is (the noun) w used as the subject (object)  
of the verb drink?  (Requires a parser).
This gives more fine-grained similarities. 

22
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Using nearby words as contexts
Define a fixed vocabulary of  context words 

Context words should occur frequently enough in your corpus that you get 
reliable co-occurrence counts, but you should ignore words that are too 
common (‘stop words’: a, the, on, in, and, or, is, have, etc.)  

Define what ‘nearby’ means
 For example:  appears near  if  appears within ±5 words of  

Get co-occurrence counts of words  and contexts 
Define how to transform co-occurrence counts  
of words  and contexts  into vector elements 

For example: compute (positive) PMI of words and contexts

Define how to compute the similarity of word vectors
For example: use the cosine of their angles.

N c1, …, cN

w c c w

w c

w c wn

23
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Word-Word Matrix
Context: ± 7 words
 
 
 
 
Resulting word-word matrix:

 = how often does word  appear in context : 
“information” appeared six times in the context of “data” 
 
 
 
 

f(w, c) w c

24

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

sugar, a sliced lemon, a tablespoonful of lemon preserve or jam, a pinch each of
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the
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Defining and representing co-occurrence  
of words and contexts

Defining co-occurrences:
–Within a fixed window:  occurs  within  words of 
–Within the same sentence: requires sentence boundaries
– By grammatical relations:  

 occurs as a subject/object/modifier/… of verb   
(requires parsing — and separate features for each relation) 

Representing co-occurrences:
–  as binary features (1,0): w does/does not occur with 
–  as frequencies:  occurs n times with 
–  as probabilities: e.g.   is the probability that  is the 

subject of .

vi ±n w

vi w

fi vi
fi w vi
fi fi vi

w

25
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Getting co-occurrence counts
Co-occurrence as a binary feature:

Does word  ever appear in the context ?  (1 = yes/0 = no)
 
 
 

Co-occurrence as a frequency count:
How often does word  appear in the context ? (0,1,2,… times)

 
 
 
 

w c

w c

26

arts boil data function large sugar water
apricot 0 1 0 0 1 1 1

pineapple 0 1 0 0 1 1 1

digital 0 0 1 1 1 0 0

information 0 0 1 1 1 0 0

arts boil data function large sugar water
apricot 0 1 0 0 5 2 7

pineapple 0 2 0 0 10 8 5

digital 0 0 31 8 20 0 0

information 0 0 35 23 5 0 0
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Counts vs PMI
Sometimes, low co-occurrences counts are very 
informative, and high co-occurrence counts are not:
– Any word is going to have relatively high co-occurrence counts 

with very common contexts (e.g. “it”, “anything”, “is”, etc.),  
but this won’t tell us much about what that word means. 
– We need to identify when co-occurrence counts are  

higher than we would expect by chance.  

We can use pointwise mutual information (PMI) values 
instead of raw frequency counts: 

But this requires us to define p(w, c), p(w) and p(c) 

PMI(w, c) = log
p(w, c)

p(w)p(c)

27
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f(w,c)
p(w)

computer data pinch result sugar
apricot 0.00 0.00 0.05 0.00 0.05 0.11

pineapple 0.00 0.00 0.05 0.00 0.05 0.11

digital 0.11 0.05 0.00 0.05 0.00 0.21

information 0.05 0.32 0.00 0.21 0.00 0.58

p(c) 0.16 0.37 0.11 0.26 0.11

28

p(w=information, c=data) = 6/19 = .32
p(w=information) = 11/19 = .58
p(c=data) = 7/19 = .37

p(wi, cj)=
f(wi, cj)

∑W
i=1∑

C
j=1 f(wi, cj)

p(wi) =
f(wi)

N

p(cj) =
f(cj)
N

f(w,c)
computer data pinch result sugar

apricot 0 0 1 0 1

pineapple 0 0 1 0 1

digital 2 1 0 1 0

information 1 6 0 4 0
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Computing PMI of  and :  
Using a fixed window of  words

w c
±k

:     How many tokens does the corpus contain?
:     How often does w occur?

    How often does w occur with c in its window?
:  How many tokens have c in their window?

 

                           

N
f(w) ≤ N
f(w, c) ≤ f(w)
f(c) = Σw f(w, c)

p(w) =
f(w)
N

p(c) =
f(c)
N

p(w, c) =
f(w, c)

N

PMI(w, c) = log
p(w, c)

p(w)p(c)
29
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Computing PMI of  and :  
 and  in the same sentence

w c
w c

: How many sentences does the corpus contain?
: How many sentences contain w?

How many sentences contain w and c?
:            How many sentences contain c?

 

                           

N
f(w) ≤ N
f(w, c) ≤ f(w)
f(c) ≤ N

p(w) =
f(w)
N

p(c) =
f(c)
N

p(w, c) =
f(w, c)

N

PMI(w, c) = log
p(w, c)

p(w)p(c)

30
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Positive Pointwise Mutual Information
PMI is negative when words co-occur less  
than expected by chance.

