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Last lecture’s key concepts
Dealing with words: 

— Tokenization, normalization
— Zipf’s Law

Morphology (word structure):  
— Stems, affixes
— Derivational vs. inflectional morphology
— Compounding
— Stem changes
— Morphological analysis and generation  

Finite-state methods in NLP
— Finite-state automata vs. finite-state transducers 
— Composing finite-state transducers
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Finite-state transducers
– FSTs define a relation between two regular 

languages.
– Each state transition maps (transduces) a 

character from the input language to a character (or 
a sequence of characters) in the output language  
 

– By using the empty character (ε), characters can 
be deleted (x:ε) or inserted(ε:y)  
 

– FSTs can be composed (cascaded), allowing us to 
define intermediate representations. 
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How many different words are there in English?

How large is the vocabulary of English  
(or any other language)?

Vocabulary size = the number of distinct word types 
Google N-gram corpus: 1 trillion tokens,  
13 million word types that appear 40+ times 

If you count words in text, you will find that…
…a few words (mostly closed-class) are very frequent  
    (the, be, to, of, and, a, in, that,…)

… most words (all open class) are very rare.
… even if you’ve read a lot of text,  
     you will keep finding words you haven’t seen before.
Word frequency: the number of occurrences of a word type  
in a text (or in a collection of texts)
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Vocabulary size and corpus size
The number of distinct word types (vocabulary size) 
increases with the size of the corpus

Herdan’s Law/Heap’s Law:
A corpus of  tokens has a vocabulary of size

      
for positive constants   and 

N
|V | = kNβ

k 0 < β < 1
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Zipf’s law: the long tail
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In natural language:
A small number of events (e.g. words) occur with high frequency
A large number of events occur with very low frequency
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A few words  
are very frequent

English words, sorted by frequency (log-scale)
w1 = the, w2 = to, …., w5346 = computer, ...

Most words  
are very rare

How many words occur once, twice, 100 times, 1000 times? 

the r-th most 
common word wr  
has P(wr) ∝ 1/r
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Implications of Zipf’s Law for NLP
The good: 

Any text will contain a number of words that are very common.
We have seen these words often enough that we know (almost) 
everything about them. These words will help us get at the 
structure (and possibly meaning) of this text.

The bad:
Any text will contain a number of words that are rare.
We know something about these words, but haven’t seen them 
often enough to know everything about them. They may occur 
with a meaning or a part of speech we haven’t seen before. 

The ugly:
Any text will contain a number of words that are unknown to us. 
We have never seen them before, but we still need to get at the 
structure (and meaning) of these texts. 

8
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Dealing with the bad and the ugly
Our systems need to be able to generalize  
from what they have seen to unseen events.

There are two (complementary) approaches  
to generalization:

— Linguistics provides us with insights about the rules and   
structures in language that we can exploit in the (symbolic)   
representations we use
 E.g.: a finite set of grammar rules is enough to describe an infinite language  

— Machine Learning/Statistics allows us to learn models 
(and/or representations) from real data that often work well 
empirically on unseen data
 E.g. most statistical or neural NLP
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How do we represent words?
Option 1: Words are atomic symbols 
— Each (surface) word form is its own symbol
— Add some generalization by mapping  
    different forms of a word to the same symbol

— Normalization: map all variants of the same word (form)  
     to the same canonical variant (e.g. lowercase everything,    
     normalize spellings, perhaps spell-check)
—Lemmatization: map each word to its lemma  
    (esp. in English, the lemma is still a word in the language,  
     but lemmatized text is no longer grammatical)
— Stemming: remove endings that differ among word forms  
    (no guarantee that the resulting symbol is an actual word)

10
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How do we represent words?
Option 2: Represent the structure of each word

 “books” => “book N pl” (or “book V 3rd sg”)
 
This requires a morphological analyzer (see Lecture 3)
 
The output is often a lemma (“book”)  
plus morphological information (“N pl” i.e. plural noun)
 
This is particularly useful for highly inflected languages, e.g. 
Czech, Finnish, Turkish, etc. (less so for English or Chinese):
In Czech, you might need to know that nejnezajímavějším  
is a regular, feminine, plural, dative adjective in the superlative. 
       

