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P(Y | X) with Logistic Regression:
Binary Classification
Task: Model   
for any input (feature) vector 
 
Idea: Learn feature weights  (and a bias term ) 
to capture how important each feature  is for predicting  

For binary classification ( ),  
(standard) logistic regression uses the sigmoid function:

Parameters to learn: one feature weight vector  and one bias term  

P(y ∈ {0,1} ∣ x)
x = (x1, . . . , xn)

w = (w1, …, wn) b
xi y = 1

y ∈ {0,1}

P( Y=1 ∣ x ) = σ(wx + b) =
1

1 + exp( −(wx + b))
w b

3
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Learning parameters w and b
Training objective: Find parameters w and b that  
“capture the training data Dtrain as well as possible”
 
More formally (and since we’re being probabilistic):  
Find w and b that assign the largest possible conditional 
probability to the labels of the items in Dtrain

⇒ Maximize  for any (xi,1) with a positive label in Dtrain

⇒ Maximize  for any (xi,0) with a negative label in Dtrain  

 Since  we can rewrite this to: 
 

For yi = 1, this comes out to:      

For yi = 0, this is:      

(w*, b*) = argmax(w,b) ∏
(xi,yi)∈Dtrain

P( yi ∣ xi)

P( 1 ∣ xi )
P( 0 ∣ xi )

yi ∈ {0,1}
(ww, b*) = argmax(w,b) ∏

(xi,yi)∈Dtrain

P( 1 ∣ xi)yi ⋅ [1 − P( 1 ∣ xi)]1−yi

P( 1 ∣ xi)1(1 − P( 1 ∣ xi))0 = P( 1 ∣ xi)
P( 1 ∣ xi)0(1 − P( 1 ∣ xi))1 = 1 − P( 1 ∣ xi) = P( 0 ∣ xi)

4



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Learning = Optimization = Loss Minimization

Learning = parameter estimation = optimization: 
Given a particular class of model (logistic regression, Naive Bayes, …) and data Dtrain, 
find the best parameters for this class of model on Dtrain

If the model is a probabilistic classifier, think of 
optimization as Maximum Likelihood Estimation (MLE)

“Best” = return (among all possible parameters for models of this class) 
parameters that assign the largest probability  to Dtrain 

In general (incl. for probabilistic classifiers),  
think of optimization as Loss Minimization:

“Best” = return (among all possible parameters for models of this class) 
parameters that have the smallest loss on Dtrain

“Loss”: how bad are the predictions of a model? 
   The loss function we use to measure loss depends on the class of model  
   : how bad is it to predict  if the correct label is  ?L( ̂y, y) ̂y y

5
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Conditional MLE ⟹ Cross-Entropy Loss

Conditional MLE: Maximize probability of labels in Dtrain

⇒ Maximize  for any (xi,1) with a positive label in Dtrain

⇒ Maximize  for any (xi,0) with a negative label in Dtrain

Equivalently: Minimize negative log prob. of correct labels in Dtrain

 
The negative log probability of the correct label is a loss function: 

 is smallest (0) when we assign all probability to the correct label
 is largest ( ) when we assign all probability to the wrong label

This negative log likelihood loss is also called cross-entropy loss

(w*, b*) = argmax(w,b) ∏
(xi,yi)∈Dtrain

P( yi ∣ xi)

P( 1 ∣ xi )
P( 0 ∣ xi )

P(yi ∣ x) = 0 ⇔ − log(P(yi ∣ x)) = +∞ if yi is the correct label for x, this is the worst possible model
P(yi ∣ x) = 1 ⇔ − log(P(yi ∣ x)) = 0 if yi is the correct label for x, this is the best possible model

−log(P(yi ∣ xi))
−log(P(yi ∣ xi)) +∞

6
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From loss to per-example cost
Let’s define the “cost” of our classifier on the whole dataset 
as its average loss on each of the m training examples: 

            

For each example:

CostCE(Dtrain) =
1
m ∑

i=1..m

−log P( yi ∣ xi)

−log P( yi ∣ xi)
= −log( P( 1 ∣ xi)yi ⋅ P( 0 ∣ xi)1−yi )

[either yi = 1 or yi = 0]
= −[ yi log( P( 1 ∣ xi)) + (1 − yi)log(P( 0 ∣ xi))]

[moving the log inside]
= −[ yi log(σ(wxi + b)) + (1 − yi)log(1 − σ(wxi + b))]

[plugging in definition of P( 1 ∣ xi) ]

7
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The loss surface 

8

Loss

Parameters

Any specific parameter setting  
(any instantiation of the feature weights  ) 

yields a particular loss on the training data.

