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Evaluation setup:
Split data into separate training, (development) and test sets.  
 
 

Better setup: n-fold cross validation:
Split data into n sets of equal size
Run n experiments, using set i to test and remainder to train  
 

This gives average, maximal and minimal accuracies
 

When comparing two classifiers:
Use the same test and training data with the same classes

Evaluating Classifiers
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Evaluation Metrics
Accuracy: What fraction of items in the test data  
were classified correctly?
 
It’s easy to get high accuracy if one class is very 
common (just label everything as that class)
 
But that would be a pretty useless classifier
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Precision and recall
Precision and recall were originally developed  
as evaluation metrics for information retrieval:
– Precision: What percentage of retrieved documents  

are relevant to the query?
– Recall: What percentage of relevant documents were 

retrieved?

In NLP, they are often used in addition to accuracy:
– Precision: What percentage of items that were assigned 

label X do actually have label X in the test data?
– Recall: What percentage of items that have label X  

in the test data were assigned label X by the system? 
Precision and Recall are particularly useful  
when there are more than two labels.
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True vs. false positives, false negatives

– True positives:   Items that were labeled X by the system, 
                            and should be labeled X.
– False positives: Items that were labeled X by the system,  

                            but should not be labeled X. 
– False negatives: Items that were not labeled X by the system,  

                             but should be labeled X, 
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Precision, Recall, F-Measure
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Precision: P = TP ∕( TP + FP ) 
Recall:       R = TP ∕( TP + FN )
F-measure: harmonic mean of precision and recall  
                    F = (2·P·R)∕(P + R)
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Confusion Matrices
A confusion matrix tabulates how many items  
that are labeled with class y in the gold data  
are labeled with class y’ by the classifier.
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Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common
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Confusion Matrices
This can be useful for understanding what kinds of 
mistakes a (multi-class) classifier makes 
 
 
 

 
 

Only 8/16 ‘urgent’ messages are classified correctly.
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Confusion Matrices
This can be useful for understanding what kinds of 
mistakes a (multi-class) classifier makes 
 
 
 

 
 

Only 8/16 ‘urgent’ messages are classified correctly.
But 200/251 ’spam’ messages are classified correctly.
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Confusion Matrices
This can be useful for understanding what kinds of 
mistakes a (multi-class) classifier makes 
 
 
 

 
 

Only 8/16 ‘urgent’ messages are classified correctly.
But 200/251 ’spam’ messages are classified correctly.
And only 8/19 messages labeled ‘urgent’ are actually urgent 
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Reading off Precision and Recall 
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Reading off Precision and Recall 
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4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
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the development test set (also called a devset) to perhaps tune some parameters,development
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is the best model, we run it on the (hitherto unseen) test set to report its performance.
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set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
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The only problem with cross-validation is that because all the data is used for
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Macro-average vs Micro-average

14

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development
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set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
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The only problem with cross-validation is that because all the data is used for
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Macro-average: average the precision over all K classes  
                  (regardless of how common each class is)

How do we aggregate precision and recall  
across classes?
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Macro-average vs Micro-average
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Micro-average: average the precision over all N items  
                  (regardless of what class they have)

How do we aggregate precision and recall  
across classes?
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Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2
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do this by cross-validation: we randomly choose a training and test set division ofcross-validation
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we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
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Macro-average vs. Micro-average
Which average should you report?

Macro-average (average P/R of all classes):
Useful if performance on all classes  
is equally important. 

Micro-average (average P/R of all items):
Useful if performance on all items  
is equally important.

16
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Probabilistic classifiers
A probabilistic classifier returns the most likely class   
for input :

 

[Last class:] Naive Bayes uses Bayes Rule:
  

Naive Bayes models the joint distribution of the class and the data: 

Joint models are also called generative models because we can view them  
as stochastic processes that generate (labeled) items:

Sample/pick a label  with , and then an item  with 

[Today:] Logistic Regression models  directly
This is also called a discriminative or conditional model, because it only 
models the probability of the class given the input, and not of the raw data itself.

y*
x

y* = argmaxyP(Y = y |X = x)

y* = argmaxyP( y ∣ x ) = argmaxyP( x ∣ y )P( y )

P( x ∣ y) P( y ) = P( x, y )

y P(y) x P(x ∣ y)
P( y ∣ x )

18
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Key questions for today’s class
What do we mean by generative vs. discriminative 
models/classifiers? 

