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Where we’re at
Previous lecture:  
Standard CKY (for non-probabilistic CFGs)
The standard CKY algorithm finds all possible parse 
trees τ for a sentence S = w(1)…w(n) under a CFG G  
in Chomsky Normal Form.  

Today’s lecture:
Probabilistic Context-Free Grammars (PCFGs)
– CFGs in which each rule is associated with a probability
CKY for PCFGs (Viterbi):
– CKY for PCFGs finds the most likely parse tree  
τ* = argmax P(τ | S) for the sentence S under a PCFG. 
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Previous Lecture:
CKY for CFGs
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CKY: filling the chart
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CKY: filling one cell
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CKY for standard CFGs
CKY is a bottom-up chart parsing algorithm that finds 
all possible parse trees τ for a sentence S = w(1)…w(n) 
under a CFG G in Chomsky Normal Form (CNF). 

– CNF: G has two types of rules: X ⟶ Y  Z  and X ⟶ w   
(X, Y, Z  are nonterminals, w is a terminal)

– CKY is a dynamic programming algorithm
– The parse chart is an n×n upper triangular matrix:  

Each cell chart[i][j] (i ≤ j) stores all subtrees for w(i)…w(j)

– Each cell chart[i][j] has at most one entry for each 
nonterminal X (and pairs of backpointers to each pair of 
(Y, Z) entry in cells chart[i][k] chart[k+1][j] from which an X 
can be formed

– Time Complexity: O(n3 |G |)
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Dealing with ambiguity:
Probabilistic  
Context-Free 
Grammars (PCFGs)
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Grammars are ambiguous
A grammar might generate multiple trees for a sentence:
 
 
 
 
 
 
 
What’s the most likely parse τ for sentence S ?  

We need a model of P(τ | S)
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Computing P(τ | S)
Using Bayes’ Rule: 
 
 
 
 
 

The yield of a tree is the string of terminal symbols  
that can be read off the leaf nodes

arg max
�

P (� |S) = arg max
�

P (�, S)
P (S)

= arg max
�

P (�, S)

= arg max
�

P (�) if S = yield(�)
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T  is the (infinite) set of all trees in the language: 
 
 
We need to define P(τ) such that: 
 

 
The set T is generated by a context-free grammar

Computing P(τ)
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⇤� ⇥ T : 0� P(�)� 1
��⇥T P(�) = 1

L = {s ⇥ ��| ⇤� ⇥ T : yield(�) = s}

S � NP VP VP � Verb NP NP � Det Noun
S � S conj S VP � VP PP NP � NP PP
S � ..... VP � ..... NP � .....
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Probabilistic Context-Free Grammars
For every nonterminal  X, define a probability distribution 
P(X → α | X) over all rules with the same LHS symbol X: 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S � NP VP 0.8
S � S conj S 0.2
NP � Noun 0.2
NP � Det Noun 0.4
NP � NP PP 0.2
NP � NP conj NP 0.2
VP � Verb 0.4
VP � Verb NP 0.3
VP � Verb NP NP 0.1
VP � VP PP 0.2
PP � P NP 1.0
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Computing P(τ) with a PCFG
The probability of a tree τ is the product of the probabilities  
of all its rules:
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P(τ) = 0.8 ×0.3 ×0.2 ×1.0

=  0.00384

×0.23
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Learning the parameters of a PCFG
If we have a treebank (a corpus in which each 
sentence is associated with a parse tree), we can just 
count the number of times each rule appears, e.g.:
S ! NP VP .    (count = 1000)    
S ! S conj S . (count = 220)

and then we divide the observed frequency of each 
rule X → Y Z by the sum of the frequencies of all rules  
with the same LHS X to turn these counts into 
probabilities:
S ! NP VP .    (p = 1000/1220)      
S ! S conj S . (p = 220/1220)
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More on probabilities:
Computing P(s):  
If P(τ) is the probability of a tree τ,  
the probability of a sentence s is the sum of the 
probabilities of all its parse trees: 
           P(s) = ∑τ:yield(τ) = s P(τ)

How do we know that P(L) = ∑τ P(τ) = 1?
If we have learned the PCFG from a corpus via MLE, 
this is guaranteed to be the case.

