
CS447: Natural Language Processing

http://courses.grainger.illinois.edu/cs447 

Julia Hockenmaier

juliahmr@illinois.edu 

Lecture 3:

Morphology and  
Finite-State Methods

http://courses.grainger.illinois.edu/cs447
mailto:juliahmr@illinois.edu


CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

What 
is a 

word?

2



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

How many different words are there in English?

How large is the vocabulary of English  
(or any other language)?

Vocabulary size = the number of distinct word types 
Google N-gram corpus: 1 trillion tokens,  
13 million word types that appear 40+ times
[here, we’re treating inflected forms (took, taking) as distinct]

 
You may have heard statements such as  
“adults know about 30,000 words”
“you need to know at least 5,000 words to be fluent”

Such statements do not refer to inflected word forms  
(take/takes/taking/take/takes/took) but to lemmas or 
dictionary forms (take), and assume if you know  
a lemma, you know all its inflected forms too.

3



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

 
 

Actual text doesn’t consist of dictionary entries:
wants is a form of want 
took is a form of take 
courses is a form of course


Linguists distinguish between
— the (surface) forms that occur in text:  
     want, wants, beginners’, took,…

— and the lemmas that are the uninflected forms of these words:   
     want, beginner, take, …

In NLP, we sometimes map words to lemmas (or simpler 
“stems”), but the raw data always consists of surface forms

Which words appear in this text?

4

Of course he wants to take the advanced course 
too. He already took two beginners’ courses.



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

How many different words are there?
Inflection creates different forms of the same word:   

Verbs: to be, being, I am, you are, he is, I was,  
Nouns: one book, two books 

Derivation creates different words from the same lemma:
grace ⇒ disgrace ⇒ disgraceful ⇒ disgracefully  

Compounding combines two words into a new word: 
cream ⇒ ice cream ⇒ ice cream cone ⇒ ice cream cone bakery 

Word formation is productive: 
New words are subject to all of these processes:  
Google ⇒ Googler, to google, to ungoogle, to misgoogle, 
googlification, ungooglification, googlified, Google Maps, Google 
Maps service,... 

5



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

uygarlaştıramadıklarımızdanmışsınızcasına
uygar_laş_tır_ama_dık_lar_ımız_dan_mış_sınız_casına  

“as if you are among those whom we were not able to civilize  
(=cause to become civilized )”
uygar: civilized  
_laş: become
_tır: cause somebody to do something
_ama: not able
_dık: past participle 
_lar: plural
_ımız: 1st person plural possessive (our)
_dan: among (ablative case)
_mış: past 
_sınız: 2nd person plural (you)
_casına: as if (forms an adverb from a verb)

6

A Turkish word

K. Oflazer pc to J&M



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Inflectional morphology in English
Verbs:
 Infinitive/present tense: walk, go
 3rd person singular present tense (s-form): walks, goes

 Simple past: walked, went
 Past participle (ed-form): walked, gone
 Present participle (ing-form): walking, going 
 
Nouns:
 Common nouns inflect for number:  
 singular (book) vs. plural (books)
 Personal pronouns inflect for person, number, gender, case:  

I saw him; he saw me; you saw her; we saw them; they saw us.

7



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Derivational morphology in English
Nominalization: 

V + -ation: computerization
V+ -er: killer
Adj + -ness: fuzziness  

Negation: 
un-: undo, unseen, ...
mis-: mistake,...


 
Adjectivization:

V+ -able: doable
N + -al: national

8



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Morphemes: stems, affixes
        dis-grace-ful-ly

   prefix-stem-suffix-suffix

Many word forms consist of a stem  
plus a number of affixes (prefixes or suffixes)

Exceptions: Infixes are inserted inside the stem  
                    Circumfixes (German gesehen) surround the stem

Morphemes: the smallest (meaningful/grammatical) 
parts of words.

Stems (grace) are often free morphemes.
Free morphemes can occur by themselves as words.
Affixes (dis-, -ful, -ly) are usually bound morphemes. 
Bound morphemes have to combine with others to form words.

9



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Morphemes and morphs
The same information (plural, past tense, …) is often 
expressed in different ways in the same language.