11
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How do we represent unknown words?
Many NLP systems assume a fixed vocabulary, but still have 
to handle out-of-vocabulary (OOV) words. 

Option 1: the UNK token
Replace all rare words (with a frequency at or below a given threshold, e.g. 2, 
3, or 5) in your training data with an UNK token (UNK = “Unknown word”).
Replace all unknown words that you come across after training (including rare 
training words) with the same UNK token  

Option 2: substring-based representations
[often used in neural models]
Represent (rare and unknown) words [“Champaign”] as sequences of  
characters [‘C’, ‘h’, ‘a’,…,’g’, ’n'] or substrings [“Ch”, “amp”, “ai”, “gn”]
 
Byte Pair Encoding (BPE): learn which character sequences  
are common in the vocabulary of your language, and treat those  
common sequences as atomic units of your vocabulary

12
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Today’s lecture
How can we distinguish word salad, spelling errors 
and grammatical sentences?  

Language models define probability distributions  
over the strings in a language. 

N-gram models are the simplest and most common kind of 
language model. 

We’ll look at how these models are defined,  
how to estimate (learn) their parameters,  
and what their shortcomings are. 

We’ll also review some very basic probability theory.
14
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Why do we need language models?
Many NLP tasks require natural language output:

—Machine translation: return text in the target language
—Speech recognition: return a transcript of what was spoken
—Natural language generation: return natural language text
—Spell-checking: return corrected spelling of input

Language models define probability distributions  
over (natural language) strings or sentences.
➔ We can use a language model to generate strings
➔ We can use a language model to score/rank candidate strings  
    so that we can choose the best (i.e. most likely) one:  
    if PLM(A) > PLM(B), return A, not B

15
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Hmmm, but… 
… what does it mean for a language model  
     to “define a probability distribution”?  

… why would we want to define probability  
     distributions over languages?  

… how can we construct a language model such that  
    it actually defines a probability distribution? 

… how do we know how well our model works?  

You should be able to answer these questions  
after this lecture

16
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Today’s class
Part 1: Overview
 
Part 2: Review of Basic Probability  

Part 3: Language Modeling with N-Grams  

Part 4: Generating Text with Language Models  

Part 5: Evaluating Language Models
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Today’s key concepts
N-gram language models

Independence assumptions
Getting from n-grams to a distribution over a language
Relative frequency (maximum likelihood) estimation
Smoothing
Intrinsic evaluation: Perplexity, 
Extrinsic evaluation: Word error rate (WER)

Today’s reading: 
Chapter 3 (3rd Edition) 

Next lecture: Basic intro to machine learning for NLP
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Sampling with replacement
Pick a random shape, then put it back in the bag.

20

P(    )          = 2/15

P(blue)       = 5/15

P(blue |    ) = 2/5

P(    )    = 1/15

P(red)   = 5/15

P(   )     = 5/15

P(    or   ) = 2/15

P(    |red)  = 3/5
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Sampling with replacement
Pick a random shape, then put it back in the bag.
What sequence of shapes will you draw?

21

P(                  ) 

P(                  )

= 1/15 × 1/15 × 1/15 × 2/15 

= 2/50625

= 3/15 × 2/15 × 2/15 × 3/15

= 36/50625

P(    )          = 2/15

P(blue)       = 5/15

P(blue |    ) = 2/5

P(    )    = 1/15

P(red)   = 5/15

P(   )     = 5/15

P(    or   ) = 2/15

P(    |red)  = 3/5
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Text as a bag of words
Alice was beginning to get very tired of 
sitting by her sister on the bank, and of 
having nothing to do: once or twice she 
had peeped into the book her sister was 

reading, but it had no pictures or 
conversations in it, 'and what is the use 

of a book,' thought Alice 'without 
pictures or conversation?'