Why is it difficult to incorporate complex features  
into a generative model like Naive Bayes?

How can we use (standard or multinomial) logistic 
regression for (binary or multiclass) classification?

How can we train logistic regression models with 
(stochastic) gradient descent?

19
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Today’s class
Part 1: Review and Overview  

Part 2: From generative to discriminative classifiers 
           (Logistic Regression  
            and Multinomial Regression)
 
Part 3: Learning Logistic Regression Models  
           with (Stochastic) Gradient Descent

Reading: Chapter 5 (Jurafsky & Martin, 3rd Edition)

20
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(Directed) Graphical Models
Graphical models are a visual notation  
for probability models. 

Each node represents a distribution  
over one random variable:
      :
 
Arrows represent dependencies (i.e. what other 
random variables the current node is conditioned on)
                         

P(X)

P(Y)P(X ∣ Y) P(Y)P(Z)P(X ∣ Y, Z)

22
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Generative vs Discriminative Models
In classification: 
— The data  is observed (shaded nodes).

— The label  is hidden (and needs to be inferred)
x = (x1, …, xn)
y

23

Discriminative Model  
(Logistic Regression)

P(y ∣ x)

Y

X1 Xi Xn

Generative Model 
(Naive Bayes)

P(x ∣ y)

X1 Xi Xn

Y
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Good!   sums to 1P(Y )

Bad!  
 does not sum to 1P(Y )

How do we model   
such that we can compute it for any ?

P(Y = y ∣ X = x)
x

We’ve probably never seen any particular   
that we want to classify at test time.

Even if we could define and compute probability distributions  
              
    with  
for any single feature  …   

….we can’t just multiply these probabilities together  
    to get one distribution over all  for a given  

      

x

P(Y = y ∣ Xi = xi)
Σyj∈Y P(Y=yj ∣ Xi =xi) = 1

xi ∈ x = (x1, …, xi, …, xn)

yj ∈ Y x
P(Y = y ∣ X = x) := ∑

yj∈Y
[ ∏

i=1...n

P(Y = yj ∣ Xi = xi)] < 1

24
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The sigmoid function  maps  
any real number  to the range (0,1):

                       

σ(x)
x

σ(x) =
ex

ex + 1
=

1
1 + e−x

The sigmoid function σ(x)

25
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Using  with feature vectors σ() x
We can use the sigmoid  to express a Bernoulli distribution

Coin flips:   and  

But to use the sigmoid  for binary classification,  
we need to model the conditional probability   
such that it depends on the particular feature vector 

Also: We don’t know how important each feature (element)   
of  for our particular classification task is…
… and we need to feed a single real number into ! 

Solution: Assign (learn) a vector of feature weights  

and compute   to obtain a single real, and then 

σ()
P(Heads) = σ(x) P(Tails) = 1 − P(Heads) = 1 − σ(x)

σ()
P(Y ∈ {0,1} ∣ x = X)

x ∈ X

xi
x = (x1, …, xn)

σ()

f = ( f1, …, fn)

fx =
n

∑
i=1

fixi σ(fx)
26
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P(Y | X) with Logistic Regression:
Binary Classification
Task: Model   
for any input (feature) vector 
 
Idea: Learn feature weights  (and a bias term ) 
to capture how important each feature  is for predicting  

For binary classification ( ),  
(standard) logistic regression uses the sigmoid function:

Parameters to learn: one feature weight vector  and one bias term  

P(y ∈ {0,1} ∣ x)
x = (x1, . . . , xn)

w = (w1, …, wn) b
xi y = 1

y ∈ {0,1}

P( Y=1 ∣ x ) = σ(wx + b) =
1

1 + exp( −(wx + b))
w b

27
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What about multi-class classification?
Now we need to model  such that…
… The probability of any class  depends on  and :

 
… The probability of any class  (for any input )  
     is positive:   
 

… The probabilities of all classes  (for each input ) 
    sum to one:   

P(Y ∣ X)
yj j x

yj x
∀x∈X ∀j∈{1...K} : P(Y = yj ∣ X = x) > 0

yj x
∀x∈X : Σj=1..KP(Y = yj ∣ X = x) = 1

28

-> Exponentiate :  fjx exp(fjx)

-> Renormalize :  exp(fjx) P(Y = yi ∣ X = x) =
exp(fjx)

∑k exp(fkx)

-> Define class-specific feature weights :   fj fjx
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P(Y | X) with Logistic Regression:
Multiclass Classification
Task: Model   
for any input (feature) vector  