One way may be more common than others,  
and exceptions may depend on specific words:
-Most plural nouns: add -s to singular: book-books, 
but: box-boxes, fly-flies, child-children
-Most past tense verbs add -ed to infinitive: walk-walked, 
but: like-liked, leap-leapt


Such exceptions are called irregular word forms 

Linguists say that there is one underlying morpheme  
(e.g. for plural nouns) that is “realized” as different “surface” 
forms (morphs) (e.g. -s/-es/-ren)
Allomorphs: two different realizations (-s/-es/-ren)  
of the same underlying morpheme (plural)

10



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Side note: “Surface”?
This terminology comes from Chomskyan 
Transformational Grammar.
-Dominant early approach in theoretical linguistics,  
superseded by other approaches (“minimalism”). 
-Not computational, but has some historical influence on 
computational linguistics (e.g. Penn Treebank)

“Surface” = standard English (Chinese, Hindi, etc.).
“Surface string” = a written sequence of characters or words

vs. “Deep”/“Underlying” structure/representation:
A more abstract representation.
Might be the same for different sentences/words  
with the same meaning. 

11



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Fini
te-S

tate
 Aut

omata 

and
 Reg

ular
 

Lang
uage

s

12



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Formal languages
An alphabet ∑ is a set of symbols:

e.g. ∑= {a, b, c} 

A string ω is a sequence of symbols, e.g ω=abcb.
The empty string ε consists of zero symbols. 

The Kleene closure ∑* (‘sigma star’) is the (infinite)  
set of all strings  that can be formed from ∑:
∑*= {ε, a, b, c, aa, ab, ba, aaa, ...} 

A language L ⊆ ∑* over ∑ is also a set of strings.
Typically we only care about proper subsets of ∑* (L ⊂ Σ).

13



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

An automaton is an abstract model of a computer.
It reads an input string symbol by symbol.
It changes its internal state depending on  
the current input symbol and its current internal state.

Automata and languages

14

a b a c d e

Automaton

Input  
string

1. read input

q
Current 

state

2. change  
state Automaton

q’
New 

state

a

Current input symbol



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Automata and languages
The automaton either accepts or rejects  
the input string.
Every automaton defines a language

(= the set of strings it accepts).

15

a b a c d e

Automaton

Input  
string

read accept!

reject!

Input string is  
in the language

Input string is  
NOT in the language



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Automata and languages

Different types of automata define  
different language classes: 

—Finite-state automata define  
    regular languages 

—Pushdown automata define  
    context-free languages 

—Turing machines define  
    recursively enumerable languages

16



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Finite-state automata
A (deterministic) finite-state automaton (FSA)  
consists of:
-a finite set of states Q = {q0….qN}, including a start state q0  
and one (or more) final (=accepting) states (say, qN)
-a (deterministic) transition function  
δ(q,w) = q’   for q, q’ ∈ Q, w ∈ Σ 

17

final state

(note the  

double line)

q0

q3

q2

q1
q4q4

a
b c

x y

move from state q2  
to state q4


if you read ‘y’

start state



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

q0
a

q3q2q1
b

a
q0

a
q3q2q1

b

a

b a a a

b a a a

b a a a

b a a a q0
a

q3q2q1
b

a

q0
a

q3q2q1
b

a

b a a a

18

q0
a

q3q2q1
b

a

Start in q0

                                        Accept! 
We’ve reached the end of the string,  
and are in an accepting state.



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

q0
a

q3q2q1
b

a

b

q0
a

q3q2q1
b

a

b

19

Start in q0

Reject!
(q1 is not a  
final state)

Rejection: Automaton does not 
end up in accepting state



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/ 20

Reject!
(There is no  

transition  
labeled ‘c’)

Rejection: Transition not defined

q0
a

q3q2q1
b

a
q0

a
q3q2q1

b

a

b a c

b a c

b a c

q0
a

q3q2q1
b

a

b a c

q0
a

q3q2q1
b

a

Start in q0



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Every NFA can be transformed into an equivalent DFA: 
 
 
 
 
 

Recognition of a string w with a DFA is linear in the length of w  

Finite-state automata define the class of regular languages
L1 = { anbm } = {ab, aab, abb, aaab, abb,… } is a regular language,  
L2 = { anbn  } = {ab, aabb, aaabbb,…}  is not (it’s context-free).
You cannot construct an FSA that accepts all the strings in L2 and nothing else.

