
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 5:
Introduction to Classification
for NLP

http://courses.engr.illinois.edu/cs498jh4
mailto:juliahmr@illinois.edu

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

5, Pa
rt 1:

Revi
ew and

Over
view

2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Review: Lecture 4
Language models define a probability distribution over  
all strings w=w(1)…w(K) in a language:

N-gram language models define the probability of a string  
w=w(1)…w(K) as the product of the probabilities of each word w(i),
conditioned on the n–1 preceding words:

Unigram:

Bigram:

Trigram:

∑
w∈L

P(w) = 1

Pn−gram(w(1) w(K)) = ∏
i=1..K

P(w(i) |w(i−1), …, w(i−n+1))

Punigram(w(1) w(K)) = ∏
i=1..K

P(w(i))

Pbigram(w(1) w(K)) = ∏
i=1..K

P(w(i) |w(i−1))

Ptrigram(w(1) w(K)) = ∏
i=1..K

P(w(i) |w(i−1), w(i−2))

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

4, Par
t 5:

Eval
uati

ng

lang
uage

 mode
ls

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Intrinsic vs Extrinsic Evaluation
How do we know whether one language model  
is better than another?

There are two ways to evaluate models:
- intrinsic evaluation measures how well the model captures
what it is supposed to capture (e.g. probabilities)
-extrinsic (task-based) evaluation measures how useful the
model is in a particular task.

Both cases require an evaluation metric  
that allows us to measure and compare  
the performance of different models.

5

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Intrinsic Evaluation  
of Language Models:
Perplexity

6

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Intrinsic evaluation
Define an evaluation metric (scoring function).

We will want to measure how similar the predictions  
of the model are to real text.

Train the model on a ‘seen’ training set
Perhaps: tune some parameters based on held-out data  
(disjoint from the training data, meant to emulate unseen data) 

Test the model on an unseen test set
(usually from the same source (e.g. WSJ) as the training data)
Test data must be disjoint from training and held-out data
Compare models by their scores (more on this in the next
lecture).

7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Perplexity
The perplexity of a language models is defined as  
the inverse () of the probability of the test set,
normalized () by the # of tokens (N) in the test set. 

If a LM assigns probability P(w1, …, wN) to a test
corpus w1…wN, the LM’s perplexity, PP(w1…wN), is 
 

A LM with lower perplexity is better because it
assigns a higher probability to the unseen test corpus.
LM1 and LM2’s perplexity can only be compared if they use the same vocabulary
— Trigram models have lower perplexity than bigram models;  
— Bigram models have lower perplexity than unigram models, etc.

1
P(. . .)

N . . .

8

PP (w1...wN) = P (w1...wN)�
1
N

= N

⇥
1

P (w1...wN)

= N

⇧⌅⌅⇤
N�

i=1

1
P (wi|w1...wi�1)

=def
N

⇧⌅⌅⇤
N�

i=1

1
P (wi|wi�n...wi�1)

PP (w1...wN) = P (w1...wN)�
1
N

= N

⇥
1

P (w1...wN)

= N

⇧⌅⌅⇤
N�

i=1

1
P (wi|w1...wi�1)

=def
N

⇧⌅⌅⇤
N�

i=1

1
P (wi|wi�n...wi�1)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Practical issues: Use logarithms!
Since language model probabilities are very small, 
multiplying them together often yields to underflow.  

It is often better to use logarithms instead, so replace
 
 
 
 
with

9

PP(w1...wN) =def
N

s
N

’
i=1

1
P(wi|wi�1, ...,wi�n+1)

PP(w1...wN) =def exp
✓
� 1

N

N

Â
i=1

logP(wi|wi�1, ...,wi�n+1

◆

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Extrinsic (Task-Based)
Evaluation of LMs:  
Word Error Rate

10

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Intrinsic vs. Extrinsic Evaluation
Perplexity tells us which LM assigns a higher
probability to unseen text 

This doesn’t necessarily tell us which LM is better for
our task (i.e. is better at scoring candidate sentences) 

Task-based evaluation:
-Train model A, plug it into your system for performing task T
-Evaluate performance of system A on task T.
-Train model B, plug it in, evaluate system B on same task T.
-Compare scores of system A and system B on task T.

11

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Originally developed for speech recognition.

How much does the predicted sequence of words
differ from the actual sequence of words  
in the correct transcript? 
 