Imagine a (very high-)dimensional landscape, 
where each  is one point, and

height at  = loss of classifier with weights 

f

f
f f



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/ 9

Loss

global  
minimum

Learning = finding the 
parameters that correspond 
to the global minimum of 

the loss surface

Parameters

Learning = Moving in this landscape
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Learning = Moving in this landscape

10

Loss

global  
minimum

Parameters

Start at a 
random point…

… but you don’t 
see very far…
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Loss

global  
minimum

Parameters

You can only take small, 
local steps

Learning = Moving in this landscape



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/ 12

Loss

global  
minimum

Parameters

How do you know where and how much to move? 
— Determine a step size   (learning rate)
— The gradient of the loss  (= vector of partial derivatives)    
     indicates the direction of steepest increase in : 

             

     Go in the opposite direction (i.e. downhill) 

=> Update your weights with 

η
∇L(f)

L(f)

∇L(f) = (δL(f)
δf1

, …,
δL(f)

δfn )
f := f − η∇L(f)

Moving with Gradient Descent
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Gradient Descent finds local optima

13

Loss

global  
minimum

plateau

local 
minimum

Parameters

Finding the global 
minimum in general  

is hard
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Gradient Descent finds local optima

14

Loss

global  
minimum

local 
minimum

plateau

Parameters

You often get stuck in  
local minima 

(or on plateaus)
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(Stochastic) Gradient Descent
We want to find parameters that have minimal cost (loss) on our 
training data.
We don’t know the shape of the whole loss surface.
Each setting of the model parameters corresponds to one point on 
the loss surface.
The gradient of the loss of our current parameters tells us the slope 
of the loss surface at the current point
And we can take a (small) step in the right (downhill) direction  
(to update our parameters)

Gradient descent:  
Compute loss for entire dataset before updating weights
Stochastic gradient descent:  
Compute loss for one (randomly sampled) training example before 
updating weights

15
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Stochastic Gradient Descent

16

5.4 • GRADIENT DESCENT 11

Note in Eq. 5.21 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

The loss for a batch of data or an entire dataset is just the average loss over the
m examples:

Cost(w,b) = � 1
m

mX

i=1

y(i) logs(w · x(i) +b)+(1� y(i)) log
⇣

1�s(w · x(i) +b)
⌘

(5.22)

And the gradient for multiple data points is the sum of the individual gradients::

∂Cost(w,b)
∂w j

=
mX

i=1

h
s(w · x(i) +b)� y(i)

i
x(i)j (5.23)

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
# where: L is the loss function
# f is a function parameterized by q
# x is the set of training inputs x(1), x(2), ..., x(n)

# y is the set of training outputs (labels) y(1), y(2), ..., y(n)

q 0
repeat T times

For each training tuple (x(i), y(i)) (in random order)
Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?
g —q L( f (x(i);q),y(i)) # How should we move q to maximize loss ?
q q � h g # go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm

Stochastic gradient descent is called stochastic because it chooses a single ran-
dom example at a time, moving the weights so as to improve performance on that
single example. That can result in very choppy movements, so it’s also common to
do minibatch gradient descent, which computes the gradient over batches of train-minibatch
ing instances rather than a single instance.

The learning rate h is a parameter that must be adjusted. If it’s too high, the
learner will take steps that are too large, overshooting the minimum of the loss func-
tion. If it’s too low, the learner will take steps that are too small, and take too long to
get to the minimum. It is most common to begin the learning rate at a higher value,
and then slowly decrease it, so that it is a function of the iteration k of training; you
will sometimes see the notation hk to mean the value of the learning rate at iteration
k.
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Gradient for Logistic Regression
Computing the gradient of the loss for example xi and 
weight wj is very simple (xji: j-th feature of xi)

δL(w, b)
δwj

= [σ(wxi + b) − yi]xji

17
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More details
The learning rate  affects convergence 

There are many options for setting the learning rate:  
fixed, decaying (as a function of time), adaptive,…
Often people use more complex schemes and optimizers

Mini-batch training computes the gradient  
on a small batch of training examples at a time.