This is unreliable without huge corpora:
With , we can’t estimate whether 

 is significantly different from 
 
We often just use positive PMI values,  
and replace all negative PMI values with 0:

Positive Pointwise Mutual Information (PPMI):

    

P(w1) ≈ P(w2) ≈ 10−6

P(w1, w2) 10−12

PPMI(w, c) = PMI if PMI(w, c) > 0
= 0 if PMI(w, c) ≤ 0

31
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PMI and smoothing
PMI is biased towards infrequent events:

If , then 

So  is larger for rare words w with low .

Simple remedy: Add-k smoothing of P(w, c), P(w), P(c)  
pushes all PMI values towards zero.

Add-k smoothing affects low-probability events more, and will 
therefore reduce the bias of PMI  towards infrequent events.
(Pantel & Turney 2010)

P(w, c) = P(w) = P(c) PMI(w, c) = log( 1
P(w) )

PMI(w, c) P(w)

32
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Dot product as similarity
If the vectors consist of simple binary features (0,1), 
we can use the dot product as similarity metric: 
 
 

The dot product is a bad metric if the vector elements 
are arbitrary features: it prefers long vectors

If one  is very large (and  nonzero),  gets very large  
If the number of nonzero  and   is very large,  gets very large.
Both can happen with frequent words.

xi yi sim(x, y)
xi yi sim(x, y)

33

simdot�prod(⌅x, ⌅y) =
N�

i=1

xi � yi

length of ⇥x : |⇥x| =

⌅⇤⇤⇥
N�

i=1

x2
i
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Vector similarity: Cosine
One way to define the similarity of two vectors  
is to use the cosine of their angle. 

The cosine of two vectors is their dot product,  
divided by the product of their lengths: 
 
 
 

sim(w, u) = 1: w and u point in the same direction
sim(w, u) = 0: w and u are orthogonal 
sim(w, u) = −1: w and u point in the opposite direction

34

simcos(⌅x, ⌅y) =
�N

i=1 xi ⇥ yi⇥�N
i=1 x2

i

⇥�N
i=1 y2

i

=
⌅x · ⌅y

|⌅x||⌅y|
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Distributional similarities: Details
Distributional similarities use the set of contexts  
in which words appear to measure their similarity.

They represent each word w as a vector w
w = (w1, …, wN) ∈ RN 

in an N-dimensional vector space.
– Each dimension corresponds to a particular context cn

– Each element wn of w corresponds to the PMI of the word w 
and the context cn to capture the degree to which w is 
associated with the cn.

The similarity of words w and u is given by  
the cosine similarity of their vectors w and u 

35
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(Static) Word Embeddings
A (static) word embedding is a function that maps 
each word type in the vocabulary to a single vector  

— These vectors are typically dense and have much 
lower dimensionality than the size of the vocabulary

— This mapping function typically ignores that the 
same string of letters may have different senses  
(dining table vs. a table of contents) or parts of 
speech (to table a motion vs. a table)

— This mapping function typically assumes a fixed 
size vocabulary (so an UNK token is still required)

37
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(Static) Word Embeddings
A (static) word embedding is a function that maps 
each word type in the vocabulary to a single vector  

38

a [ 0.424, 10.7, …, -2.53, 5.79 ]

aardvark [ …, …, …, …, …, ]

about [ …, …, …, …, …, ]

… [ …, …, …, …, …, ]

zebra [ …, …, …, …, …, ]

zymic [ …, …, …, …, …, ]
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Word2Vec (Mikolov et al. 2013)
The first really influential dense word embeddings  

Two ways to think about Word2Vec:
— a simplification of neural language models
— a binary logistic regression classifier  

Variants of Word2Vec
— Two different context representations: CBOW or Skip-Gram
— Two different optimization objectives:  
Negative sampling (NS) or hierarchical softmax

 

39
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Word2Vec Embeddings
Main idea: 
Use a binary classifier to predict which words appear in 
the context of (i.e. near) a target word.
The parameters of that classifier provide a dense vector 
representation of the target word (embedding)

Words that appear in similar contexts (that have high 
distributional similarity) will have very similar vector 
representations. 

These models can be trained on large amounts of raw 
text (and pre-trained embeddings can be downloaded)

40
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Skip-Gram with negative sampling
Train a binary classifier that decides whether  
target word t appears in the context of words c1..k

— Context: the set of k words near (surrounding) t
— Treat the target word t and any word that actually appears  
     in its context in a real corpus as positive examples
— Treat the target word t and randomly sampled words  
     that do not appear in its context as negative examples
— Train a (variant of a) binary logistic regression classifier  
     to distinguish these cases
— This classifier will learn weights for target words  
     and weights for context words

Use the classifier’s target weights as embeddings for t 

41



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Skip-Gram Goal
Given word pairs  = target, context

(apricot, jam)
(apricot, aardvark)

where some context words  are from real data (jam) 
and others (aardvark) are randomly sampled  
from the vocabulary… 