Alice was beginning to get very tired of 
sitting by her sister on the bank, and of 
having nothing to do: once or twice she 
had peeped into the book her sister was 

reading, but it had no pictures or 
conversations in it, 'and what is the use 

of a book,' thought Alice 'without 
pictures or conversation?'

22

P(of) = 3/66
P(Alice) = 2/66
P(was) = 2/66

P(to) = 2/66
P(her) = 2/66
P(sister) = 2/66

P(,) = 4/66
P(') = 4/66

Now let’s look at natural language
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A sampled sequence of words

23

P(of) = 3/66
P(Alice) = 2/66
P(was) = 2/66

P(to) = 2/66
P(her) = 2/66
P(sister) = 2/66

P(,) = 4/66
P(') = 4/66

Sampling with replacement

beginning by, very Alice but was and? 
reading no tired of to into sitting 

sister the, bank, and thought of without 
her nothing: having conversations Alice 

once do or on she it get the book her had 
peeped was conversation it pictures or 

sister in, 'what is the use had twice of 
a book''pictures or' to

In this model, P(English sentence) = P(word salad) 
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Probability theory: terminology
Trial (aka “experiment”) 

Picking a shape, predicting a word
Sample space Ω: 

The set of all possible outcomes  
(all shapes; all words in Alice in Wonderland)

Event ω ⊆ Ω: 
An actual outcome (a subset of Ω) 
(predicting ‘the’, picking a triangle)

Random variable X: Ω → T 
A function from the sample space (often the identity function) 
Provides a ‘measurement of interest’ from a trial/experiment
(Did we pick ‘Alice’/a noun/a word starting with “x”/…?  
  How often does the word ‘Alice’ occur?  
  How many words occur in each sentence?)

24



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

P(ω) defines a distribution over Ω iff  

1) Every event ω has a probability P(ω) between 0 and 1:  

 
2) The null event ∅ has probability P(∅) = 0: 

 
3) And the probability of all disjoint events sums to 1.

What is a probability distribution?

25

0 ⇥ P (� � �) ⇥ 1
P (⇤) = 0 and P (�) = 1

�

�i��

P (�i) = 1
0 ⇥ P (� � �) ⇥ 1
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�i��

P (�i) = 1
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and
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P (⇤) = 0 and P (�) = 1
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‘Discrete’: a fixed (often finite) number of outcomes
 
Bernoulli distribution (Two possible outcomes (head, tail)
Defined by the probability of success (= head/yes) 
The probability of head is p. The probability of tail is 1−p. 

Categorical distribution (N possible outcomes c1…cN)
The probability of category/outcome ci is pi (0 ≤ pi ≤ 1; ∑i pi = 1). 
e.g. the probability of getting a six when rolling a die once 
e.g. the probability of the next word (picked among a vocabulary of N words)
(NB: Most of the distributions we will see in this class are categorical. 
Some people call them multinomial distributions, but those refer to sequences 
of trials, e.g. the probability of getting five sixes when rolling a die ten times)

Discrete probability distributions: 
Single Trials

26
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The conditional probability of X given Y, P(X | Y),  
is defined in terms of the probability of Y, P(Y),  
and the joint probability of X and Y, P(X, Y): 
 
 

What is the probability that we get a blue shape  
if we pick a square? 

Joint and Conditional Probability

P (X|Y ) =
P (X, Y )
P (Y )

P(blue |       ) = 2/5

27
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The chain rule
The joint probability P(X,Y) can also be expressed  
in terms of the conditional probability P(X | Y) 
 
 

Generalizing this to N joint events (or random 
variables) leads to the so-called chain rule:

28

P (X, Y ) = P (X|Y )P (Y )

P (X1, X2, . . . , Xn) = P (X1)P (X2|X1)P (X3|X2, X1)....P (Xn|X1, ...Xn�1)

= P (X1)
n�

i=2

P (Xi|X1 . . . Xi�1)
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Two events or random variables X and Y  
are independent if 
 

If X and Y are independent, then P(X | Y) = P(X):