Often more stable than SGD.

Regularization keeps the size of the weights  
under control 

L1 or L2 regularization

η

18
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Let’s look at words again…. 
So far, we’ve looked at…
… the structure of words (morphology)
… the distribution of words (language modeling)

Today, we’ll start looking at the meaning of words 
(lexical semantics).

We will consider: 
… the distributional hypothesis as a way to  
     identify words with similar meanings
… two kinds of vector representations of words 
     that are inspired by the distributional hypothesis

20
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Today’s lecture
 
Part 1: Lexical Semantics  
            and the Distributional Hypothesis  

Part 2: Distributional similarities  
           (from words to sparse vectors) 

Part 3: Word embeddings  
           (from words to dense vectors) 
 

Reading: Chapter 6, Jurafsky and Martin (3rd ed).
21
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What do words mean,  
and how do we represent that?

Do we want to represent that…
… “cassoulet” is a French dish?
… “cassoulet” contains meat?
… “cassoulet” is a stew?

22

… cassoulet …
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What do words mean,  
and how do we represent that?

Do we want to represent…
… that a “bar” is a place to have a drink?
… that a “bar” is a long rod?
… that to “bar” something means to block it?

23

… bar …
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Different approaches  
to lexical semantics

Roughly speaking, NLP draws on two different types 
of approaches to capture the meaning of words: 

The lexicographic tradition aims to capture the 
information represented in lexicons, dictionaries, etc.

The distributional tradition aims to capture the 
meaning of words based on large amounts of raw text 

24
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The lexicographic tradition
Uses resources such as lexicons, thesauri, ontologies etc. 
that capture explicit knowledge about word meanings.  

Assumes words have discrete word senses:
bank1 = financial institution; bank2 = river bank, etc.  

May capture explicit relations between word (senses):  
“dog” is a “mammal”, “cars” have “wheels” etc.

25
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The Distributional Tradition
 
Uses large corpora of raw text to learn the meaning of words 
from the contexts in which they occur.  

Maps words to (sparse) vectors that capture corpus statistics  

Contemporary variant: use neural nets to learn dense vector 
“embeddings” from very large corpora

(this is a prerequisite for most neural approaches to NLP)

If each word type is mapped to a single vector, this ignores the 
fact that words have multiple senses or parts-of-speech  

26
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Where we’re at
We have looked at how to represent the meaning of 
sentences based on the meaning of their words (using 
predicate logic).

Now we will get back to the question of how to represent 
the meaning of words  
(although this won’t be in predicate logic)

We will look at lexical resources (WordNet)
We will consider two different tasks:

— Computing word similarities
— Word sense disambiguation

28
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Different approaches to lexical semantics

Lexicographic tradition (today’s lecture) 
– Use lexicons, thesauri, ontologies
– Assume words have discrete word senses:
bank1 = financial institution; bank2 = river bank, etc. 
–May capture explicit relations between word (senses):  

“dog” is a “mammal”, etc.
 
Distributional tradition (earlier lectures)
–Map words to (sparse) vectors that capture corpus statistics 
– Contemporary variant: use neural nets to learn dense vector 

“embeddings” from very large corpora
(this is a prerequisite for most neural approaches to NLP)
– This line of work often ignores the fact that words have 

multiple senses or parts-of-speech
29
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Word senses
What does ‘bank’ mean?  
 
– a financial institution  

(US banks have raised interest rates) 

– a particular branch of a financial institution  
(the bank on Green Street closes at 5pm) 

– the bank of a river  
(In 1927, the bank of the Mississippi flooded) 

– a ‘repository’  
(I donate blood to a blood bank)

30
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Lexicon entries

31

lemmas

senses
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Lexicon entries

32

Glosses  
(definitions intended for  

human readers)

Examples  
(phrases or sentences that show 
how the particular sense is used)
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Some terminology
Word forms: runs, ran, running; good, better, best

Any, possibly inflected, form of a word  
(i.e. what we talked about in morphology) 

Lemma (citation/dictionary form): run
A basic word form (e.g. infinitive or singular nominative noun) that is 
used to represent all forms of the same word. 
(i.e. the form you’d search for in a dictionary) 

