
CS447: Natural Language Processing

http://courses.grainger.illinois.edu/cs447

Julia Hockenmaier

juliahmr@illinois.edu

Lecture 8: 
Distributional similarities,
word embeddings

http://courses.grainger.illinois.edu/cs447
mailto:juliahmr@illinois.edu

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Let’s look at words again….
So far, we’ve looked at…
… the structure of words (morphology)
… the distribution of words (language modeling)

This week, we are looking at the meaning of words
(lexical semantics).

Today, we will consider:
… the distributional hypothesis as a way to  
 identify words with similar meanings
… two kinds of vector representations of words 
 that are inspired by the distributional hypothesis

2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Today’s lecture
 
Part 1: Lexical Semantics  
 and the Distributional Hypothesis  

Part 2: Distributional similarities  
 (from words to sparse vectors) 

Part 3: Word embeddings  
 (from words to dense vectors) 
 

Reading: Chapter 6, Jurafsky and Martin (3rd ed).
3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Different approaches  
to lexical semantics

Roughly speaking, NLP draws on two different types
of approaches to capture the meaning of words:

The lexicographic tradition aims to capture the
information represented in lexicons, dictionaries, etc.

The distributional tradition aims to capture the
meaning of words based on large amounts of raw text

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The lexicographic tradition
Uses resources such as lexicons, thesauri, ontologies etc. 
that capture explicit knowledge about word meanings.  

Assumes words have discrete word senses:
bank1 = financial institution; bank2 = river bank, etc.  

May capture explicit relations between word (senses):  
“dog” is a “mammal”, “cars” have “wheels” etc.

5

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The Distributional Tradition
 
Uses large corpora of raw text to learn the meaning of words
from the contexts in which they occur.  

Maps words to (sparse) vectors that capture corpus statistics  

Contemporary variant: use neural nets to learn dense vector
“embeddings” from very large corpora

(this is a prerequisite for most neural approaches to NLP)

If each word type is mapped to a single vector, this ignores the
fact that words have multiple senses or parts-of-speech  

6

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Language understanding requires knowing
when words have similar meanings

Question answering: 

Q: “How tall is Mt. Everest?” 
Candidate A: “The official height of Mount Everest is
29029 feet”

“tall” is similar to “height”

7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Plagiarism detection

8

Language understanding requires knowing
when words have similar meanings

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How do we represent words  
to capture word similarities?
As atomic symbols?

[e.g. as in a traditional n-gram language model, or  
when we use them as explicit features in a classifier]

This is equivalent to very high-dimensional one-hot vectors: 
 aardvark=[1,0,…,0], bear=[0,1,000],…, zebra=[0,…,0,1]

No: height/tall are as different as height/cat

As very high-dimensional sparse vectors?
[to capture so-called distributional similarities]

As lower-dimensional dense vectors?
[“word embeddings” — important prerequisite for neural NLP]

9

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Vector representations of words
“Traditional” distributional similarity approaches
represent words as sparse vectors
– Each dimension represents one specific context
– Vector entries are based on word-context co-occurrence

statistics (counts or PMI values)
 
Alternative, dense vector representations:
–We can use Singular Value Decomposition to turn these

sparse vectors into dense vectors (Latent Semantic Analysis)
–We can also use neural models to explicitly learn a dense

vector representation (embedding) (word2vec, Glove, etc.) 

Sparse vectors = most entries are zero 
Dense vectors = most entries are non-zero

10

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

What should word representations
capture?

Vector representations of words were originally
motivated by attempts to capture lexical semantics
(the meaning of words) so that words that have
similar meanings have similar representations

These representations may also capture some
morphological or syntactic properties of words  
(parts of speech, inflections, stems etc.).

11

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The Distributional Hypothesis
Zellig Harris (1954):

“oculist and eye-doctor … occur in almost the same
environments”
“If A and B have almost identical environments we say that
they are synonyms.”

John R. Firth 1957:
You shall know a word by the company it keeps. 

The contexts in which a word appears  
tells us a lot about what it means.

Words that appear in similar contexts have similar meanings

12

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Why do we care about word contexts?

We don’t know exactly what tezgüino is, but since we
understand these sentences, it’s likely an alcoholic drink.