Idea: Learn feature weights  (and a bias term ) 
to capture how important each feature  is for predicting class 

For multiclass classification ( ),  
multinomial logistic regression uses the softmax function: 

 

Parameters to learn: one feature weight vector  and one bias term  per class

P( y ∈ {y1, …, yK} ∣ x)
x = (x1, . . . , xn)

wj = (w1j, …, wnj) bj
xi yj

y ∈ {0,1,...,K}

P( Y=yj ∣ x ) = softmax(z)j =
exp(zj)

∑K
k=1 exp(zk)

=
exp( −(wjx + bj))

∑K
k=1 exp( −(wkx + bk))

wj bj

29
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The softmax function
The softmax function turns any vector of reals   
into a discrete probability distribution   
where   and     

 

Logistic regression applies the softmax to a linear combination 
of the input features :    
Models based on logistic regression are also known as 
Maximum Entropy (MaxEnt) models 
We will see the softmax again when we talk about neural nets, 
but there the input is typically a much more complex, nonlinear 
function of the input features.

z = (z1, …, zn)
p = (p1, …, pn)

∀j∈{1,…,n}: 0 < pj < 1 Σn
j=1pj = 1

pj = softmax(z)j =
exp(zj)

∑K
k=1 exp(zk)

x z = fx

30
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NB: Binary logistic regression is just a special 
case of multinomial logistic regression
Binary logistic regression needs a distribution over : 

              

 
Compare with Multinomial logistic regression over :

 
➜ Binary logistic regression is a special case of multinomial logistic 
regression over two classes with      
(i.e. where  is set to the null vector and )

y ∈ {0,1}
P( Y=1 ∣ x ) =

1
1 + exp( −(wx + b))

P( Y=0 ∣ x ) =
exp( −(wx + b))

1 + exp( −(wx + b))
= 1 − P( Y=1 ∣ x )

y ∈ {0,1}

P( Y=1 ∣ x ) =
exp( −(w1x + b1))

exp( −(w1x + b1)) + exp( −(w0x + b0))

P( Y=0 ∣ x ) =
exp( −(w0x + b0))

exp( −(w1x + b1)) + exp( −(w0x + b0))

exp( −(w1x + b1)) = 1
w1 b1 := 0

31
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Using Logistic Regression
How do we create a (binary) logistic regression classifier?
 
1) Feature design:  
Decide how to map raw inputs to feature vectors  

2) Training:  
Learn parameters  and  on training data  

x

w b

32
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Feature Design:  
From raw inputs to feature vectors  x

Feature design for generative models  
(Naive Bayes): 
— In a generative model, we have to learn a model for .

— Getting a proper distribution (  ) is difficult

— NB assumes that the features (elements of x) are independent*  
 and defines  via a multinomial or Bernoulli    
  (*more precisely, conditionally independent given y)

— Different kinds of feature values (boolean, integer, real) require 
different kinds of distributions  (Bernoulli, multinomial, etc.)

P( x ∣ y )

∑x P( x ∣ y ) = 1

P( x ∣ y ) = ∏i P( xi ∣ y )

P(xi ∣ y)

33
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Feature Design:  
From raw inputs to feature vectors  x

Feature design for conditional models  
(Logistic Regression):
— In a conditional model, we only have to learn 

— It is much easier to get a proper distribution       
     (  )

— We don’t need to assume that our features are independent
— Any numerical feature  can be used directly  
    to compute 

P( y ∣ x )

∑j=1..K P( yj ∣ x ) = 1

xi
exp(wijxi)
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Useful features that are not independent
Different features can overlap in the input

(e.g. we can model both unigrams and bigrams, or overlapping bigrams)

Features can capture properties of the input
(e.g. whether words are capitalized, in all-caps, contain particular 
[classes of] letters or characters, etc.)
This also makes it easy to use predefined dictionaries of words  
(e.g. for sentiment analysis, or gazetteers for names): 
Is this word “positive” (‘happy’) or “negative” (‘awful’)?
Is this the name of a person (‘Smith’) or city (‘Boston’) [it may be both (‘Paris’)]

Features can capture combinations of properties
(e.g. whether a word is capitalized and ends in a full stop) 

We can use the outputs of other classifiers as features
(e.g. to combine weak [less accurate] classifiers for the same task,  
or to get at complex properties of the input that require a learned classifier) 

35
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Feature Design and Selection
How do you specify features?