 

Insertions: “eat lunch” → “eat a lunch”
Deletions: “see a movie” → “see movie”
Substitutions: “drink ice tea”→ “drink nice tea”

Word Error Rate (WER)

WER =
Insertions + Deletions + Substitutions

Actual words in transcript

12

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Review: Lecture 4
How do we…
…estimate the parameters of a language model?

Relative frequency estimation (aka Maximum Likelihood estimation)  

… compute the probability of the first n–1 words?
By padding the start of the sentence with n–1 BOS tokens 

… obtain one distribution over strings of any length?
By adding an EOS token to the end of each sentence. 

… handle unknown words?
By replacing rare words in training and unknown words with an UNK tokens

… evaluate language models?
Intrinsically with perplexity of test data, extrinsically e.g. with word error rate

13

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Overview: Lecture 5
Part 1: Review and Overview
Part 2: What is classification?
Part 3: The Naive Bayes classifier
Part 4: Running&evaluating classification experiments

Reading:
Chapter 4, 3rd edition of Jurafsky and Martin

14

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Today’s questions
What is classification?

What is binary/multiclass/multilabel classification?

What is supervised learning?
And why do we want to learn classifiers  
(instead of writing down some rules, say)?

Feature engineering: from data to vectors

How is the Naive Bayes Classifier defined?

How do you evaluate a classifier?

15

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

5, Pa
rt 2:

What
is

Class
ifica

tion
?

16

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Spam Detection

 
 
 
 
Spam detection is a binary classification task: 
Assign one of two labels (e.g. {SPAM, NOSPAM}) 
to the input (here, an email message)

17

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Spam Detection

 
 
 
 
 
 

A classifier is a function that maps inputs  
to a predefined (finite) set of class labels:

Spam Detector: Email ⟼ {SPAM, NOSPAM}

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The importance of generalization
 
 
 
 
 
 
 
 
 
 

We need to be able to classify items  
our classifier has never seen before.

19

Mail thinks this message is junk mail.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The importance of adaptation
 
 
 
 
 
 
 
 
 
 

The classifier needs to adapt/change based
on the feedback (supervision) it receives

20

Mail thinks this message is junk mail.
Not junk

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Text classification more generally

This is a multiclass classification task: 
Assign one of K labels to the input  
{SPAM, CONFERENCES, VACATIONS,…}

21

SPAM

CONFERENCES

VACATIONS

…

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Classification more generally

22

Item 
(Data Point)

Classifier
Class

Label(s)

But: The data we want to classify could be anything:
Emails, words, sentences, images, image regions, sounds, database
entries, sets of measurements, ….

We assume that any data point  
can be represented as a vector

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Classification more generally

23

Raw
Data

Classifier Class
Label(s)

Before we can use a classifier on our data,
we have to map the data to “feature” vectors

Feature
function

Feature
vector

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Feature engineering as a prerequisite  
for classification
To talk about classification mathematically, we assume  
each input item is represented as a ‘feature’ vector x = (x1….xN)
 — Each element in x is one feature.
 — The number of elements/features N is fixed, and may be very large.
 — x has to capture all the information about the item that the classifier needs.

But the raw data points (e.g. documents to classify) 
are typically not in vector form.

Before we can train a classifier, we therefore have to first define  
a suitable feature function that maps raw data points to vectors.

In practice, feature engineering (designing suitable feature
functions) is very important for accurate classification.

24

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

From texts to vectors
In NLP, input items are documents, sentences, words, …. 
⇒ How do we represent these items as vectors?

Bag-of-Words representation: (this ignores word order)
Assume that each element xi in (x1….xN) corresponds to  
one word type (vi) in the vocabulary V = {v1,…,vN}

There are many different ways to represent a piece of text  
as a vector over the vocabulary, e.g.:

— If xi ∈ {0,1}: Does word vi occur (yes: xi = 1, no: xi = 0)  
 in the input document?
— If xi ∈ {0, 1, 2, …}: How often does word vi occur in the  
 input document?