Could we automatically identify that tezgüino is like beer?
A large corpus may contain sentences such as:  
 Beer makes you drunk

But there are also red herrings:
 Everybody likes chocolate Everybody likes babies

13

What is tezgüino?
A bottle of tezgüino is on the table. 
Everybody likes tezgüino. 
Tezgüino makes you drunk. 
We make tezgüino out of corn.  
(Lin, 1998; Nida, 1975)

Corpus
A bottle of wine is on the table. 
There is a beer bottle on the table 
Beer makes you drunk. 
We make bourbon out of corn. 
Everybody likes chocolate 
Everybody likes babies

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Two ways NLP uses context for semantics

Distributional similarities (vector-space semantics):
Use the set of all contexts in which words  
(= word types) appear to measure their similarity

Assumption: Words that appear in similar contexts (tea, coffee)
have similar meanings.  

Word sense disambiguation (future lecture) 
Use the context of a particular occurrence of a word
(token) to identify which sense it has.

Assumption: If a word has multiple distinct senses  
(e.g. plant: factory or green plant), each sense will  
appear in different contexts.

14

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Distr
ibut

iona
l Sim

ilari
ties 

(Fro
m Words to

 Spa
rse

Vect
ors)

15

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Distributional Similarities
Basic idea:  
Measure the semantic similarity of words in terms of
the similarity of the contexts in which they appear

How? 
Represent words as vectors such that

— each vector element (dimension)  
 corresponds to a different context
— the vector for any particular word captures  
 how strongly it is associated with each context
Compute the semantic similarity of words  
as the similarity of their vectors.

16

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Distributional similarities
Distributional similarities use the set of contexts  
in which words appear to measure their similarity.

They represent each word w as a vector w
w = (w1, …, wN) ∈ RN 

in an N-dimensional vector space.
– Each dimension corresponds to a particular context cn

– Each element wn of w captures the degree to which  
the word w is associated with the context cn.
– wn depends on the co-occurrence counts of w and cn

The similarity of words w and u is given by  
the similarity of their vectors w and u

17

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The Information Retrieval perspective:
The Term-Document Matrix
In IR, we search a collection of N documents

— We can represent each word in the vocabulary V as an  
 N-dim. vector indicating which documents it appears in.
— Conversely, we can represent each document as a  
 V-dimensional vector indicating which words appear in it.

Finding the most relevant document for a query:
— Queries are also (short) documents
— Use the similarity of a query’s vector and the  
 documents’ vectors to compute which document  
 is most relevant to the query.

Intuition: Documents are similar to each other  
if they contain the same words.

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Term-Document Matrix
 
 
 
 
 
 
A Term-Document Matrix is a 2D table:
– Each cell contains the frequency (count) of the term (word) t

in document d: tft,d
– Each column is a vector of counts over words,  

representing a document
– Each row is a vector of counts over documents,  

representing a word

19

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Term-Document Matrix
 
 
 
 
 
Each column vector = a document

Each entry corresponds to one word in the vocabulary
Each row vector = a word

Each entry corresponds to one document in the corpus
 
Two documents are similar if their vectors are similar
Two words are similar if their vectors are similar

20

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Now back to lexical semantics
For information retrieval, the term-document matrix  
is useful because it can be used to compute  
the similarity of documents in terms of the words  
they contain, or of words in terms of the documents  
in which they appear.

But we can adapt this approach to implement  
a model of the distributional hypothesis  
if we treat each context as a column in our matrix.

21

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

What is a ‘context’?
There are many different definitions of context  
that yield different kinds of similarities:

Contexts defined by nearby words:
How often does w appear near the word drink?
Near = “drink appears within a window of ±k words of w”,  
or “drink appears in the same document/sentence as w”
This yields fairly broad thematic similarities. 

Contexts defined by grammatical relations:
How often is (the noun) w used as the subject (object)  
of the verb drink? (Requires a parser).
This gives more fine-grained similarities.

22

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Using nearby words as contexts
Define a fixed vocabulary of context words

Context words should occur frequently enough in your corpus that you get
reliable co-occurrence counts, but you should ignore words that are too
common (‘stop words’: a, the, on, in, and, or, is, have, etc.)

Define what ‘nearby’ means
 For example: appears near if appears within ±5 words of

Get co-occurrence counts of words and contexts
Define how to transform co-occurrence counts  
of words and contexts into vector elements

For example: compute (positive) PMI of words and contexts

Define how to compute the similarity of word vectors
For example: use the cosine of their angles.