Finite State Automata (FSAs)

q3

q3

b

q0
a

q3q2
b

a

q1

q3q0 q3
b

a

21



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

q3q1

noun1

FSAs for derivational morphology

q0

q3q5

-ation

q3q6

-er

-iz
q2

-e q3q3

adj1 -able q4

q3q7

noun2
-al

noun2 = {nation, form,…}

noun3

q10

-al

q3q11
-e

noun3 = {natur, structur,…}

noun1 = {fossil,mineral,...}
adj1 = {equal, neutral}
adj2 = {minim, maxim}

q3q9adj2 q8
-al

-iz



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

q0
stemprefix

q1 q3q2dis-grace:

suffixq0 q1
stem q3q2grace-ful:

stemq0 q1 q2
prefix suffix q3q3dis-grace-ful:

Finite state automata for morphology

grace:

23

q0
stem

q3q1



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Union: merging automata

grace,

dis-grace,

grace-ful,

dis-grace-ful

q0 q1

ε stem suffix
q3q3prefix q3q2

24



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Regular Expressions
Regular expressions (regexes) can also be used  
to define a regular language. 
Simple patterns:
-Standard characters match themselves: ‘a’, ‘1’
-Character classes:  ‘[abc]’, ‘[0-9]’, negation: ‘[^aeiou]’ 
(Predefined:  \s (whitespace), \w (alphanumeric), etc.)
-Any character (except newline) is matched by ‘.’

Complex patterns:  (e.g. ^[A-Z]([a-z])+\s )
-Group: ‘(…)’
-Repetition:  0 or more times: ‘*’, 1 or more times: ‘+’ 
-Disjunction: ‘...|…’
-Beginning of line ‘^’ and end of line ‘$’

25



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Fini
te-S

tate
 

Tran
sducer

s fo
r 

Morph
olog

y

26



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

FSAs can recognize (accept) a string,  
but they don’t tell us its internal structure. 

We need is a machine that maps (transduces) 
the input string into an output string  
that encodes its structure:

Recognition vs. Analysis

27

c a t sInput
(Surface form)

c a t +N +plOutput 
(Lexical form)



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Morphological parsing

                disgracefully

      dis      grace     ful       ly

    prefix   stem    suffix   suffix
   NEG  grace+N +ADJ  +ADV

28



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Morphological generation
We cannot enumerate all possible English words,  
but we would like to capture the rules that define 
whether a string could be an English word or not.

That is, we want a procedure that can generate  
(or accept) possible English words…

grace, graceful, gracefully

disgrace, disgraceful, disgracefully, 

ungraceful, ungracefully,

undisgraceful, undisgracefully,…


without generating/accepting impossible English words
*gracelyful, *gracefuly, *disungracefully,…


NB: * is linguists’ shorthand for “this is ungrammatical”
29



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Finite State Automata (FSAs)
A finite-state automaton M = 〈Q, Σ, q0, F, δ〉 consists of: 

— A finite set of states Q = {q0, q1,.., qn}

— A finite alphabet Σ of input symbols (e.g. Σ = {a, b, c,…})
— A designated start state q0 ∈ Q

— A set of final states F ⊆ Q

— A transition function δ: 
     For a deterministic (D)FSA: Q × Σ → Q 
            δ(q,w) = q’                  for q, q’ ∈ Q, w ∈ Σ 
     If the current state is q and the current input is w, go to q’ 
      
     For a nondeterministic (N)FSA: Q × Σ → 2Q 

            δ(q,w) = Q’                  for q ∈ Q, Q’ ⊆ Q,  w ∈ Σ 
     If the current state is q and the current input is w, go to any q’ ∈ Q’

30



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Finite-state transducers
A finite-state transducer T = 〈Q, Σ, Δ, q0, F, δ, σ〉 consists of: 
— A finite set of states Q = {q0, q1,.., qn}

