
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 23:
Lexical Semantics:  
Word Sense

CS447: Natural Language Processing (J. Hockenmaier)

Where we’re at
We have looked at how to represent the meaning of
sentences based on the meaning of their words
(using predicate logic).

Now we will get back to the question of how to
represent the meaning of words  
(although this won’t be in predicate logic)

We will look at lexical resources (WordNet)
We will consider two different tasks:

— Computing word similarities
— Word sense disambiguation 

2

CS447: Natural Language Processing (J. Hockenmaier)

Different approaches to lexical semantics

Lexicographic tradition (today’s lecture)
-Use lexicons, thesauri, ontologies
-Assume words have discrete word senses:
bank1 = financial institution; bank2 = river bank, etc.
-May capture explicit relations between word (senses):  
“dog” is a “mammal”, etc.

 
Distributional tradition (earlier lectures)
-Map words to (sparse) vectors that capture corpus statistics
-Contemporary variant: use neural nets to learn dense vector
“embeddings” from very large corpora

(this is a prerequisite for most neural approaches to NLP)
-This line of work often ignores the fact that words have
multiple senses or parts-of-speech

3

CS447: Natural Language Processing

Word senses
What does ‘bank’ mean?  

-a financial institution  
(US banks have raised interest rates) 

-a particular branch of a financial institution  
(the bank on Green Street closes at 5pm) 

- the bank of a river  
(In 1927, the bank of the Mississippi flooded) 

-a ‘repository’  
(I donate blood to a blood bank)

4

CS447: Natural Language Processing

Lexicon entries

5

lemmas

senses

CS447: Natural Language Processing

Some terminology
Word forms: runs, ran, running; good, better, best

Any, possibly inflected, form of a word  
(i.e. what we talked about in morphology) 

Lemma (citation/dictionary form): run
A basic word form (e.g. infinitive or singular nominative noun)
that is used to represent all forms of the same word. 
(i.e. the form you’d search for in a dictionary) 

Lexeme: RUN(V), GOOD(A), BANK1(N), BANK2(N)
An abstract representation of a word (and all its forms), 
with a part-of-speech and a set of related word senses. 
(Often just written (or referred to) as the lemma, perhaps in a different FONT)

Lexicon:
A (finite) list of lexemes

6

CS447: Natural Language Processing

Trying to make sense of senses
Polysemy:

A lexeme is polysemous if it has different related senses 
 
 

 bank = financial institution or building  

Homonyms:
Two lexemes are homonyms if their senses are unrelated, but
they happen to have the same spelling and pronunciation 
 
 

 bank = (financial) bank or (river) bank

7

CS447: Natural Language Processing

Relations between senses

Symmetric relations:
Synonyms: couch/sofa
Two lemmas with the same sense  

Antonyms: cold/hot, rise/fall, in/out
Two lemmas with the opposite sense  

Hierarchical relations:
Hypernyms and hyponyms: pet/dog
The hyponym (dog) is more specific than the hypernym (pet) 

Holonyms and meronyms: car/wheel
The meronym (wheel) is a part of the holonym (car)

8

CS447: Natural Language Processing (J. Hockenmaier)

WordNet

9

CS447: Natural Language Processing

WordNet
Very large lexical database of English:
110K nouns, 11K verbs, 22K adjectives, 4.5K adverbs
(WordNets for many other languages exist or are under construction) 

Word senses grouped into synonym sets (“synsets”)
linked into a conceptual-semantic hierarchy
81K noun synsets, 13K verb synsets, 19K adj. synsets, 3.5K adv synsets
Avg. # of senses: 1.23 nouns, 2.16 verbs, 1.41 adj, 1.24 adverbs 

Conceptual-semantic relations: hypernym/hyponym
also holonym/meronym 
Also lexical relations, in particular lemmatization  

Available at http://wordnet.princeton.edu

10

CS447: Natural Language Processing 11

A WordNet example

CS447: Natural Language Processing

Hypernym/hyponym (between concepts) 
The more general ‘meal’ is a hypernym of the more specific ‘breakfast’ 

Instance hypernym/hyponym (between concepts and instances) 
Austen is an instance hyponym of author  

Member holonym/meronym (groups and members) 
professor is a member meronym of (a university’s) faculty  

Part holonym/meronym (wholes and parts) 
wheel is a part meronym of (is a part of) car.  