25

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Now, back to classification…:
A classifier is a function that maps  
input items to class labels

(is a vector space, is a finite set) 

Binary classification:  
Each input item is mapped to exactly one of 2 classes

Multi-class classification:  
Each input item is mapped to exactly one of K classes (K > 2)

Multi-label classification:  
Each input item is mapped to N of K classes  
(N ≥1, varies per input item)

f(x)
x ∈ X y ∈ Y

X Y

26

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Classification as supervised machine learning

Classification tasks: Map inputs to a fixed set of class labels
Underlying assumption: Each input really has one (or N) correct labels 
Corollary: The correct mapping is a function (aka the ‘target function’)

How do we obtain a classifier (model) for a given task?
— If the target function is very simple (and known), implement it directly
— Otherwise, if we have enough correctly labeled data,  
 estimate (aka. learn/train) a classifier based on that labeled data.  

Supervised machine learning:
Given (correctly) labeled training data, obtain a classifier  
that predicts these labels as accurately as possible.

Learning is supervised because the learning algorithm can get feedback
about how accurate its predictions are from the labels in the training data.

27

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Supervised learning: Training

28

Labeled
Training Data 

D train 

 (x1, y1)

(x2, y2)

…

(xN, yN)

Learned
model

g(x)

Learning
Algorithm

Give the learning algorithm examples in D train

The learning algorithm returns a model g(x)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Supervised learning: Testing

29

Labeled

Test Data 

D test 

 (x’1, y’1)

 (x’2, y’2)

…

 (x’M, y’M)

Reserve some labeled data for testing

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Supervised learning: Testing

30

Labeled

Test Data 

D test 

 (x’1, y’1)

 (x’2, y’2)

…

 (x’M, y’M)

Test  
Labels 
Y test 

 y’1

 y’2

...

Raw Test
Data 
X test 

x’1 
x’2

….

x’M

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Test  
Labels 
Y test

 y’1

 y’2

...

y’M

Raw Test
Data 
X test

 

x’1 
x’2

….

x’M

Supervised learning: Testing

31

Learned
model

g(x)

Predicted 
Labels 
g(X test)

 
g(x’1) 
g(x’2)

….

g(x’M)

Apply the learned model to the raw test data  
to obtain predicted labels for the test data

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Supervised learning: Testing

32

Test  
Labels 
Y test

 

 y’1

 y’2

...

y’M

Raw Test
Data 
X test

 

x’1 
x’2

….

x’M

Predicted 
Labels 
g(X test) 

 
g(x’1) 
g(x’2)

….

g(x’M)

Learned
model

g(x)

Evaluate the learned model by comparing the
predicted labels against the (correct) test labels

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Supervised machine learning
The supervised learning task (for classification):

Given (correctly) labeled data D = {(xi, yi)},  
where each item xi is a vector (x1….xN) with label yi  
(which we assume is given by the target function f(xi) = yi),
return a classifier g(xi) that predicts these labels as accurately
as possible (i.e. such that g(xi) = yi = f(xi))

To make this more concrete, we need to specify:
— what class of functions g(xi) to consider
(many classifiers assume g(xi) is a linear function)
— what learning algorithm we will use to learn g(xi)
(many learning algorithms assume a particular class of functions)

33

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Classifiers in vector spaces

Binary classification:
Learn a function f that best separates  
the positive and negative examples:
— Assign y = 1 to all x where f(x) > 0
— Assign y = 0 to all x where f(x) < 0 

Linear classifier: f(x)= wx+b is a linear function of x

34

x1

x2
f(x) = 0

f(x) < 0

f(x) > 0

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

05, P
art

3:

The
Naiv

e Ba
yes

Class
ifier

35

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Probabilistic classifiers
We want to find the most likely class y for the input x:

 

 :
 The probability that the class label is  
 when the input feature vector is  

 Let be the that maximizes

y* = argmaxy P(Y = y |X = x)

P(Y = y |X = x)
y

x

y* = argmaxy f(y)
y* y f(y)

36

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Likelihood Prior

Posterior

Modeling with Bayes RuleP(Y |X)

Bayes Rule relates to and :

Bayes rule: The posterior is proportional  
to the prior times the likelihood

P(Y |X) P(X |Y) P(Y)

P(Y |X) =
P(Y, X)
P(X)

=
P(X |Y)P(Y)

P(X)
∝ P(X |Y)P(Y)

P(Y ∣ X)
P(Y) P(X |Y)

37

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Using Bayes Rule for our classifier

 

 [Bayes Rule] 

y* = argmaxyP(Y ∣ X)

= argmaxy
P(X ∣ Y)P(Y)

P(X)

= argmaxyP(X ∣ Y)P(Y)