N c1, …, cN

w c c w

w c

w c wn

23

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word-Word Matrix
Context: ± 7 words
 
 
 
 
Resulting word-word matrix:

 = how often does word appear in context :
“information” appeared six times in the context of “data” 
 
 
 
 

f(w, c) w c

24

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

sugar, a sliced lemon, a tablespoonful of lemon preserve or jam, a pinch each of
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Defining and representing co-occurrence  
of words and contexts

Defining co-occurrences:
–Within a fixed window: occurs within words of
–Within the same sentence: requires sentence boundaries
– By grammatical relations:  

 occurs as a subject/object/modifier/… of verb  
(requires parsing — and separate features for each relation) 

Representing co-occurrences:
– as binary features (1,0): w does/does not occur with
– as frequencies: occurs n times with
– as probabilities: e.g. is the probability that is the

subject of .

vi ±n w

vi w

fi vi
fi w vi
fi fi vi

w

25

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Getting co-occurrence counts
Co-occurrence as a binary feature:

Does word ever appear in the context ? (1 = yes/0 = no)
 
 
 

Co-occurrence as a frequency count:
How often does word appear in the context ? (0,1,2,… times)

 
 
 
 

w c

w c

26

arts boil data function large sugar water
apricot 0 1 0 0 1 1 1

pineapple 0 1 0 0 1 1 1

digital 0 0 1 1 1 0 0

information 0 0 1 1 1 0 0

arts boil data function large sugar water
apricot 0 1 0 0 5 2 7

pineapple 0 2 0 0 10 8 5

digital 0 0 31 8 20 0 0

information 0 0 35 23 5 0 0

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Counts vs PMI
Sometimes, low co-occurrences counts are very
informative, and high co-occurrence counts are not:
– Any word is going to have relatively high co-occurrence counts

with very common contexts (e.g. “it”, “anything”, “is”, etc.),  
but this won’t tell us much about what that word means.
– We need to identify when co-occurrence counts are  

higher than we would expect by chance.  

We can use pointwise mutual information (PMI) values
instead of raw frequency counts:

But this requires us to define p(w, c), p(w) and p(c)

PMI(w, c) = log
p(w, c)

p(w)p(c)

27

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

f(w,c)
p(w)

computer data pinch result sugar
apricot 0.00 0.00 0.05 0.00 0.05 0.11

pineapple 0.00 0.00 0.05 0.00 0.05 0.11

digital 0.11 0.05 0.00 0.05 0.00 0.21

information 0.05 0.32 0.00 0.21 0.00 0.58

p(c) 0.16 0.37 0.11 0.26 0.11

28

p(w=information, c=data) = 6/19 = .32
p(w=information) = 11/19 = .58
p(c=data) = 7/19 = .37

p(wi, cj)=
f(wi, cj)

∑W
i=1∑

C
j=1 f(wi, cj)

p(wi) =
f(wi)

N

p(cj) =
f(cj)
N

f(w,c)
computer data pinch result sugar

apricot 0 0 1 0 1

pineapple 0 0 1 0 1

digital 2 1 0 1 0

information 1 6 0 4 0

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Computing PMI of and :  
Using a fixed window of words

w c
±k

: How many tokens does the corpus contain?
: How often does w occur?

 How often does w occur with c in its window?
: How many tokens have c in their window?

 

N
f(w) ≤ N
f(w, c) ≤ f(w)
f(c) = Σw f(w, c)

p(w) =
f(w)
N

p(c) =
f(c)
N

p(w, c) =
f(w, c)

N

PMI(w, c) = log
p(w, c)

p(w)p(c)
29

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Computing PMI of and :  
 and in the same sentence

w c
w c

: How many sentences does the corpus contain?
: How many sentences contain w?

How many sentences contain w and c?
: How many sentences contain c?

 

N
f(w) ≤ N
f(w, c) ≤ f(w)
f(c) ≤ N

p(w) =
f(w)
N

p(c) =
f(c)
N

p(w, c) =
f(w, c)

N

PMI(w, c) = log
p(w, c)

p(w)p(c)

30

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Positive Pointwise Mutual Information
PMI is negative when words co-occur less  
than expected by chance.

This is unreliable without huge corpora:
With , we can’t estimate whether

 is significantly different from
 
We often just use positive PMI values,  
and replace all negative PMI values with 0:

Positive Pointwise Mutual Information (PPMI):

P(w1) ≈ P(w2) ≈ 10−6

P(w1, w2) 10−12

PPMI(w, c) = PMI if PMI(w, c) > 0
= 0 if PMI(w, c) ≤ 0

31

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

PMI and smoothing
PMI is biased towards infrequent events:

If , then

So is larger for rare words w with low .

Simple remedy: Add-k smoothing of P(w, c), P(w), P(c)  
pushes all PMI values towards zero.