Substance meronym/holonym (substances and components) 
flour is a substance meronym of (is made of) bread

12

Hierarchical synset relations: nouns

CS447: Natural Language Processing

 
Hypernym/troponym (between events):  
travel/fly, walk/stroll  
Flying is a troponym of traveling: 
it denotes a specific manner of traveling  

Entailment (between events):  
snore/sleep  
Snoring entails (presupposes) sleeping

13

Hierarchical synset relations: verbs

CS447: Natural Language Processing

WordNet Hypernyms and Hyponyms

14

CS447: Natural Language Processing (J. Hockenmaier)

Thesaurus-based
similarity

15

CS447: Natural Language Processing (J. Hockenmaier)

Thesaurus-based word similarity
Instead of using distributional methods, rely on a
resource like WordNet to compute word similarities.

Problem: each word may have multiple entries in WordNet,
depending on how many senses it has.
We often just assume that the similarity of two words is equal
to the similarity of their two most similar senses.

NB: There are a few recent attempts to combine
neural embeddings with the information encoded in
resources like WordNet. Here, we’ll just go quickly
over some classic approaches.

16

CS447: Natural Language Processing (J. Hockenmaier)

Thesaurus-based word similarity
Basic idea:

A thesaurus like WordNet contains all the information  
needed to compute a semantic distance metric. 

Simplest instance: compute distance in WordNet
 sim(s, s’) = -log pathlen(s, s’)
pathlen(s,s’): number of edges in shortest path between s and s’  

Note: WordNet nodes are synsets (=word senses). 
Applying this to words w, w’:  
sim(w, w’) = max sim(s, s’) 
 s ∈ Senses(w)  
 s’∈ Senses(w’)

17

CS447: Natural Language Processing (J. Hockenmaier)

WordNet path lengths
The path length (distance) pathlen(s, s’)  
between two senses s, s’ is the length of the (shortest) path
between them

18

standard

currency

coinage

coin

dime

money

fund

scale

Richter scale

medium of exchange

nickel

budget

CS447: Natural Language Processing (J. Hockenmaier)

The lowest common subsumer
The lowest common subsumer (ancestor) LCS(s, s’)  
of two senses s, s’ is the lowest common ancestor node  
in the hierarchy

19

standard

currency

coinage

coin

dime

money

fund

scale

Richter scale

nickel

budget

medium of exchange

CS447: Natural Language Processing (J. Hockenmaier)

WordNet path lengths

A few examples:
pathlen(nickel, dime) = 2  
pathlen(nickel, money) = 5  
pathlen(nickel, budget) = 7
But do we really want the following?
pathlen(nickel, coin) < pathlen(nickel, dime) 
pathlen(nickel, Richter scale) = pathlen(nickel, budget)

20

standard

medium of exchange

currency

coinage

coin

nickel dime

money

fund

budget

scale

Richter scale

CS447: Natural Language Processing (J. Hockenmaier)

Information-content similarity
Basic idea: Add corpus statistics to thesaurus hierarchy
 
For each concept/sense s (synset in WordNet), define:
 words(s): the set of words subsumed by (=below) s.

All words are subsumed by the root of the hierarchy
 
P(s): probability that a random word in corpus is an instance of s  

 
 
(Either use a sense-tagged corpus, or count each word as one instance of
each of its possible senses)
NB: If s is a hypernym of s’, P(s) > P(s’)  

This defines the Information content of s as IC(s) = −log P(s)
NB: If s is a hypernym of s’, IC(s) < IC(s’)

21

P(s) =
�w�words(s) c(w)

N

CS447: Natural Language Processing (J. Hockenmaier)

P(s) and IC(s): examples

22

entity  
p=0.395 IC=1.3

hill  
p=.0000189

IC=15.7

coast  
p=.0000216

IC=15.5

geological formation  
p=0.00176 IC=9.15

CS447: Natural Language Processing (J. Hockenmaier)

Using P(sLCS) to compute similarity
There have been several attempts to use P(sLCS)
 
Resnik (1995)’s similarity: simResnik(s,s’) = −log P(LCS(s, s’))
If sLCS = LCS(s,s’) is the root of the hierarchy, P(sLCS)=1
The lower sLCS is in the hierarchy, the more specific it is,  
and the lower P(sLCS) will be.
 LCS(car, banana) = physical entity LCS(nickel, dime) = coin
Problem: this does not take into account how different s,s’ are
 LCS(thing, object) = physical entity = LCS(car, banana)

Lin (1998): simLin(s,s’) = 2× log P(sLCS) / [log P(s) + logP(s’)]
 
Jiang & Conrath (1997): simJC(s,s’) = 1/distJC(s, s’) 
distJC(s,s’) = 2× log P(sLCS) − [log P(s) + log P(s’)] 

23

CS447: Natural Language Processing (J. Hockenmaier)

Problems with thesaurus-based similarity

We need to have a thesaurus!  
(not available for all languages) 

We need to have a thesaurus that contains the words 
we’re interested in. 