Independence

P (X, Y ) = P (X)P (Y )

P (X|Y ) =
P (X, Y )
P (Y )

=
P (X)P (Y )

P (Y )
(X ,Y independent)

= P (X)

29
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Probability models
Building a probability model consists of two steps:
1. Defining the model
2. Estimating the model’s parameters (= training/learning ) 

Probability models (almost) always make  
independence assumptions.
— Even though X and Y are not actually independent,  
     our model may treat them as independent.
— This can drastically reduce the number of parameters to estimate.
— Models without independence assumptions have (way)  
     too many parameters to estimate reliably from the data we have
— But since independence assumptions are often incorrect,  
     those models are often incorrect as well:  
     they assign probability mass to events that cannot occur

30
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A language model over a vocabulary V  
assigns probabilities to strings drawn from V*. 

How do we compute the probability of a string 
 ?

Recall the chain rule: 
 

An n-gram language model assumes each word  
depends only on the last n−1 words 

w(1) . . . w(i)

P(w(1) . . . w(i)) = P(w(1)) ⋅ P(w(2) |w(1)) ⋅ . . . ⋅ P(w(i) |w(i−1), . . . , w(1))

w(i)

w(i−1), . . . , w(i−(n+1))

Pngram(w(1) . . . w(i)) = P(w(1)) ⋅ P(w(2) |w(1)) ⋅ . . . ⋅ P(w(i) |w(i−1), . . . , w(i−(n+1)))

Language modeling with N-grams

32
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N-gram models
N-gram models assume each word (event)  
depends only on the previous n−1 words (events):

NB: Independence assumptions where the n-th event in a sequence depends 
only on the last n-1 events are called Markov assumptions (of order n−1).

Unigram model: P(w(1) . . . w(N)) =
N

∏
i=1

P(w(i))

Bigram model: P(w(1) . . . w(N)) =
N

∏
i=1

P(w(i) |w(i−1))

Trigram model: P(w(1) . . . w(N)) =
N

∏
i=1

P(w(i) |w(i−1), w(i−2))

33
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How many parameters do n-gram 
models have?
Given a vocabulary V of |V| word types:  

Unigram model: |V| parameters
(one distribution P( w(i) ) with |V| outcomes  
 [each w ∈ V is one outcome]) 

Bigram model: |V|2 parameters
(|V| distributions P( w(i) | w(i-1) ), one distribution for each w ∈ V 
  with |V| outcomes each  [each w ∈ V is one outcome]) 

Trigram model: |V|3 parameters
(|V|2 distributions P(w(i) | w(i-1),w(i-2)), one per bigram w’w’’, 
   with |V| outcomes each  [each w ∈ V is one outcome])

34

so, for |V| = 104:

104 parameters

1012 parameters

108 parameters
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Alice was beginning to get very tired of 
sitting by her sister on the bank, and of 
having nothing to do: once or twice she 
had peeped into the book her sister was 

reading, but it had no pictures or 
conversations in it, 'and what is the use 

of a book,' thought Alice 'without 
pictures or conversation?'

P(w(i) = of | w(i–1) = tired) = 1
P(w(i) = of  | w(i–1) = use)     = 1
P(w(i) = sister | w(i–1) = her) =  1
P(w(i) = beginning | w(i–1) = was) = 1/2
P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) = 1/3
P(w(i) = book | w(i–1) = the) = 1/3
P(w(i) = use | w(i–1) = the) = 1/3

A bigram model for Alice
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English  
Alice was beginning to get very 

tired of sitting by her sister on 
the bank, and of having nothing to 
do: once or twice she had peeped 

into the book her sister was 
reading, but it had no pictures or 
conversations in it, 'and what is 
the use of a book,' thought Alice 

'without pictures or conversation?'