Lexeme: RUN(V), GOOD(A), BANK1(N), BANK2(N)
An abstract representation of a word (and all its forms), 
with a part-of-speech and a set of related word senses. 
(Often just written (or referred to) as the lemma, perhaps in a different FONT)

Lexicon: 
A (finite) list of lexemes

33
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Trying to make sense of senses
Polysemy:

A lexeme is polysemous if it has different related senses 
 
 

             bank =   financial institution        or     building  

Homonyms:  
Two lexemes are homonyms if their senses are unrelated, but 
they happen to have the same spelling and pronunciation 
 
 

          bank =      (financial) bank         or      (river) bank 

34
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Relations between senses
Symmetric relations:

Synonyms: couch/sofa
Two lemmas with the same sense  

Antonyms: cold/hot, rise/fall, in/out
Two lemmas with the opposite sense  

Hierarchical relations:
Hypernyms and hyponyms: pet/dog
The hyponym (dog) is more specific than the hypernym (pet) 

Holonyms and meronyms: car/wheel
The meronym (wheel) is a part of the holonym (car) 

35
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Metonymy
Some senses of a word may be related in a 
systematic way, e.g. …

… organizations and buildings:
    I see you in front of the bank on Green Street. 
… cars and their drivers:
    This Camry looks new. vs.  The Camry honked at me. 
… authors and their works: 
    Jane Austen wrote Emma. vs  I really like Austen
… plants and the food derived from them:
    Plums have beautiful blossoms. vs I ate a plum 

36



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

WordN
et a

nd 

WordN
et-b

ased
 

Word 
Similari

ty

37



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

WordNet
Very large, publicly available lexical database of English:

110K nouns, 11K verbs, 22K adjectives, 4.5K adverbs
(WordNets for many other languages exist or are under construction)

 
Each word has a POS tag and one or more word senses.

Avg. # of senses: 1.23 nouns, 2.16 verbs, 1.41 adj, 1.24 adverbs
 
Word senses are grouped into synonym sets (“synsets”)

81K noun synsets, 13K verb synsets, 19K adj. synsets, 3.5K adverb synsets
 
Synsets are connected in a hierarchy/network  
defined via conceptual-semantic relations

— hypernym/hyponym relation (IS-A)
— holonym/meronym relation (HAS-A)
Also lexical relations (derivational morphology), and lemmatization

 
Available at http://wordnet.princeton.edu 

38

http://wordnet.princeton.edu
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A WordNet example

Synsets

Searching for “bass” returns
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IS-A relations (hyponymy):  
 
Hypernym/hyponym (between concepts)

meal is a hypernym (superordinate) of breakfast 
breakfast is a hyponym (subordinate) of meal 
dog is a hypernym (superordinate) of poodle 
poodle is a hyponym (subordinate) of (IS-A) dog 

Instance hypernym/hyponym (concepts and instances)
composer is the instance hypernym of (HAS-INSTANCE) Bach  
Bach is an instance hyponym of (IS-INSTANCE-OF) composer 

40

Hierarchical synset relations:  
Nouns (I)
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WordNet Hypernyms and Hyponyms

41
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Part-Whole relations (meronymy): 
Member holonym/meronym (groups and members)

crew is a member holonym of (HAS-MEMBER) co-pilot 
co-pilot is a member meronym of (IS-MEMBER-OF) crew 

Part holonym/meronym (wholes and parts)
car is a part holonym of (HAS-PART) wheel  
wheel is a part meronym of (IS-PART-OF) car 

Substance holonym/meronym (substances and components)
bread is a substance holonym of (HAS-COMPONENT) flour  
flour is a substance meronym of (IS-COMPONENT-OF) bread

42

Hierarchical synset relations:  
Nouns (II)
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Hypernym/troponym (between events): 

travel/fly, walk/stroll  
Flying is a troponym of traveling: 
it denotes a specific manner of traveling  

Entailment (between events): 
snore/sleep  
Snoring entails (presupposes) sleeping  
(if somebody is snoring, they have to be sleeping)

43

Hierarchical synset relations: 
Verbs
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WordNet relations as a graph

(Figure from Jurafsky & Martin, 3rd Edition, and Navigli 2016)
44

8 CHAPTER 18 • WORD SENSES AND WORDNET

bass
3
, basso (an adult male singer with the lowest voice)

=> singer, vocalist, vocalizer, vocaliser

=> musician, instrumentalist, player

=> performer, performing artist

=> entertainer

=> person, individual, someone...