We need a thesaurus that captures a rich hierarchy of
hypernyms and hyponyms.

Most thesaurus-based similarities depend on the
specifics of the hierarchy that is implement in the
thesaurus.

24

CS447: Natural Language Processing (J. Hockenmaier)

Learning hyponym relations
If we don’t have a thesaurus, can we learn that Corolla  
is a kind of car?  

Certain phrases and patterns indicate hyponym relations:
Hearst(1992)
Enumerations: cars such as the Corolla, the Civic, and the Vibe, 
Appositives: the Corolla , a popular car…  

We can also learn these patterns if we have some seed
examples of hyponym relations (e.g. from WordNet):

1. Take all hyponym/hypernym pairs from WordNet (e.g. car/vehicle)
2. Find all sentences that contain both, and identify patterns
3. Apply these patterns to new data to get new hyponym/hypernym pairs

25

CS447: Natural Language Processing

Word Sense
Disambiguation

26

CS447: Natural Language Processing

What does this word mean?

27

This plant needs to be watered each day.
⇒ living plant
This plant manufactures 1000 widgets each day.
⇒ factory  

Word Sense Disambiguation (WSD):
Identify the sense of content words (nouns, verbs, adjectives)
in context (assuming a fixed inventory of word senses) 

Applications: machine translation, question answering,
information retrieval, text classification

CS447: Natural Language Processing

The data

28

CS447: Natural Language Processing

WSD evaluation
Evaluation metrics:
-Accuracy: How many instances of the word  
are tagged with their correct sense?
-Precision and recall: How many instances of each sense  
did we predict/recover correctly?

Baseline accuracy:
-Choose the most frequent sense per word
WordNet: take the first (=most frequent) sense
-Lesk algorithm (see below)

Upper bound accuracy:
- Inter-annotator agreement: how often do two people agree
~75-80% for all words task with WordNet, ~90% for simple binary tasks
-Pseudo-word task: Replace all occurrences of words wa and
wb (door, banana) with a nonsense word wab (banana-door).  

29

CS447: Natural Language Processing

Dictionary-based WSD:
Lesk algorithm

(Lesk 1986)

30

CS447: Natural Language Processing

Dictionary-based methods
We often don’t have a labeled corpus, but we might have a
dictionary/thesaurus that contains glosses and examples:

bank1  
Gloss: a financial institution that accepts deposits and channels
the money into lending activities
Examples: “he cashed the check at the bank”,  
“that bank holds the mortgage on my home” 

bank2
Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”,  
“he sat on the bank of the river and watched the current”

31

CS447: Natural Language Processing

The Lesk algorithm
Basic idea: Compare the context with the dictionary
definition of the sense.

Assign the dictionary sense whose gloss and examples  
are most similar to the context in which the word occurs. 

Compare the signature of a word in context  
with the signatures of its senses in the dictionary
Assign the sense that is most similar to the context

Signature = set of content words  
(in examples/gloss or in context)
Similarity = size of intersection of context signature and sense
signature  

Simple, thesaurus-based baseline for WSD
32

CS447: Natural Language Processing

bank1:  
Gloss: a financial institution that accepts deposits and channels the money
into lending activities
Examples: “he cashed the check at the bank”, “that bank holds the mortgage
on my home”
Signature(bank1) = {financial, institution, accept, deposit,
channel, money, lend, activity, cash, check, hold, mortgage, home}  

bank2:
Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of the
river and watched the current”
Signature(bank2) = {slope, land, body, water, pull, canoe, sit,
river, watch, current}

Sense signatures (dictionary)

33

CS447: Natural Language Processing

Signature of target word
Test sentence:  
“The bank refused to give me a loan.”

Simplified Lesk: Overlap between sense signature  
and (simple) signature of the target word:

Target signature = words in context: {refuse, give, loan}

Original Lesk: Overlap between sense signature and
augmented signature of the target word

Augmented target signature with signatures of words in context 
{refuse, reject, request,... , give, gift, donate,... loan, money,
borrow,...}  

34

CS447: Natural Language Processing (J. Hockenmaier)

Lesk algorithm: Summary

The Lesk algorithm requires an electronic dictionary
of word senses (e.g. WordNet) and a lemmatizer.
 
