
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 21: 
More on RNNs

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent Neural
Nets (RNNs)

2

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent Neural Nets (RNNs)
The input to a feedforward net has a fixed size.

How do we handle variable length inputs?
In particular, how do we handle variable length
sequences?

RNNs handle variable length sequences

There are 3 main variants of RNNs, which differ in
their internal structure:

basic RNNs (Elman nets) 
LSTMs
GRUs

3

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward
architecture (which predicts a string w0…wn one word
at a time) such that the output of the current step (wi)
is given as additional input to the next time step
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.

4

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net

CS447: Natural Language Processing (J. Hockenmaier)

Basic RNNs
Each time step corresponds to a feedforward net
where the hidden layer gets its input not just from the
layer below but also from the activations of the hidden
layer at the previous time step

5

input

output

hidden

CS447: Natural Language Processing (J. Hockenmaier)

Each time step t corresponds to a feedforward net whose  
hidden layer h(t) gets input from the layer below (x(t)) and from
the output of the hidden layer at the previous time step h(t–1) 

 
 
 
 
 
 
 
Computing the hidden state at time t:  
The i-the element of ht:

h(t) = g(Uh(t−1) + Wx(t))
h(t)

i = g(∑
j

Ujih(t−1)
j + ∑

k

Wkix(t)
k)

Basic RNNs

6

CS447: Natural Language Processing (J. Hockenmaier)

A basic RNN unrolled in time

7

CS447: Natural Language Processing (J. Hockenmaier)

RNN variants: LSTMs, GRUs
Long Short Term Memory networks (LSTMs) are RNNs with  
a more complex architecture to combine the last hidden state
with the current input.
Gated Recurrent Units (GRUs) are a simplification of LSTMs
  
Both contain “Gates” to control how much of the input or past
hidden state to forget or remember 
 
A gate performs element-wise multiplication of
 a) the output of a d-dimensional sigmoid layer  
 (all elements between 0 and 1), and  
 b) an d-dimensional input vector  
Result: a d-dimensional output vector which is like the input,
except some dimensions have been (partially) “forgotten”

8

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for language modeling
If our vocabulary consists of V words, the output layer
(at each time step) has V units, one for each word.

The softmax gives a distribution over the V words for
the next word.

To compute the probability of a string w0w1…wn wn+1
(where w0 = <s>, and wn+1 = <\s>), feed in wi as input
at time step i and compute

9

∏
i=1..n+1

P(wi |w0 . . . wi−1)

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for language generation
To generate a string w0w1…wn wn+1 (where w0 = <s>,
and wn+1 = <\s>), give w0 as first input, and then pick
the next word according to the computed probability

Feed this word in as input into the next layer.

Greedy decoding: always pick the word with the
highest probability

(this only generates a single sentence — why?)
Sampling: sample according to the given distribution

10

P(wi |w0 . . . wi−1)

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for generation
AKA “autoregressive generation”

11

10 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

In a

<s>

RNN

hole

In a hole

?Sampled Word

Softmax

Embedding

Input Word

Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for sequence labeling
In sequence labeling, we want to assign a label or tag
ti to each word wi

Now the output layer gives a distribution over the T
possible tags.

The hidden layer contains information about the
previous words and the previous tags.  

To compute the probability of a tag sequence t1…tn for
a given string w1…wn feed in wi (and possibly ti-1) as
input at time step i and compute P(ti | w1…wi-1, t1…ti-1)

12

CS447: Natural Language Processing (J. Hockenmaier)

Basic RNNs for sequence labeling
Each time step has a distribution over output classes 
 
 
 
 
 
 
 
 
Extension: add a CRF layer to capture dependencies
among labels of adjacent tokens.

13

10 CHAPTER 9 • SEQUENCE PROCESSING WITH RECURRENT NETWORKS

Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Janet will back

RNN

the bill

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for sequence classification
If we just want to assign a label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the
sequence as input to a feedforward net:

14

CS447: Natural Language Processing (J. Hockenmaier)

Stacked RNNs
We can create an RNN that has “vertical” depth  
(at each time step) by stacking multiple RNNs:

15

CS447: Natural Language Processing (J. Hockenmaier)

Bidirectional RNNs
Unless we need to generate a sequence, we can run two RNNs
over the input sequence — one in the forward direction,  
and one in the backward direction.
Their hidden states will capture different context information  
 
 
 
 
 
 

Hidden state of biRNN: where is typically
concatenation (or element-wise addition, multiplication)

h(t)
bi = h(t)

fw ⊕ h(t)
bw ⊕

16

CS447: Natural Language Processing (J. Hockenmaier)

Bidirectional RNNs for sequence
classification

Combine the hidden state of the last word of the
forward RNN and the hidden state of the first word of
the backward RNN into a single vector

17

9.4 • MANAGING CONTEXT IN RNNS: LSTMS AND GRUS 15

Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

hn_forw

h1_back

Softmax

Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
to many language applications. To see this, consider the following example in the
context of language modeling.