Word Salad
beginning by, very Alice but was and? 
reading no tired of to into sitting 

sister the, bank, and thought of without 
her nothing: having conversations Alice 

once do or on she it get the book her had 
peeped was conversation it pictures or 

sister in, 'what is the use had twice of 
a book''pictures or' to

Now, P(English) ⪢ P(word salad) 

Using a bigram model for Alice

P(w(i) = of | w(i–1) = tired) = 1
P(w(i) = of  | w(i–1) = use)     = 1
P(w(i) = sister | w(i–1) = her) =  1
P(w(i) = beginning | w(i–1) = was) = 1/2
P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) = 1/3
P(w(i) = book | w(i–1) = the) = 1/3
P(w(i) = use | w(i–1) = the) = 1/3
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From n-gram probabilities to language models

Recall: a language L ⊆ V*  is a (possibly infinite) set of strings 
over a (finite) vocabulary V. 

P(w(i) | w(i-1)) defines a distribution over the words in V: 




By multiplying this distribution N times, we get  
one distribution over all strings of the same length N (VN):


Prob. of one N-word string: 

Prob. of all N-word strings 

But instead of N separate distributions…  
       …we want one distribution over strings of any length

∀w ∈ V : [ ∑
w′￼∈V

P(w(i) =w′￼∣ w(i−1) =w)] = 1

P(w1 . . . wN) = ∏
i=1...N

P(w(i) = wi ∣ w(i−1) = wi−1)

P(VN) = ∑
w,w′￼∈V

[ ∏
i=1...N

P(w(i) = w ∣ w(i−1) = w′￼)] = 1

37
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From n-gram probabilities to language models

We have just seen how to use n-gram probabilities to 
define one distribution P(VN) for each string length N.

But a language model P(L)=P(V*) should define  
one distribution P(V*) that sums to one over all strings 
in L ⊆ V*, regardless of their length: 
 P(L) = P(V) + P(V2) + P(V3) + … P(Vn) + …  = 1


Solution:  
Add an End-of-Sentence (EOS) token to V

Assume a) that each string ends in EOS and  
b) that EOS can only appear at the end of a string.

38
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From n-gram probabilities to language models  
with EOS
Think of a language model as a stochastic process:

— At each time step, randomly pick one more word.
— Stop generating more words when the word you pick  
     is a special end-of-sentence (EOS) token. 

To be able to pick the EOS token, we have to modify our 
training data so that each sentence ends in EOS.

This means our vocabulary is now VEOS = V ∪ {EOS}


We then get an actual language model,  
i.e. a distribution over strings of any length

Technically, this is only true because P(EOS | …) will be high enough that we are always 
guaranteed to stop after having generated a finite number of words 
A leaky or inconsistent language model would have P(L) < 1. That could happen if EOS had a 
very small probability (but doesn’t really happen in practice).

39
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Why do we want one distribution over L?

Why do we care about having one probability distribution  
for all lengths? 

This allows us to compare the probabilities of strings of 
different lengths, because they’re computed by the same 
distribution.

This allows us to generate strings of arbitrary length  
with one model.

40
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Parameter 
Estimation  
Or: Where do we get the probabilities from?

41



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Learning (estimating) a language model
Where do we get the parameters of our model  
(its actual probabilities) from? 
      P(w(i) = ‘the’ | w(i–1) = ‘on’) = ???
We need (a large amount of) text as training data  
to estimate the parameters of a language model.

The most basic parameter estimation technique: 
relative frequency estimation (frequency = counts)
      P(w(i) = ‘the’ | w(i–1) = ‘on’) =  C(‘on the’) / C(‘on’) 
Also called Maximum Likelihood Estimation (MLE)
     C(‘on the’) [or f(‘on the’) for frequency]: 
      How often does ‘on the’ appear in the training data?
      NB: C(‘on’) =  ∑w∈VC(‘on’ w)
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Handling unknown words: UNK
Training:

— Define a fixed vocabulary V such that all words in V  
    appear at least n times in the training data  
    (e.g. all words that occur at least 5 times in the training corpus,  
            or the most common 10,000 words in training)
— Add a new token UNK to V, and replace all other words  
    in the corpus that are not in V by this token UNK
— Estimate the model on this modified training corpus. 