— A finite alphabet Σ of input symbols (e.g. Σ = {a, b, c,…})
— A finite alphabet Δ of output symbols (e.g. Δ = {+N, +pl,…})
— A designated start state q0 ∈ Q 
— A set of final states F ⊆ Q

— A transition function δ: Q × Σ → 2Q  

      δ(q,w) = Q’              for q ∈ Q, Q’ ⊆ Q, w ∈ Σ

— An output function σ: Q × Σ → Δ* 
     σ(q,w) = ω                 for q ∈ Q, w ∈ Σ, ω ∈ Δ* 
     If the current state is q and the current input is w, write ω. 
  (NB: Jurafsky&Martin (2nd ed.) define σ: Q × Σ* → Δ*. Why is this equivalent?)

31



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

An FST T = Lin ⨉ Lout defines a relation  
between two regular languages Lin and Lout: 

Lin  = {cat, cats, fox, foxes, ...} 

Lout  = {cat+N+sg, cat+N+pl, fox+N+sg, fox+N+pl ...} 

T = { ⟨cat, cat+N+sg⟩,  
         ⟨cats, cat+N+pl⟩, 
         ⟨fox, fox+N+sg⟩,  
         ⟨foxes, fox+N+pl⟩ }

Finite-state transducers

32



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Some FST operations 
Inversion T-1: 

The inversion (T-1) of a transducer  
switches input and output labels. 

This can be used to switch from parsing words 
to generating words. 

Composition (T◦T’):  (Cascade)
Two transducers T =  L1 ⨉ L2  and T’ = L2 ⨉ L3 can be 
composed into a third transducer T’’ = L1 ⨉ L3.

Sometimes intermediate representations are useful  

33



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

English spelling rules
Peculiarities of English spelling (orthography) 

The same underlying morpheme (e.g. plural-s)  
can have different orthographic “surface realizations”  
(-s, -es)  

This leads to spelling changes  
at morpheme boundaries:

E-insertion:   fox +s = foxes

E-deletion:    make +ing = making

34



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Intermediate representations
English plural -s: cat ⇒ cats   dog ⇒ dogs  
but: fox ⇒ foxes,   bus ⇒ buses     buzz ⇒ buzzes 

We define an intermediate representation to capture 
morpheme boundaries (^) and word boundaries (#):

Lexicon:                                       cat+N+PL    fox+N+PL 
⇒ Intermediate representation:   cat^s#          fox^s# 

⇒ Surface string:                         cats              foxes  

Intermediate-to-Surface Spelling Rule:
If plural ‘s’ follows a morpheme ending in ‘x’,‘z’ or ‘s’, insert ‘e’.

35



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

FST composition/cascade:

36



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Tlex: Lexical to intermediate level

37



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Te-insert:  intermediate to surface level

38

q0

a:a,…,r:r, 
t:t,…,w:w,

y:y

s:s, x:x, z:z
q2

a:a,…,r:r,t:t,
…,w:w,y:y#:ε

q3q1

^:ε
q6

#:ε

q3q3

^:e q5

s:s

q3q8#:ε^ = morpheme boundary
# = word boundary
ε = empty string

s:s, x:x, z:z
q4

#:ε

a:a,…,r:r,
t:t,…,w:w,y:y

^:e

q7
s:s

Intermediate-to-
Surface Spelling 
Rule:

If plural ‘s’ follows a 
morpheme ending in 
‘x’,‘z’ or ‘s’, insert ‘e’.



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Dealing with ambiguity
book:   book +N +sg or book +V? 

Generating words is generally unambiguous,  
but analyzing words often requires disambiguation. 

We need a nondeterministic FST.
Efficiency problem: Not every nondeterministic FST 
can be translated into a deterministic one!  

We also need a scoring function to identify which 
analysis is more likely.

We may need to know the context in which the word 
appears: (I read a book vs. I book flights)

39



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

What about compounds?
Semantically, compounds have hierarchical structure: 

(((ice cream) cone) bakery)

not  (ice ((cream cone) bakery)) 

((computer science) (graduate student)) 
not (computer ((science graduate) student)) 

We will need context-free grammars to capture this 
underlying structure.

40