It does not use any machine learning,  
but it is still a useful baseline.

35

CS447: Natural Language Processing

WSD as a learning
problem

36

CS447: Natural Language Processing

WSD as a learning problem
Supervised:
-You have a (large) corpus annotated with word senses
-Here, WSD is a standard supervised learning task 

Semi-supervised (bootstrapping) approaches:
-You only have very little annotated data  
(and a lot of raw text)
-Here, WSD is a semi-supervised learning task

37

CS447: Natural Language Processing (J. Hockenmaier)

WSD as a (binary)  
classification task
If w has two different senses, we can treat WSD for w
as a binary classification problem: 

Does this occurrence of w have sense A or sense B?
If w has multiple senses, we are dealing with a multiclass
classification problem.  

We can use labeled training data to train a classifier.
Labeled = each instance of w is marked as A or B.
This is a kind of supervised learning

38

CS447: Natural Language Processing (J. Hockenmaier)

Designing a WSD classifier

We represent each occurrence of the word w  
as a feature vector w

Now the elements of w capture the specific context  
of the token w
In distributional similarities, w provides a summary of all the
contexts in which w occurs in the training corpus.

39

CS447: Natural Language Processing

Implementing a WSD classifier
Basic insight: The sense of a word in a context
depends on the words in its context.

Features:
-Which words in context: all words, all/some content words
-How large is the context? sentence, prev/following 5 words
-Do we represent context as bag of words (unordered set of
words) or do we care about the position of words (preceding/
following word)?
-Do we care about POS tags?
-Do we represent words as they occur in the text or as their
lemma (dictionary form)?

40

CS447: Natural Language Processing

A decision list is an ordered list of yes-no questions
bass1 = fish vs. bass2 = music:

1. Does ‘fish’ occur in window? - Yes. => bass1
2. Is the previous word ‘striped ’? - Yes. => bass1
3. Does ‘guitar’ occur in window? - Yes. => bass2
4. Is the following word ‘player’? - Yes. => bass2 

Learning a decision list for a word with two senses:
- Define a feature set: what kind of questions do you want to ask?
- Enumerate all features (questions) the training data gives answers

for
- Score each feature:  
 

Decision lists

41

score(fi) =
���� log

⇥
P(sense1| fi)
P(sense2| fi)

⇤����

CS447: Natural Language Processing

Semi-supervised: Yarowsky algorithm
The task:

Learn a decision list classifier for each ambiguous word  
(e.g. “plant”: living/factory?) from lots of unlabeled sentences. 

Features used by the classifier:
-Collocations: “plant life”, “manufacturing plant”
-Nearby (± 2-10) words: “animal ”, “automate”  

Assumption 1: One-sense-per-collocation
“plant” in “plant life” always refers to living plants  

Assumption 2: One-sense-per-discourse
A text talks either about living plants or about factories.

42

CS447: Natural Language Processing

Yarowsky’s training regime
1. Initialization:
-Label a few seed examples.
-Train an initial classifier on these seed examples

2. Relabel:
-Label all examples with current classifier.
-Put all examples that are labeled with high confidence  

into a new labeled data set.
-Optional: apply one-sense-per-discourse to correct mistakes and

get additional labels
3. Retrain:
-Train a new classifier on the new labeled data set.

4. Repeat 2. and 3. until convergence.

43

CS447: Natural Language Processing

Initial state: few labels

44

CS447: Natural Language Processing

The initial decision list

45

CS447: Natural Language Processing

Intermediate state: more labels

46

CS447: Natural Language Processing

Final state:
almost everything labeled

47

CS447: Natural Language Processing

Initial vs. final decision lists

48

CS447: Natural Language Processing (J. Hockenmaier)

Summary: Yarowsky algorithm
Semi-supervised approach for WSD.

Basic idea:
-start with some minimal seed knowledge to get a few labeled
examples as training data
- train a classifier
-apply this classifier to new examples
-add the most confidently classified examples  
to the training data
-use heuristics (one-sense-per-discourse) to add even more
labeled examples to the training data
- retrain the classifier, ….

49

CS447: Natural Language Processing (J. Hockenmaier)

Today’s key concepts
Word senses

polysemy, homonyms
hypernyms, hyponyms
holonyms, meronyms

 
WordNet

as a resource
to compute thesaurus-based similarities

Word Sense disambiguation
Lesk algorithm
As a classification problem
Yarowsky algorithm

50