Testing (when computing the probability of a string):
Replace any words not in the vocabulary by UNK

Refinements: 
Use different UNK tokens for different types of words
(numbers, capitalized words, lower-case words, etc.)

43



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

What about the beginning of the sentence?

In a trigram model 

only the third term  is an actual trigram 
probability. What about  and  ?

If this bothers you:  
Add n–1 beginning-of-sentence (BOS) symbols  
to each sentence for an n–gram model: 
BOS1 BOS2 Alice was … 

Now the unigram and bigram probabilities  
involve only BOS symbols.


P(w(1)w(2)w(3)) = P(w(1))P(w(2) |w(1))P(w(3) |w(2), w(1))
P(w(3) |w(2), w(1))

P(w(1)) P(w(2) |w(1))
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1. Replace all words not in V in the training corpus with UNK
2. Bracket each sentence by special start and end symbols:
<s> Alice was beginning to get very tired … </s>

3. Define the Vocabulary V’ = all tokens in modified training corpus  
    (all common words,  UNK, <s>, </s>)
4. Count the frequency of each bigram….

C(<s> Alice) = 1, C(Alice was) = 1, …
5. .... and normalize these frequencies to get probabilities:

P(was |Alice) = ∑
wi∈V′￼

C(Alice was)
C(Alice wi)

Summary: Estimating a bigram model with  
BOS (<s>), EOS (</s>) and UNK using MLE
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How do we use language models?
Independently of any application, we could use  
a language model as a random sentence generator 
(we sample sentences according to their language model probability) 
NB: There are very few real world use cases where you want to actually generate language 
randomly, but understanding how to do this and what happens when you do so will allow us to do 
more interesting things later. 

We can use a language model as a sentence ranker.
Systems for applications such as machine translation, speech 
recognition, spell-checking, generation, etc. often produce 
many candidate sentences as output.
We prefer output sentences SOut that have a higher language model probability. 
We can use a language model P(SOut) to score and rank these different 
candidate output sentences, e.g. as follows:

      argmaxSOut P(SOut | Input) = argmaxSOut P(Input | SOut)P(SOut) 
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Generating from a distribution

48

How do you generate text from an n-gram model? 

That is, how do you sample from a distribution P(X |Y=y)?
-Assume X has N possible outcomes (values): {x1, …, xN} 
and P(X=xi | Y=y) = pi 

-Divide the interval [0,1] into N smaller intervals according to 
the probabilities of the outcomes
-Generate a random number r between 0 and 1.

-Return the x1 whose interval the number is in.

x1 x2 x3 x4 x5
 0               p1                        p1+p2            p1+p2+p3               p1+p2+p3+p4     1

r
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Generating the Wall Street Journal
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Generating Shakespeare 
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Shakespeare as corpus
The Shakespeare corpus has N=884,647 word tokens 
for a vocabulary of V=29,066 word types 

Shakespeare used 300,000 bigram types  
out of V2= 844 million possible bigram types.
99.96% of possible bigrams don’t occur in this corpus.
 
Corollary: A relative frequency estimate based on this corpus  
assigns non-zero probability to only 0.04% of possible bigrams

That percentage is even lower for trigrams, 4-grams, etc.
4-grams look like Shakespeare because they are Shakespeare!
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The UNK token
What would happen if we used an UNK token 
on a corpus the size of Shakespeare’s? 

1. If we set the frequency threshold for which words to 
replace too high, a very large fraction of tokens 
become UNK.

2. Even with a low threshold, UNK will have a very 
high probability, because in such a small corpus, 
many words appear only once. 

3. But we would still only observe a small fraction of 
possible bigrams (or trigrams, quadrigrams, etc.)
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We estimated a model on 884K word tokens, but:

Only 30,000 word types occur in the training data  
Any word that does not occur in the training data  
has zero probability!

Only 0.04% of all possible bigrams (for 30K word 
types) occur in the training data  
Any bigram that does not occur in the training data  
has zero probability (even if we have seen both words 
in the bigram by themselves)

MLE doesn’t capture unseen events
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How can you assign non-zero probability  
to unseen events?
We have to “smooth” our distributions to assign some 
probability mass to unseen events 
 
 
 
 
 
 
 
 
 
We won’t talk much about smoothing this year.