We can’t manually enumerate 10,000s of features  
(e.g. for every possible bigram: “an apple”, …, “zillion zebras”)
Instead we use feature templates that define what type of 
feature we want to use  
(e.g. “any pair of adjacent words that appears >2 times in the training data”)

How do you know which features to use? 
Identifying useful sets of feature templates requires  
expertise and a lot of experimentation (e.g. ablation studies) 
Which specific set of feature (templates) works well depends very much  
on the particular classification task and dataset.
Feature selection methods prune useless features 
automatically. This reduces the number of weights to learn.  
(e.g. ‘of the’ may not be useful for sentiment analysis, but ‘very cool’ is)

36
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Learning parameters w and b
Training objective: Find parameters w and b that  
“capture the training data Dtrain as well as possible”
 
More formally (and since we’re being probabilistic):  
Find w and b that assign the largest possible conditional 
probability to the labels of the items in Dtrain

⇒ Maximize  for any (xi,1) with a positive label in Dtrain

⇒ Maximize  for any (xi,0) with a negative label in Dtrain  

 Since  we can rewrite this to: 
 

For yi = 1, this comes out to:      

For yi = 0, this is:      

(w*, b*) = argmax(w,b) ∏
(xi,yi)∈Dtrain

P( yi ∣ xi)

P( 1 ∣ xi )
P( 0 ∣ xi )

yi ∈ {0,1}
(ww, b*) = argmax(w,b) ∏

(xi,yi)∈Dtrain

P( 1 ∣ xi)yi ⋅ [1 − P( 1 ∣ xi)]1−yi

P( 1 ∣ xi)1(1 − P( 1 ∣ xi))0 = P( 1 ∣ xi)
P( 1 ∣ xi)0(1 − P( 1 ∣ xi))1 = 1 − P( 1 ∣ xi) = P( 0 ∣ xi)
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Learning = Optimization = Loss Minimization

Learning = parameter estimation = optimization: 
Given a particular class of model (logistic regression, Naive Bayes, …) and data Dtrain, 
find the best parameters for this class of model on Dtrain

If the model is a probabilistic classifier, think of 
optimization as Maximum Likelihood Estimation (MLE)

“Best” = return (among all possible parameters for models of this class) 
parameters that assign the largest probability  to Dtrain 

In general (incl. for probabilistic classifiers),  
think of optimization as Loss Minimization:

“Best” = return (among all possible parameters for models of this class) 
parameters that have the smallest loss on Dtrain

“Loss”: how bad are the predictions of a model? 
   The loss function we use to measure loss depends on the class of model  
   : how bad is it to predict  if the correct label is  ?L( ̂y, y) ̂y y

39
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Conditional MLE ⟹ Cross-Entropy Loss

Conditional MLE: Maximize probability of labels in Dtrain

⇒ Maximize  for any (xi,1) with a positive label in Dtrain

⇒ Maximize  for any (xi,0) with a negative label in Dtrain

Equivalently: Minimize negative log prob. of correct labels in Dtrain

 
The negative log probability of the correct label is a loss function: 

 is smallest (0) when we assign all probability to the correct label
 is largest ( ) when we assign all probability to the wrong label

This negative log likelihood loss is also called cross-entropy loss

(w*, b*) = argmax(w,b) ∏
(xi,yi)∈Dtrain

P( yi ∣ xi)

P( 1 ∣ xi )
P( 0 ∣ xi )

P(yi ∣ x) = 0 ⇔ − log(P(yi ∣ x)) = +∞ if yi is the correct label for x, this is the worst possible model
P(yi ∣ x) = 1 ⇔ − log(P(yi ∣ x)) = 0 if yi is the correct label for x, this is the best possible model

−log(P(yi ∣ xi))
−log(P(yi ∣ xi)) +∞
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From loss to per-example cost
Let’s define the “cost” of our classifier on the whole dataset 
as its average loss on each of the m training examples: 

            

For each example:

CostCE(Dtrain) =
1
m ∑

i=1..m

−log P( yi ∣ xi)

−log P( yi ∣ xi)
= −log( P( 1 ∣ xi)yi ⋅ P( 0 ∣ xi)1−yi )

[either yi = 1 or yi = 0]
= −[ yi log( P( 1 ∣ xi)) + (1 − yi)log(P( 0 ∣ xi))]

[moving the log inside]
= −[ yi log(σ(wxi + b)) + (1 − yi)log(1 − σ(wxi + b))]

[plugging in definition of P( 1 ∣ xi) ]
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The loss surface 

42

Loss

Parameters

Any specific parameter setting  
(any instantiation of the feature weights  ) 

yields a particular loss on the training data.