If we just set the probabilities by hand, we could run into 
trouble, as in the following example:
  S ! S S  (0.9)  
 S ! w (0.1)

14
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PCFG parsing 
(decoding): 
Probabilistic CKY

15
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Probabilistic CKY: Viterbi

Like standard CKY, but with probabilities.
Finding the most likely tree is similar to Viterbi for HMMs:

Initialization: 
– [optional] Every chart entry that corresponds to a terminal  

(entry w in cell[i][i]) has a Viterbi probability PVIT(w[i][i] ) = 1 (*) 
– Every entry for a non-terminal X in cell[i][i] has Viterbi 

probability PVIT(X[i][i] ) = P(X → w | X) [and a single backpointer to w[i][i] (*) ]

Recurrence: For every entry that corresponds to a non-terminal X 
in cell[i][j], keep only the highest-scoring pair of backpointers 
to any pair of children (Y in cell[i][k] and Z in cell[k+1][j]): 
PVIT(X[i][j]) = argmaxY,Z,k PVIT(Y[i][k]) × PVIT(Z[k+1][j] ) × P(X → Y Z | X ) 
Final step: Return the Viterbi parse for the start symbol S  
in the top cell[1][n].
*this is unnecessary for simple PCFGs, but can be helpful for more complex probability models
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Probabilistic CKY

17

NP
0.2

John eats pie with cream

Noun
1.0 John

Verb
1.0 eats

Noun 
1.0 pie

Prep
1.0 with

Noun
1.0 cream

Input: POS-tagged sentence  
John_N eats_V pie_N with_P cream_N

NP
0.2

VP
0.3

NP
0.2

S
0.8·0.2·0.3

VP
1·0.3·0.2

= 0.06

PP
1·1·0.2

S
0.8·0.2·0.06

NP
0.2·0.2·0.2

= 0.008

VP
max( 1.0 ·0.008·0.3,

0.06·0.2·0.3 )

S
0.2·0.0036·0.8 

S � NP VP 0.8
S � S conj S 0.2
NP � Noun 0.2
NP � Det Noun 0.4
NP � NP PP 0.2
NP � NP conj NP 0.2
VP � Verb 0.4
VP � Verb NP 0.3
VP � Verb NP NP 0.1
VP � VP PP 0.2
PP � P NP 1.0

0.3

0.3
Prep NP

Prep  ⟶ P         1.0
Noun  ⟶ N         1.0
Verb  ⟶ V         1.0
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How do we handle flat rules? 
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S � NP VP 0.8
S � S conj S 0.2
NP � Noun 0.2
NP � Det Noun 0.4
NP � NP PP 0.2
NP � NP conj NP 0.2
VP � Verb 0.4
VP � Verb NP 0.3
VP � Verb NP NP 0.1
VP � VP PP 0.2
PP � P NP 1.0

0.3

0.3
Prep NP

S     ⟶ S ConjS  0.2
ConjS ⟶ conj S   1.0

Binarize each flat rule by 
adding dummy nonterminals  
(ConjS),
and setting the probability of 
the rule with the dummy 
nonterminal on the LHS to 1
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Parser evaluation

19
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Precision and recall
Precision and recall were originally developed  
as evaluation metrics for information retrieval:
-Precision: What percentage of retrieved documents are 
relevant to the query?
-Recall: What percentage of relevant documents were 
retrieved?

In NLP, they are often used in addition to accuracy:
-Precision: What percentage of items that were assigned 
label X do actually have label X in the test data?
-Recall: What percentage of items that have label X in the test 
data were assigned label X by the system? 

Particularly useful when there are more than two labels.

