
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 18:
PCFG Parsing

CS447 Natural Language Processing

Where we’re at
Previous lecture:  
Standard CKY (for non-probabilistic CFGs)
The standard CKY algorithm finds all possible parse
trees τ for a sentence S = w(1)…w(n) under a CFG G  
in Chomsky Normal Form.

Today’s lecture:
Probabilistic Context-Free Grammars (PCFGs)
– CFGs in which each rule is associated with a probability
CKY for PCFGs (Viterbi):
– CKY for PCFGs finds the most likely parse tree  
τ* = argmax P(τ | S) for the sentence S under a PCFG.

2

CS447: Natural Language Processing (J. Hockenmaier)

Previous Lecture:
CKY for CFGs

3

CS447 Natural Language Processing

CKY: filling the chart

4

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

CS447 Natural Language Processing

CKY: filling one cell

5

w
1

... ... wi ... w
n w

1...

 ..
.wi

...

w
n

chart[2][6]:
w1 w2 w3 w4 w5 w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

CS447 Natural Language Processing

CKY for standard CFGs
CKY is a bottom-up chart parsing algorithm that finds
all possible parse trees τ for a sentence S = w(1)…w(n)
under a CFG G in Chomsky Normal Form (CNF). 

– CNF: G has two types of rules: X ⟶ Y Z and X ⟶ w  
(X, Y, Z are nonterminals, w is a terminal)

– CKY is a dynamic programming algorithm
– The parse chart is an n×n upper triangular matrix:  

Each cell chart[i][j] (i ≤ j) stores all subtrees for w(i)…w(j)

– Each cell chart[i][j] has at most one entry for each
nonterminal X (and pairs of backpointers to each pair of
(Y, Z) entry in cells chart[i][k] chart[k+1][j] from which an X
can be formed

– Time Complexity: O(n3 |G |)
6

CS447: Natural Language Processing (J. Hockenmaier)

Dealing with ambiguity:
Probabilistic  
Context-Free
Grammars (PCFGs)

7

CS447 Natural Language Processing

Grammars are ambiguous
A grammar might generate multiple trees for a sentence:
 
 
 
 
 
 
 
What’s the most likely parse τ for sentence S ?  

We need a model of P(τ | S)

8

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

CS447 Natural Language Processing

Computing P(τ | S)
Using Bayes’ Rule: 
 
 
 
 
 

The yield of a tree is the string of terminal symbols  
that can be read off the leaf nodes

arg max
�

P (� |S) = arg max
�

P (�, S)
P (S)

= arg max
�

P (�, S)

= arg max
�

P (�) if S = yield(�)

9

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

yield() = eat sushi with tuna

CS447 Natural Language Processing

T is the (infinite) set of all trees in the language: 

 
We need to define P(τ) such that: 
 

 
The set T is generated by a context-free grammar

Computing P(τ)

10

⇤� ⇥ T : 0� P(�)� 1
��⇥T P(�) = 1

L = {s ⇥ ��| ⇤� ⇥ T : yield(�) = s}

S � NP VP VP � Verb NP NP � Det Noun
S � S conj S VP � VP PP NP � NP PP
S � VP � NP �

CS447 Natural Language Processing

Probabilistic Context-Free Grammars
For every nonterminal X, define a probability distribution
P(X → α | X) over all rules with the same LHS symbol X: 

11

S � NP VP 0.8
S � S conj S 0.2
NP � Noun 0.2
NP � Det Noun 0.4
NP � NP PP 0.2
NP � NP conj NP 0.2
VP � Verb 0.4
VP � Verb NP 0.3
VP � Verb NP NP 0.1
VP � VP PP 0.2
PP � P NP 1.0

CS447 Natural Language Processing

Computing P(τ) with a PCFG
The probability of a tree τ is the product of the probabilities  
of all its rules:

12

P(τ) = 0.8 ×0.3 ×0.2 ×1.0

= 0.00384

×0.23

S

NP

Noun

John

VP

VP

Verb

eats

NP

Noun

pie

PP

P

with

NP

Noun

cream

S � NP VP 0.8
S � S conj S 0.2
NP � Noun 0.2
NP � Det Noun 0.4
NP � NP PP 0.2
NP � NP conj NP 0.2
VP � Verb 0.4
VP � Verb NP 0.3
VP � Verb NP NP 0.1
VP � VP PP 0.2
PP � P NP 1.0

CS447 Natural Language Processing

Learning the parameters of a PCFG
If we have a treebank (a corpus in which each
sentence is associated with a parse tree), we can just
count the number of times each rule appears, e.g.:
S ! NP VP . (count = 1000)
S ! S conj S . (count = 220)

and then we divide the observed frequency of each
rule X → Y Z by the sum of the frequencies of all rules
with the same LHS X to turn these counts into
probabilities:
S ! NP VP . (p = 1000/1220)  
S ! S conj S . (p = 220/1220)

13

CS447 Natural Language Processing

More on probabilities:
Computing P(s):  
If P(τ) is the probability of a tree τ,  
the probability of a sentence s is the sum of the
probabilities of all its parse trees:
 P(s) = ∑τ:yield(τ) = s P(τ)

How do we know that P(L) = ∑τ P(τ) = 1?
If we have learned the PCFG from a corpus via MLE,
this is guaranteed to be the case.

If we just set the probabilities by hand, we could run into
trouble, as in the following example:
 S ! S S (0.9)  
 S ! w (0.1)

14

CS447: Natural Language Processing (J. Hockenmaier)

PCFG parsing
(decoding):
Probabilistic CKY

15

CS447 Natural Language Processing

Probabilistic CKY: Viterbi

Like standard CKY, but with probabilities.
Finding the most likely tree is similar to Viterbi for HMMs:

Initialization:
– [optional] Every chart entry that corresponds to a terminal  

(entry w in cell[i][i]) has a Viterbi probability PVIT(w[i][i]) = 1 (*)
– Every entry for a non-terminal X in cell[i][i] has Viterbi

probability PVIT(X[i][i]) = P(X → w | X) [and a single backpointer to w[i][i] (*)]

Recurrence: For every entry that corresponds to a non-terminal X
in cell[i][j], keep only the highest-scoring pair of backpointers
to any pair of children (Y in cell[i][k] and Z in cell[k+1][j]): 
PVIT(X[i][j]) = argmaxY,Z,k PVIT(Y[i][k]) × PVIT(Z[k+1][j]) × P(X → Y Z | X)
Final step: Return the Viterbi parse for the start symbol S  
in the top cell[1][n].
*this is unnecessary for simple PCFGs, but can be helpful for more complex probability models

16

CS447 Natural Language Processing

Probabilistic CKY

17

NP
0.2

John eats pie with cream

Noun
1.0 John

Verb
1.0 eats

Noun
1.0 pie

Prep
1.0 with

Noun
1.0 cream

Input: POS-tagged sentence  
John_N eats_V pie_N with_P cream_N

NP
0.2

VP
0.3

NP
0.2

S
0.8·0.2·0.3

VP
1·0.3·0.2

= 0.06

PP
1·1·0.2

S
0.8·0.2·0.06

NP
0.2·0.2·0.2

= 0.008

VP
max(1.0 ·0.008·0.3,

0.06·0.2·0.3)

S
0.2·0.0036·0.8

S � NP VP 0.8
S � S conj S 0.2
NP � Noun 0.2
NP � Det Noun 0.4
NP � NP PP 0.2
NP � NP conj NP 0.2
VP � Verb 0.4
VP � Verb NP 0.3
VP � Verb NP NP 0.1
VP � VP PP 0.2
PP � P NP 1.0

0.3

0.3
Prep NP

Prep ⟶ P 1.0
Noun ⟶ N 1.0
Verb ⟶ V 1.0

CS447 Natural Language Processing

How do we handle flat rules?