Imagine a (very high-)dimensional landscape, 
where each  is one point, and

height at  = loss of classifier with weights 

f

f
f f
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Loss

global  
minimum

Learning = finding the 
parameters that correspond 
to the global minimum of 

the loss surface

Parameters

Learning = Moving in this landscape
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Learning = Moving in this landscape

44

Loss

global  
minimum

Parameters

Start at a 
random point…

… but you don’t 
see very far…
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Loss

global  
minimum

Parameters

You can only take small, 
local steps

Learning = Moving in this landscape
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Loss

global  
minimum

Parameters

How do you know where and how much to move? 
— Determine a step size   (learning rate)
— The gradient of the loss  (= vector of partial derivatives)    
     indicates the direction of steepest increase in : 

             

     Go in the opposite direction (i.e. downhill) 

=> Update your weights with 

η
∇L(f)

L(f)

∇L(f) = (δL(f)
δf1

, …,
δL(f)

δfn )
f := f − η∇L(f)

Moving with Gradient Descent
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Gradient Descent finds local optima

47

Loss

global  
minimum

plateau

local 
minimum

Parameters

Finding the global 
minimum in general  

is hard
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Gradient Descent finds local optima

48

Loss

global  
minimum

local 
minimum

plateau

Parameters

You often get stuck in  
local minima 

(or on plateaus)
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(Stochastic) Gradient Descent
— We want to find parameters that have minimal cost (loss)  
     on our training data. 
— But we don’t know the whole loss surface.
— However, the gradient of the cost (loss) of our current      
parameters tells us how the slope of the loss surface  
at the point given by our current parameters
— And then we can take a (small) step in the right (downhill) 
direction (to update our parameters)

Gradient descent:  
Compute loss for entire dataset before updating weights
Stochastic gradient descent:  
Compute loss for one (randomly sampled) training example 
before updating weights
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Stochastic Gradient Descent
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5.4 • GRADIENT DESCENT 11

Note in Eq. 5.21 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

The loss for a batch of data or an entire dataset is just the average loss over the
m examples:

Cost(w,b) = � 1
m

mX

i=1

y(i) logs(w · x(i) +b)+(1� y(i)) log
⇣

1�s(w · x(i) +b)
⌘

(5.22)

And the gradient for multiple data points is the sum of the individual gradients::

∂Cost(w,b)
∂w j

=
mX

i=1

h
s(w · x(i) +b)� y(i)

i
x(i)j (5.23)

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
# where: L is the loss function
# f is a function parameterized by q
# x is the set of training inputs x(1), x(2), ..., x(n)

# y is the set of training outputs (labels) y(1), y(2), ..., y(n)

q 0
repeat T times

For each training tuple (x(i), y(i)) (in random order)
Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?
g —q L( f (x(i);q),y(i)) # How should we move q to maximize loss ?
q q � h g # go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm

Stochastic gradient descent is called stochastic because it chooses a single ran-
dom example at a time, moving the weights so as to improve performance on that
single example. That can result in very choppy movements, so it’s also common to
do minibatch gradient descent, which computes the gradient over batches of train-minibatch
ing instances rather than a single instance.

The learning rate h is a parameter that must be adjusted. If it’s too high, the
learner will take steps that are too large, overshooting the minimum of the loss func-
tion. If it’s too low, the learner will take steps that are too small, and take too long to
get to the minimum. It is most common to begin the learning rate at a higher value,
and then slowly decrease it, so that it is a function of the iteration k of training; you
will sometimes see the notation hk to mean the value of the learning rate at iteration
k.
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Gradient for Logistic Regression
Computing the gradient of the loss for example xi and 
weight wj is very simple (xji: j-th feature of xi)

δL(w, b)
δwj

= [σ(wxi + b) − yi]xji
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More details
The learning rate  affects convergence 

There are many options for setting the learning rate:  
fixed, decaying (as a function of time), adaptive,…
Often people use more complex schemes and optimizers

Mini-batch training computes the gradient  
on a small batch of training examples at a time.

Often more stable than SGD.

Regularization keeps the size of the weights  
under control 

L1 or L2 regularization

η
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The 
End
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