54
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Smoothing methods
Add-one smoothing:  
Hallucinate counts that didn’t occur in the data

Linear interpolation: 

Interpolate n-gram model with (n–1)-gram model. 

Absolute Discounting: Subtract constant count from 
frequent events and add it to rare events

Kneser-Ney: AD with modified unigram probabilities 

Good-Turing: Use probability of rare events to 
estimate probability of unseen events

P̃(w |w′￼, w′￼′￼) = λ ̂P(w |w′￼, w′￼′￼) + (1 − λ)P̃(w |w′￼)
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Add-One (Laplace) Smoothing
A really simple way to do smoothing:  
Increment the actual observed count of every possible 
event (e.g. bigram) by a hallucinated count of 1  
(or by a hallucinated count of some k with 0 < k < 1).

Shakespeare bigram model (roughly):
        0.88 million actual bigram counts
 + 844.xx million hallucinated bigram counts

Oops. Now almost none of the counts in our model 
come from actual data. We’re back to word salad.

K needs to be really small. But it turns out that that still  
doesn’t work very well. 
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Intrinsic vs Extrinsic Evaluation
How do we know whether one language model  
is better than another? 

There are two ways to evaluate models:
- intrinsic evaluation measures how well the model captures 
what it is supposed to capture (e.g. probabilities)
-extrinsic (task-based) evaluation measures how useful the 
model is in a particular task.

Both cases require an evaluation metric  
that allows us to measure and compare  
the performance of different models.
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Intrinsic Evaluation  
of Language Models: 
Perplexity

59
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Intrinsic evaluation
Define an evaluation metric (scoring function).

We will want to measure how similar the predictions  
of the model are to real text.

Train the model on a ‘seen’ training set
Perhaps: tune some parameters based on held-out data  
(disjoint from the training data, meant to emulate unseen data) 

Test the model on an unseen test set 
(usually from the same source (e.g. WSJ) as the training data)
Test data must be disjoint from training and held-out data
Compare models by their scores (more on this in the next 
lecture).
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Perplexity
The perplexity of a language models is defined as  
the inverse ( ) of the probability of the test set, 
normalized ( ) by the # of tokens (N) in the test set. 

If a LM assigns probability P(w1, …, wN) to a test 
corpus w1…wN, the LM’s perplexity, PP(w1…wN), is 
 

A LM with lower perplexity is better because it 
assigns a higher probability to the unseen test corpus.
LM1 and LM2’s perplexity can only be compared if they use the same vocabulary
— Trigram models have lower perplexity than bigram models;  
— Bigram models have lower perplexity than unigram models, etc. 

1
P( . . . )

N . . .
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Practical issues: Use logarithms!
Since language model probabilities are very small, 
multiplying them together often yields to underflow.  

It is often better to use logarithms instead, so replace
 
 
 
 
with
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Extrinsic (Task-Based) 
Evaluation of LMs:  
Word Error Rate
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Intrinsic vs. Extrinsic Evaluation
Perplexity tells us which LM assigns a higher 
probability to unseen text 

This doesn’t necessarily tell us which LM is better for 
our task (i.e. is better at scoring candidate sentences) 

Task-based evaluation: 
-Train model A, plug it into your system for performing task T
-Evaluate performance of system A on task T.
-Train model B, plug it in, evaluate system B on same task T.
-Compare scores of system A and system B on task T.
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Originally developed for speech recognition. 

How much does the predicted sequence of words 
differ from the actual sequence of words  
in the correct transcript? 
 
 

Insertions:       “eat lunch” → “eat a lunch”
Deletions:        “see a movie”   → “see movie”
Substitutions: “drink ice tea”→ “drink nice tea”

Word Error Rate (WER)

WER =
Insertions + Deletions + Substitutions

Actual words in transcript
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The 
End
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