=> organism, being

=> living thing, animate thing,

=> whole, unit

=> object, physical object

=> physical entity

=> entity

bass
7
(member with the lowest range of a family of instruments)

=> musical instrument, instrument

=> device

=> instrumentality, instrumentation

=> artifact, artefact

=> whole, unit

=> object, physical object

=> physical entity

=> entity

Figure 18.5 Hyponymy chains for two separate senses of the lemma bass. Note that the
chains are completely distinct, only converging at the very abstract level whole, unit.

of location. Fig. 18.6 shows a subgraph of WordNet demonstrating many of the
relations.

Figure 18.6 WordNet viewed as a graph. Figure from Navigli (2016).
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WordNet as a semantic network
The Hypernym/hyponym relations (IS-A) and 
holonym/meronym relations (HAS-A) in WordNet 
capture some important world knowledge, e.g.:

 car IS-A motor-vehicle IS-A… IS-A wheeled-vehicle
 wheeled-vehicle HAS-A brake
→ car IS-A wheeled-vehicle
→ car HAS-A brake

We can interpret WordNet as a simple “semantic 
network” (for semantic networks in AI see e.g. http://
www.jfsowa.com/pubs/semnet.htm)  

45

http://www.jfsowa.com/pubs/semnet.htm
http://www.jfsowa.com/pubs/semnet.htm
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WordNet-based word similarity
There have been many attempts to exploit resources 
like WordNet to compute word (sense) similarities. 
 
Classic approaches use the distance (path length) 
between synsets (these paths typically only consider 
hypernym/hyponym relations), possibly augmented 
with corpus statistics 

More recent (neural) approaches aim to learn  
(non-Euclidean) embeddings that capture the 
hierarchical hypernym/hyponym structure of WordNet.

46
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What do we mean by  
“word (sense) similarity”?
There are many aspects to “similarity”:
— Similarity as synonymy:  
     sim(couch, sofa)> sim(poodle, dog) >  sim(poodle, pug), …  
     Do the two words/senses have the same meaning?  
     (WordNet: synsets are synonyms (similarity=1), but hypernym/hyponyms  
       (dog/poodle) are also more similar to each other than unrelated words)
— Similarity as association: 

  How related are the two words/senses to each other?  
  coffee and cup are strongly associated, but not synonyms 
  “Semantic fields”: sets of words that are topically related 
   (WordNet: holonyms/meronyms etc. capture some associations)

Earlier metrics of similarity in NLP often conflate both notions, 
but see e.g.  SimLex-999 https://www.aclweb.org/anthology/J15-4004.pdf 

47
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WordNet path lengths: examples and problems

Path length is just the distance between synsets
pathlen(nickel, dime) = 2   (nickel—coin—dime) 
pathlen(nickel, money) = 5  (nickel—…—medium of exchange—money)

pathlen(nickel, budget) = 7 (nickel—…—medium of exchange—…–budget)

But do we really want the following?
pathlen(nickel, coin) < pathlen(nickel, dime) 
pathlen(nickel, Richter scale) = pathlen(nickel, budget)
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Problems with thesaurus-based similarity

We need to have a thesaurus!  
(not available for all languages) 

We need to have a thesaurus that contains the words 
we’re interested in. 

We need a thesaurus that captures a rich hierarchy of 
hypernyms and hyponyms.

Most thesaurus-based similarities depend on the 
specifics of the hierarchy that is implement in the 
thesaurus.
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Learning hyponym relations
If we don’t have a thesaurus, can we learn that Corolla  
is a kind of car from text?  

Certain phrases and patterns indicate hyponym relations:
Hearst(1992) [Hearst patterns]
Enumerations: cars such as the Corolla, the Civic, and the Vibe, 
Appositives: the Corolla , a popular car…  

We can also learn these patterns if we have some seed 
examples of hyponym relations (e.g. from WordNet):

1. Take all hyponym/hypernym pairs from WordNet (e.g. car/vehicle)
2. Find all sentences that contain both, and identify patterns
3. Apply these patterns to new data to get new hyponym/hypernym  pairs
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