… decide whether  is a real context word for the 
target  (a positive example): 

 is a real context for  if 
        >    

(t, c)

c

c
t

c t
P(D=1 ∣ t, c) P(D=0 ∣ t, c) = 1 − P(D=1 ∣ t, c)

11/27/18
42
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How to compute ?P(D= + | t, c)
Intuition:  
Words are likely to appear near similar words

Idea:  
Model similarity with a dot-product of vectors: 

 
Problem:
The dot product is not a probability! 
(Neither is cosine)  	

Similarity(t, c) = f(tc)

43
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The sigmoid function  maps  
any real number  to the range (0,1):

                       

σ(x)
x

σ(x) =
ex

ex + 1
=

1
1 + e−x

The sigmoid function σ(x)

44

 0

 0.5

 1

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8  9  10

Logistic function F(x)

One more fact:
 

If , 

σ(x) + σ(−x) = 1

P(x = heads) = σ(x)
P(x = tail) = σ(−x)
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Skip-Gram Training data
	Training sentence:
	... lemon, a tablespoon of apricot jam   a   pinch ... 
	                   c1              c2     t        c3    c4

	Training data: input/output pairs centering on apricot 
	Assume a +/- 2 word window
	Positive examples (D+):  
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)
	Negative examples (D-): 
(apricot, aardvark), (apricot, puddle)…  
for each positive example, sample k noise words

45
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Sampling negative examples
Where do we get D- from? 

Lots of options.
Word2Vec: for each good pair , sample  words  
and add each  as a negative example  to 
(  is k times as large as D)

Words can be sampled according to corpus frequency  
or according to smoothed variant, e.g. by using 

(This gives more weight to rare words)

(w, c) k
wi (wi, c) D′￼

D′￼

freq′￼(w) = freq(w)0.75

46
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high if  very dissimilart, chigh if  very similart, c

The Skip-Gram classifier
Assume that  and  are represented as vectors ,  
so that their dot product  captures their similarity

Use logistic regression to predict whether the pair   
(target  and context word ), is a positive or negative example:

             

NB: When we discussed logistic regression in the last lecture,  
we assumed the model learns weights w for the feature vector x 
 
Skip-Gram learns two (sets of) vectors (i.e. two matrices):  
target embeddings/vectors t and context embeddings/vectors c

t c t, c
tc

(t, c)
t c

P( + ∣ t, c) =
1

1 + e−tc
= σ(tc) P( − ∣ t, c) =

e−tc

1 + e−tc
= σ(−tc)
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Find a model that maximizes the log-likelihood  
of the training data D+ ∪ D-:

 

This forces the target and context embeddings of 
positive examples to be similar to each other…
… and the target and context embeddings of negative 
examples to be dissimilar to each other. 
All words appear with positive and negative contexts.

ℒ(D+, D−) = ∑
(t,c)∈D+

log P( + ∣ t, c) + ∑
(t,c)∈D−

log P( − ∣ t, c)

= ∑
(t,c)∈D+

σ(tc) + ∑
(t,c)∈D−

σ(−tc)

Training objective
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Summary: How to learn word2vec (skip-gram) 
embeddings
For a vocabulary of size V: Start with V random vectors 
(typically 300-dimensional) as initial embeddings

Train a logistic regression classifier to distinguish words 
that co-occur in corpus from those that don’t

—Pairs of words that co-occur are positive examples
—Pairs of words that don't co-occur are negative examples
During training, target and context vectors of positive examples will 
become similar, and those of negative examples will become dissimilar.

This returns two embedding matrices T and C, where each 
word in the vocabulary is mapped to a 300-dim. vector.
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Properties of embeddings
Similarity depends on window size C

With C = ±2:
The closest words to Hogwarts:
Sunnydale
Evernight

 
With C = ±5: 

The closest words to Hogwarts:
Dumbledore
Malfoy
halfblood
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Analogy: Embeddings capture 
relational meaning!
vector(‘king’) – vector(‘man’) + vector(‘woman’)  = vector(‘queen’)
vector(‘Paris’) – vector(‘France’) + vector(‘Italy’)  = vector(‘Rome’)
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Evaluating embeddings
Compare to human scores on word 
similarity-type tasks:

WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset 
(Huang et al., 2012) 
TOEFL dataset: Levied is closest in meaning to: imposed, 
believed, requested, correlated 
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Using pre-trained embeddings
Assume you have pre-trained embeddings E.
How do you use them in your model?

– Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.
– Option 2: Keep E fixed, but add another hidden layer that is 

learned for your task
– Option 3: Learn matrix T ∈ dim(emb)×dim(emb) and use 

rows of E’ = ET  (adapts all embeddings, not specific words)
– Option 4: Keep E fixed, but learn matrix Δ ∈ R|V|×dim(emb) and 

use E’ = E + Δ or E’ = ET + Δ (this learns to adapt specific 
words)
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Dense embeddings you can 
download!
Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/
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The 
End
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