20
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True vs. false positives, false negatives

-True positives:    Items that were labeled X by the system, 
                           and should be labeled X.
-False positives:  Items that were labeled X by the system,  

                           but should not be labeled X. 
-False negatives: Items that were not labeled X by the system,  

                           but should be labeled X 
21

False 
Negatives

(FN)

Items labeled X  
in the gold standard  

(‘truth’)

Items labeled X  
by the system

= TP + FN
= TP + FP

False  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Precision, recall, f-measure
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False 
Positives 

(FP)

False 
Negatives

(FN)

True 
Positives 

(TP)

Items labeled X  
in the gold standard  

(‘truth’)
= TP + FN

Items labeled X  
by the system

= TP + FP

Precision: P = TP ∕( TP + FP ) 
Recall:       R = TP ∕( TP + FN )
F-measure: harmonic mean of precision and recall  
                    F = (2·P·R)∕(P + R)
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Evalb (“Parseval”)

Measures recovery of phrase-structure trees.
Labeled: span and label (NP, PP,...) has to be right.
[Earlier variant— unlabeled: span of nodes has to be right]

Two aspects of evaluation
Precision: How many of the predicted nodes are correct?
Recall: How many of the correct nodes were predicted?
Usually combined into one metric (F-measure):

P =
#correctly predicted nodes

#predicted nodes

R =
#correctly predicted nodes

#correct nodes

F =
2PR

P + R
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Parseval in practice

eat sushi with tuna: Precision: 4/5 Recall: 4/5
eat sushi with chopsticks: Precision: 4/5 Recall: 4/5
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Shortcomings of PCFGs
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PCFGs make independence assumptions:

Only the label of a node determines what children it has. 

Factors that influence these assumptions:
Shape of the trees: 
A corpus with flat trees (i.e. few nodes/sentence) 
results in a model with few independence assumptions. 

Labeling of the trees: 
A corpus with many node labels (nonterminals) 
results in a model with few independence assumptions.

26

How well can a PCFG model the 
distribution of trees?
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Example 1: flat trees

S

I eat sushi with tuna

What sentences would a PCFG 
estimated from this corpus generate?

S

I eat sushi with chopsticks
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Example 2: deep trees, few labels

S

I S

eat S

sushi S

with chopsticks

What sentences would a PCFG 
estimated from this corpus generate?

S

I S

eat S

sushi S

with tuna
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Example 3: deep trees, many labels

What sentences would a PCFG 
estimated from this corpus generate?

S

I S1

eat S2

sushi S3

with tuna

S

I S1

eat S2

sushi S3

with chopsticks
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Aside: Bias/Variance tradeoff

A probability model has low bias if it makes  
few independence assumptions. 
⇒ It can capture the structures in the training data.
This typically leads to a more fine-grained partitioning 
of the training data. 
 
Hence, fewer data points are available to estimate 
the model parameters. 

This increases the variance of the model. 
⇒ This yields a poor estimate of the distribution. 
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Penn Treebank 
parsing

31
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The Penn Treebank
The first publicly available syntactically annotated 
corpus

Wall Street Journal (50,000 sentences, 1 million words)
also Switchboard, Brown corpus, ATIS 

The annotation:
– POS-tagged (Ratnaparkhi’s MXPOST) 
– Manually annotated with phrase-structure trees
– Richer than standard CFG: Traces and other null 

elements used to represent non-local dependencies 
(designed to allow extraction of predicate-argument 
structure) [more on this later in the semester]  

Standard data set for English parsers
32



CS447 Natural Language Processing

The Treebank label set
48 preterminals (tags):

– 36 POS tags, 12 other symbols (punctuation etc.)
– Simplified version of Brown tagset (87 tags) 

(cf. Lancaster-Oslo/Bergen (LOB) tag set: 126 tags) 

14 nonterminals:
standard inventory (S, NP, VP,...)
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A simple example

34

Relatively flat structures:
– There is no noun level
– VP arguments and adjuncts appear at the same level  

Function tags, e.g. -SBJ (subject), -MNR (manner)
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A more realistic (partial) example
Until Congress acts, the government hasn't any authority to issue new debt 
obligations of any kind, the Treasury said .... .
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The Penn Treebank CFG

The Penn Treebank uses very flat rules, e.g.: 
 
 
 
 
 
 
 

– Many of these rules appear only once.
– Many of these rules are very similar.
– Can we pool these counts?
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PCFGs in practice: 
Charniak (1996) Tree-bank grammars

How well do PCFGs work on the Penn Treebank?  