Add-k smoothing affects low-probability events more, and will
therefore reduce the bias of PMI towards infrequent events.
(Pantel & Turney 2010)

P(w, c) = P(w) = P(c) PMI(w, c) = log(1
P(w))

PMI(w, c) P(w)

32

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dot product as similarity
If the vectors consist of simple binary features (0,1), 
we can use the dot product as similarity metric: 
 
 

The dot product is a bad metric if the vector elements 
are arbitrary features: it prefers long vectors

If one is very large (and nonzero), gets very large  
If the number of nonzero and is very large, gets very large.
Both can happen with frequent words.

xi yi sim(x, y)
xi yi sim(x, y)

33

simdot�prod(⌅x, ⌅y) =
N�

i=1

xi � yi

length of ⇥x : |⇥x| =

⌅⇤⇤⇥
N�

i=1

x2
i

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Vector similarity: Cosine
One way to define the similarity of two vectors  
is to use the cosine of their angle. 

The cosine of two vectors is their dot product,  
divided by the product of their lengths: 
 
 
 

sim(w, u) = 1: w and u point in the same direction
sim(w, u) = 0: w and u are orthogonal
sim(w, u) = −1: w and u point in the opposite direction

34

simcos(⌅x, ⌅y) =
�N

i=1 xi ⇥ yi⇥�N
i=1 x2

i

⇥�N
i=1 y2

i

=
⌅x · ⌅y

|⌅x||⌅y|

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Distributional similarities: Details
Distributional similarities use the set of contexts  
in which words appear to measure their similarity.

They represent each word w as a vector w
w = (w1, …, wN) ∈ RN 

in an N-dimensional vector space.
– Each dimension corresponds to a particular context cn

– Each element wn of w corresponds to the PMI of the word w
and the context cn to capture the degree to which w is
associated with the cn.

The similarity of words w and u is given by  
the cosine similarity of their vectors w and u

35

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word
Embeddings

(Fro
m Words to

 Den
se

Vect
ors)

36

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

(Static) Word Embeddings
A (static) word embedding is a function that maps
each word type in the vocabulary to a single vector  

— These vectors are typically dense and have much
lower dimensionality than the size of the vocabulary

— This mapping function typically ignores that the
same string of letters may have different senses  
(dining table vs. a table of contents) or parts of
speech (to table a motion vs. a table)

— This mapping function typically assumes a fixed
size vocabulary (so an UNK token is still required)

37

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

(Static) Word Embeddings
A (static) word embedding is a function that maps
each word type in the vocabulary to a single vector  

38

a [0.424, 10.7, …, -2.53, 5.79]

aardvark […, …, …, …, …,]

about […, …, …, …, …,]

… […, …, …, …, …,]

zebra […, …, …, …, …,]

zymic […, …, …, …, …,]

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word2Vec (Mikolov et al. 2013)
The first really influential dense word embeddings  

Two ways to think about Word2Vec:
— a simplification of neural language models
— a binary logistic regression classifier  

Variants of Word2Vec
— Two different context representations: CBOW or Skip-Gram
— Two different optimization objectives:  
Negative sampling (NS) or hierarchical softmax

 

39

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word2Vec Embeddings
Main idea:
Use a binary classifier to predict which words appear in
the context of (i.e. near) a target word.
The parameters of that classifier provide a dense vector
representation of the target word (embedding)

Words that appear in similar contexts (that have high
distributional similarity) will have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pre-trained embeddings can be downloaded)

40

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Skip-Gram with negative sampling
Train a binary classifier that decides whether  
target word t appears in the context of words c1..k

— Context: the set of k words near (surrounding) t
— Treat the target word t and any word that actually appears  
 in its context in a real corpus as positive examples
— Treat the target word t and randomly sampled words  
 that do not appear in its context as negative examples
— Train a (variant of a) binary logistic regression classifier  
 to distinguish these cases
— This classifier will learn weights for target words  
 and weights for context words

Use the classifier’s target weights as embeddings for t 

41

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Skip-Gram Goal
Given word pairs = target, context

(apricot, jam)
(apricot, aardvark)

where some context words are from real data (jam)
and others (aardvark) are randomly sampled  
from the vocabulary… 

… decide whether is a real context word for the
target (a positive example): 

 is a real context for if 
 >

(t, c)

c

c
t

c t
P(D=1 ∣ t, c) P(D=0 ∣ t, c) = 1 − P(D=1 ∣ t, c)

11/27/18
42

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How to compute ?P(D= + | t, c)
Intuition:  
Words are likely to appear near similar words

Idea:  
Model similarity with a dot-product of vectors:

 
Problem:
The dot product is not a probability! 
(Neither is cosine) 	

Similarity(t, c) = f(tc)

43

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The sigmoid function maps  
any real number to the range (0,1):

σ(x)
x

σ(x) =
ex

ex + 1
=

1
1 + e−x

The sigmoid function σ(x)

44

 0

 0.5

 1

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Logistic function F(x)

One more fact:
 

If , 

σ(x) + σ(−x) = 1

P(x = heads) = σ(x)
P(x = tail) = σ(−x)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Skip-Gram Training data
	Training sentence:
	... lemon, a tablespoon of apricot jam a pinch ...
	 c1 c2 t c3 c4

	Training data: input/output pairs centering on apricot
	Assume a +/- 2 word window
	Positive examples (D+):  
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)
	Negative examples (D-): 
(apricot, aardvark), (apricot, puddle)…  
for each positive example, sample k noise words

45

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Sampling negative examples
Where do we get D- from?

Lots of options.
Word2Vec: for each good pair , sample words  
and add each as a negative example to
(is k times as large as D)

Words can be sampled according to corpus frequency  
or according to smoothed variant, e.g. by using

(This gives more weight to rare words)

(w, c) k
wi (wi, c) D′￼

D′￼

freq′￼(w) = freq(w)0.75

46

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

high if very dissimilart, chigh if very similart, c

The Skip-Gram classifier
Assume that and are represented as vectors ,  
so that their dot product captures their similarity

Use logistic regression to predict whether the pair  
(target and context word), is a positive or negative example:

NB: When we discussed logistic regression in the last lecture,  
we assumed the model learns weights w for the feature vector x
 
Skip-Gram learns two (sets of) vectors (i.e. two matrices):  
target embeddings/vectors t and context embeddings/vectors c

t c t, c
tc

(t, c)
t c

P(+ ∣ t, c) =
1

1 + e−tc
= σ(tc) P(− ∣ t, c) =

e−tc

1 + e−tc
= σ(−tc)

47

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Find a model that maximizes the log-likelihood  
of the training data D+ ∪ D-:

 

This forces the target and context embeddings of
positive examples to be similar to each other…
… and the target and context embeddings of negative
examples to be dissimilar to each other.
All words appear with positive and negative contexts.

ℒ(D+, D−) = ∑
(t,c)∈D+

log P(+ ∣ t, c) + ∑
(t,c)∈D−

log P(− ∣ t, c)

= ∑
(t,c)∈D+

σ(tc) + ∑
(t,c)∈D−

σ(−tc)

Training objective

48

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Summary: How to learn word2vec (skip-gram)
embeddings
For a vocabulary of size V: Start with V random vectors
(typically 300-dimensional) as initial embeddings

Train a logistic regression classifier to distinguish words
that co-occur in corpus from those that don’t

—Pairs of words that co-occur are positive examples
—Pairs of words that don't co-occur are negative examples
During training, target and context vectors of positive examples will
become similar, and those of negative examples will become dissimilar.

This returns two embedding matrices T and C, where each
word in the vocabulary is mapped to a 300-dim. vector.

49

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Properties of embeddings
Similarity depends on window size C

With C = ±2:
The closest words to Hogwarts:
Sunnydale
Evernight

 
With C = ±5:

The closest words to Hogwarts:
Dumbledore
Malfoy
halfblood

50

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Analogy: Embeddings capture
relational meaning!
vector(‘king’) – vector(‘man’) + vector(‘woman’) = vector(‘queen’)
vector(‘Paris’) – vector(‘France’) + vector(‘Italy’) = vector(‘Rome’)

51

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Evaluating embeddings
Compare to human scores on word
similarity-type tasks:

WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset
(Huang et al., 2012)
TOEFL dataset: Levied is closest in meaning to: imposed,
believed, requested, correlated

52

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Using pre-trained embeddings
Assume you have pre-trained embeddings E.
How do you use them in your model?

– Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.
– Option 2: Keep E fixed, but add another hidden layer that is

learned for your task
– Option 3: Learn matrix T ∈ dim(emb)×dim(emb) and use

rows of E’ = ET (adapts all embeddings, not specific words)
– Option 4: Keep E fixed, but learn matrix Δ ∈ R|V|×dim(emb) and

use E’ = E + Δ or E’ = ET + Δ (this learns to adapt specific
words)

53

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dense embeddings you can
download!
Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

54

https://code.google.com/archive/p/word2vec/
http://www.fasttext.cc/
http://nlp.stanford.edu/projects/glove/

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The
End

55