(9.15) The flights the airline was cancelling were full.

CS447: Natural Language Processing (J. Hockenmaier)

Encoder-Decoder
Architectures
(Seq2seq)

18

CS447: Natural Language Processing (J. Hockenmaier)

RNN for Autocompletion

19

CS447: Natural Language Processing (J. Hockenmaier)

An RNN for Machine Translation

20

10.1 • NEURAL LANGUAGE MODELS AND GENERATION REVISITED 3

associated with this part of the process until we reach the end of the prefix.
Now, consider an ingenious extension of this idea from the world of machine

translation (MT), the task of automatically translating sentences from one language
into another. The primary resources used to train modern translation systems are
known as parallel texts, or bitexts. These are large text collections consisting of pairsbitexts
of sentences from different languages that are translations of one another. Tradition-
ally in MT, the text being translated is referred to as the source and the translation
output is called the target.

To extend language models and autoregressive generation to machine transla-
tion, we’ll first add an end-of-sentence marker at the end of each bitext’s source
sentence and then simply concatenate the corresponding target to it. These concate-
nated source-target pairs can now serve as training data for a combined language
model. Training proceeds as with any RNN-based language model. The network is
trained autoregressively to predict the next word in a set of sequences comprised of
the concatenated source-target bitexts, as shown in Fig. 10.2.

To translate a source text using the trained model, we run it through the network
performing forward inference to generate hidden states until we get to the end of the
source. Then we begin autoregressive generation, asking for a word in the context
of the hidden layer from the end of the source input as well as the end-of-sentence
marker. Subsequent words are conditioned on the previous hidden state and the
embedding for the last word generated.

vivait un

</s>

hobbit

vivait un hobbit

</s>

Source

hobbita livedthere

Target

</s>lived hobbita

Figure 10.2 Training setup for a neural language model approach to machine translation. Source-target bi-
texts are concatenated and used to train a language model.

Early efforts using this clever approach demonstrated surprisingly good results
on standard datasets and led to a series of innovations that were the basis for net-
works discussed in the remainder of this chapter. Chapter 11 provides an in-depth
discussion of the fundamental issues in translation as well as the current state-of-
the-art approaches to MT. Here, we’ll focus on the powerful models that arose from
these early efforts.

CS447: Natural Language Processing (J. Hockenmaier)

DecoderEncoder

Encoder-Decoder (seq2seq) model
Task: Read an input sequence and return an output
sequence
-Machine translation: translate source into target language
-Dialog system/chatbot: generate a response

Reading the input sequence: RNN Encoder
Generating the output sequence: RNN Decoder

21

input

hidden

output

CS447: Natural Language Processing (J. Hockenmaier)

Encoder-Decoder (seq2seq) model
Encoder RNN:

reads in the input sequence
passes its last hidden state to the initial hidden state  
of the decoder

Decoder RNN:
generates the output sequence
typically uses different parameters from the encoder
may also use different input embeddings

22

CS447: Natural Language Processing (J. Hockenmaier)

Beam-Search
Decoding

23

CS447: Natural Language Processing (J. Hockenmaier)

Beam Decoding (width=4)

24

Keep the 4 best options around
at each time step.
Operate breadth-first.
Reduce beam width every time a
sequence is completed (EOS)

CS447: Natural Language Processing (J. Hockenmaier)

Attention

25

CS447: Natural Language Processing (J. Hockenmaier)

In general, we any function over the encoder’s output
can be used as a representation of the context we
want to condition the decoder on. 
 

We can feed the context in at any time step during
decoding (not just at the beginning).

A more general view

26

CS447: Natural Language Processing (J. Hockenmaier)

Attention mechanism
Basic idea: Feed a d-dimensional representation of the entire
(arbitrary-length) input sequence into the decoder  
at each time step during decoding.

This representation of the input can be a weighted average of
the encoder’s representation of the input (i.e. its output)

The weights of each encoder output element tell us how much
attention we should pay to different parts of the input sequence
 
Since different parts of the input may be more or less important
for different parts of the output, we want to vary the weights over
the input during the decoding process.

27

CS447: Natural Language Processing (J. Hockenmaier)

Attention mechanisms
We want to condition the output generation of the decoder on
a context-dependent representation of the input sequence.

Attention computes a probability distribution over the
encoder’s hidden states that depends on the decoder’s
current hidden state

(This distribution is computed anew for each output symbol)

This attention distribution is used to compute a weighted
average of the encoder’s hidden state vectors.

This context-dependent embedding of the input sequence  
is fed into the output of the decoder RNN.

28

CS447: Natural Language Processing (J. Hockenmaier)

Attention mechanisms

29

https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb#scrollTo=TNfHIF71ulLu

ht: current hidden state of decoder (target)
h’s: output of the encoder for word s (source)
Attention weights αts: distribution over h’s
 αts depends on score(ht, h’s)
Context vector ct: weighted average of h’s
Attention vector αt: computed by feedforward
layer over ct and ht