– Split Treebank into test set (30K words)  
and training set (300K words).

– Estimate a PCFG from training set.
– Parse test set (with correct POS tags).
– Evaluate unlabeled precision and recall

37
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Two ways to improve performance
… change the (internal) grammar:
- Parent annotation/state splits:  

Not all NPs/VPs/DTs/… are the same. 
It matters where they are in the tree  

… change the probability model:
- Lexicalization:  

Words matter!
- Markovization:  

Generalizing the rules
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PCFGs assume the expansion of any nonterminal 
is independent of its parent. 

But this is not true: NP subjects more likely to be modified 
than objects.

We can change the grammar by adding the name 
of the parent node to each nonterminal

The parent transformation

39
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Markov PCFGs (Collins parser)
The RHS of each CFG rule consists of:  
one head HX, n left sisters Li and m right sisters Ri:  
 
 

Replace rule probabilities with a generative process: 
For each nonterminal X

-generate its head HX (nonterminal or terminal)
- then generate its left sisters L1..n and a STOP symbol  

conditioned on HX

- then generate its right sisters R1...n  and a STOP symbol 
conditioned on HX

X → Ln...L1
︸ ︷︷ ︸

left sisters

HX R1...Rm
︸ ︷︷ ︸

right sisters

40
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Lexicalization
PCFGs can’t distinguish between  
“eat sushi with chopsticks”  and “eat sushi with tuna”. 

We need to take words into account!
P(VPeat → VP PPwith chopsticks | VPeat )  
vs. P(VPeat → VP PPwith tuna | VPeat )

Problem: sparse data (PPwith fatty|white|... tuna....) 
Solution: only take head words into account!

Assumption: each constituent has one head word.

41



CS447 Natural Language Processing

At the root (start symbol S), generate the head word of the 
sentence, wS , with P(wS)  

Lexicalized rule probabilities: 
Every nonterminal is lexicalized: Xwx  

Condition rules Xwx → αYβ on the lexicalized LHS Xwx 

P( Xwx → αYβ | Xwx)  

Word-word dependencies: 
For each nonterminal Y in RHS of a rule Xwx → αYβ,  
condition  wY  (the head word of Y ) on X and wX: 
P( wY | Y, X, wX )  

Lexicalized PCFGs

42
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Dealing with unknown words
A lexicalized PCFG assigns zero probability 
to any word that does not appear in the training data.

Solution: 

Training: Replace rare words in training data  
with a token ‘UNKNOWN’.  

Testing: Replace unseen words with ‘UNKNOWN’

43



CS447 Natural Language Processing

Refining the set of categories

Unlexicalized Parsing  (Klein & Manning ’03)
Unlexicalized PCFGs with various transformations  
of the training data and the model, e.g.:
– Parent annotation (of terminals and nonterminals):
distinguish preposition IN from subordinating conjunction IN etc.
– Add head tag to nonterminals 
(e.g. distinguish finite from infinite VPs)
– Add distance features
Accuracy: 86.3 Precision and  85.1 Recall

The Berkeley parser (Petrov et al. ’06, ’07)
Automatically learns refinements of the nonterminals 
Accuracy: 90.2 Precision, 89.9 Recall
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Summary
The Penn Treebank has a large number of very flat 
rules. 
Accurate parsing requires modifications to the basic 
PCFG model: refining the nonterminals, relaxing the 
independence assumptions by including grandparent 
information, modeling word-word dependencies, etc. 

How much of this transfers to other treebanks or 
languages?  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