38

[P(X) doesn’t  
 change argmaxy]

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Modeling P(Y = y)

 is the “prior” class probability

We can estimate this as the fraction of documents  
in the training data that have class y:

P(Y = y)

̂P(Y = y) =
#documents ⟨xi, yi⟩ ∈ Dtrainwith yi = y

#documents ⟨xi, yi⟩ ∈ Dtrain

39

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Modeling P(X = x |Y = y)
 is the “likelihood” of the input x  

 is a vector
Each represents a word (type) in our vocabulary 

Let’s make a (naive) independence assumption:

With this independence assumption, we now need to
define (and multiply together) all

P(X = x |Y = y)

x = ⟨x1, …, xn⟩
xi

P(X = ⟨x1, . . . , xn⟩ |Y = y) := ∏
i=1..n

P(Xi = xi |Y = y)

P(Xi = xi |Y = y)
40

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The Naive Bayes Classifier
Assign class y* to input x = (x1…xn) if  

 is the prior class probability  
(estimated as the fraction of items in the training data
with class y)

 is the (class-conditional)
likelihood of the feature xi conditioned on the class y.
There are different ways to model this probability.

y* = argmaxyP(Y = y) ∏
i=1..n

P(Xi = xi |Y = y)

P(Y = y)

P(Xi = xi |Y = y)

41

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

 as BernoulliP(Xi = xi |Y = y)
Capture whether a word occurs in a document or not:

 is a Bernoulli distribution ()
: probability that word vi occurs  

in a document of class y.
: probability that word vi does not occur  

in a document of class y
 
Estimation:  
Compute the fraction of documents of class with/without :

P(Xi = xi |Y = y) xi ∈ {0,1}
P(Xi = 1 |Y = y)

P(Xi = 0 |Y = y)

y xi

̂P(Xi = 1 |Y = y) =
#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y in which xi occurs

#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y

̂P(Xi = 0 |Y = y) =
#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y in which xi does not occur

#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y
42

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

 as a MultinomialP(X |Y = y)
What if we want to capture how often a word  
appears in a document?

Let’s represent each document as  
a vector of word frequencies :

Vocabulary
A document: “fish fish eat eat fish”
Vector representation of this document:  

: probability that word occurs  
with frequency in a document of class .
We can model this by treating as a Multinomial 
distribution

xi = C(vi)
V = {apple, banana, coffee, drink, eat, fish}

x = ⟨0,0,0,0,2,3⟩

P(Xi = xi |Y = y) vi
xi = C(vi) y

P(X |Y)

43

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Multinomial Distribution: Rolling Dice
Before we look at language, let’s assume we’re rolling dice,
where the probability of getting any one side (e.g. a 4) when
rolling the die once is equal to that of any other side (e.g. a 6).  

A multinomial computes the probability of, say,  
getting two 5s and three 6s if you roll a die five times:

#of sequences of three 6s and two 5s: 5!/(0!0!0!0!2!3!)
Prob. of getting a 5 (or a 6) when you roll a die once = 1/6
#Occurrences of 5 and 3: 2 and 3
Prob. of any one sequence of three 6s and two 5s: (1/6)2(1/6)3

NB: Note that we can ignore the probabilities of any sides  
(i.e. 1, 2, 3, 4) that didn’t come up in our trial (unlike in the Bernoulli model)

P(⟨0,0,0,0,2,3⟩) =
5!

0!0!0!0!2!3!
(1/6)2(1/6)3

44

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

 as MultinomialP(Xi = xi |Y = y)
We want to know  
where

Unlike the sides of a dice, words don’t have uniform probability
(cf. Zipf’s Law)  

So we need to estimate the class-conditional unigram
probability of each word vi {apple,…, fish}  

in documents of class y…  

… and multiply that probability xi times  
 (xi = frequency of vi in our document):

Or more generally:

P(X = ⟨0,0,0,0,2,3⟩ ∣ Y = y)
⟨0,0,0,0,2,3⟩ = ⟨C(apple), …, C(eat), C(fish)⟩

P(apple ∣ Y = y)

P(⟨0,0,0,0,2,3⟩ |Y = y) = P(eat |Y = y)2P(fish |Y = y)3

P(X = x |Y = y) = ∏P(vi ∣ Y = y)xi

45

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Unigram probabilities P(vi | Y = y)
We can estimate the unigram probability P(vi | Y = y)  
of word vi in all documents of class y as 

 
or with add-one smoothing  
(with N words in vocab V): 

̂P(vi |Y = y) =
#vi in all docs ∈ Dtrainof class y

#words in all docs ∈ Dtrainof class y

̂P(vi |Y = y) =
(#vi in all docs ∈ Dtrainof class y) + 1

(#words in all docs ∈ Dtrainof class y) + N
46

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

04, Pa
rt 4

:

Run
ning

 and
 Eva

luat
ing

Class
ifica

tion

Expe
riments

47

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Evaluation setup:
Split data into separate training, (development) and test sets.  
 
 

Better setup: n-fold cross validation:
Split data into n sets of equal size
Run n experiments, using set i to test and remainder to train  
 

This gives average, maximal and minimal accuracies
 

When comparing two classifiers:
Use the same test and training data with the same classes

Evaluating Classifiers

48

D
E
V
TRAINING

T
E
S
T

D
E
V

TRAINING
T
E
S
T

or

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Evaluation Metrics
Accuracy: What fraction of items in the test data  
were classified correctly?

It’s easy to get high accuracy if one class is very
common (just label everything as that class)

But that would be a pretty useless classifier

49

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Precision and recall
Precision and recall were originally developed  
as evaluation metrics for information retrieval:
– Precision: What percentage of retrieved documents  

are relevant to the query?
– Recall: What percentage of relevant documents were

retrieved?

In NLP, they are often used in addition to accuracy:
– Precision: What percentage of items that were assigned

label X do actually have label X in the test data?
– Recall: What percentage of items that have label X  

in the test data were assigned label X by the system?
Precision and Recall are particularly useful  
when there are more than two labels.

50

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

True vs. false positives, false negatives

– True positives: Items that were labeled X by the system, 
 and should be labeled X.
– False positives: Items that were labeled X by the system,  

 but should not be labeled X.
– False negatives: Items that were not labeled X by the system,  

 but should be labeled X,
51

False
Negatives

(FN)

Items labeled X  
in the gold standard  

(‘truth’)

Items labeled X  
by the system

= TP + FN True
Positives

(TP)

False
Positives

(FP)

= TP + FP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Precision, Recall, F-Measure

52

False
Positives 

(FP)

False
Negatives

(FN)

True
Positives

(TP)

Items labeled X  
in the gold standard  

(‘truth’)

Items labeled X  
by the system

= TP + FP
= TP + FN

Precision: P = TP ∕(TP + FP)
Recall: R = TP ∕(TP + FN)
F-measure: harmonic mean of precision and recall  
 F = (2·P·R)∕(P + R)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Confusion Matrices
A confusion matrix tabulates how many items  
that are labeled with class y in the gold data  
are labeled with class y’ by the classifier.

53

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Confusion Matrices
This can be useful for understanding what kinds of
mistakes a (multi-class) classifier makes 
 
 
 

 
 

54

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Confusion Matrices
This can be useful for understanding what kinds of
mistakes a (multi-class) classifier makes 
 
 
 

 
 

Only 8/16 ‘urgent’ messages are classified correctly.

55

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Confusion Matrices
This can be useful for understanding what kinds of
mistakes a (multi-class) classifier makes 
 
 
 

 
 

Only 8/16 ‘urgent’ messages are classified correctly.
But 200/251 ’spam’ messages are classified correctly.

56

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Confusion Matrices
This can be useful for understanding what kinds of
mistakes a (multi-class) classifier makes 
 
 
 

 
 

Only 8/16 ‘urgent’ messages are classified correctly.
But 200/251 ’spam’ messages are classified correctly.
And only 8/19 messages labeled ‘urgent’ are actually urgent

57

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Reading off Precision and Recall

58

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Reading off Precision and Recall

59

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Macro-average vs Micro-average

60

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

Macro-average: average the precision over all K classes  
 (regardless of how common each class is)

How do we aggregate precision and recall  
across classes?

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Macro-average vs Micro-average

61

Micro-average: average the precision over all N items  
 (regardless of what class they have)

How do we aggregate precision and recall  
across classes?

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Macro-average vs. Micro-average
Which average should you report?

Macro-average (average P/R of all classes):
Useful if performance on all classes  
is equally important.

Micro-average (average P/R of all items):
Useful if performance on all items  
is equally important.

62

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The
End

63