18

S � NP VP 0.8
S � S conj S 0.2
NP � Noun 0.2
NP � Det Noun 0.4
NP � NP PP 0.2
NP � NP conj NP 0.2
VP � Verb 0.4
VP � Verb NP 0.3
VP � Verb NP NP 0.1
VP � VP PP 0.2
PP � P NP 1.0

0.3

0.3
Prep NP

S ⟶ S ConjS 0.2
ConjS ⟶ conj S 1.0

Binarize each flat rule by
adding dummy nonterminals
(ConjS),
and setting the probability of
the rule with the dummy
nonterminal on the LHS to 1

CS447: Natural Language Processing (J. Hockenmaier)

Parser evaluation

19

CS447: Natural Language Processing (J. Hockenmaier)

Precision and recall
Precision and recall were originally developed  
as evaluation metrics for information retrieval:
-Precision: What percentage of retrieved documents are
relevant to the query?
-Recall: What percentage of relevant documents were
retrieved?

In NLP, they are often used in addition to accuracy:
-Precision: What percentage of items that were assigned
label X do actually have label X in the test data?
-Recall: What percentage of items that have label X in the test
data were assigned label X by the system?

Particularly useful when there are more than two labels.

20

CS447: Natural Language Processing (J. Hockenmaier)

True vs. false positives, false negatives

-True positives: Items that were labeled X by the system, 
 and should be labeled X.
-False positives: Items that were labeled X by the system,  

 but should not be labeled X.
-False negatives: Items that were not labeled X by the system,  

 but should be labeled X
21

False
Negatives

(FN)

Items labeled X  
in the gold standard  

(‘truth’)

Items labeled X  
by the system

= TP + FN
= TP + FP

False  
Positives 

(FP)

True  
Positives

(TP)

CS447: Natural Language Processing (J. Hockenmaier)

Precision, recall, f-measure

22

False
Positives 

(FP)

False
Negatives

(FN)

True
Positives 

(TP)

Items labeled X  
in the gold standard  

(‘truth’)
= TP + FN

Items labeled X  
by the system

= TP + FP

Precision: P = TP ∕(TP + FP)
Recall: R = TP ∕(TP + FN)
F-measure: harmonic mean of precision and recall  
 F = (2·P·R)∕(P + R)

CS447 Natural Language Processing

Evalb (“Parseval”)

Measures recovery of phrase-structure trees.
Labeled: span and label (NP, PP,...) has to be right.
[Earlier variant— unlabeled: span of nodes has to be right]

Two aspects of evaluation
Precision: How many of the predicted nodes are correct?
Recall: How many of the correct nodes were predicted?
Usually combined into one metric (F-measure):

P =
#correctly predicted nodes

#predicted nodes

R =
#correctly predicted nodes

#correct nodes

F =
2PR

P + R

23

CS447 Natural Language Processing

Parseval in practice

eat sushi with tuna: Precision: 4/5 Recall: 4/5
eat sushi with chopsticks: Precision: 4/5 Recall: 4/5

24

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi eat with chopsticks
NPNP

VP

PPVP

V P
eat sushi with chopsticks

NPNP
NP

VP

PP

V P

eat with tunasushi
NPNP

VP

PPVP

V P

 Gold standard Parser output

N N N N

NN N N

CS498JH: Introduction to NLP

Shortcomings of PCFGs

25

CS447 Natural Language Processing

 
 
PCFGs make independence assumptions:

Only the label of a node determines what children it has. 

Factors that influence these assumptions:
Shape of the trees: 
A corpus with flat trees (i.e. few nodes/sentence) 
results in a model with few independence assumptions. 

Labeling of the trees: 
A corpus with many node labels (nonterminals) 
results in a model with few independence assumptions.

26

How well can a PCFG model the
distribution of trees?

CS447 Natural Language Processing

Example 1: flat trees

S

I eat sushi with tuna

What sentences would a PCFG 
estimated from this corpus generate?

S

I eat sushi with chopsticks

27

CS447 Natural Language Processing

Example 2: deep trees, few labels

S

I S

eat S

sushi S

with chopsticks

What sentences would a PCFG 
estimated from this corpus generate?

S

I S

eat S

sushi S

with tuna

28

CS447 Natural Language Processing

Example 3: deep trees, many labels

What sentences would a PCFG 
estimated from this corpus generate?

S

I S1

eat S2

sushi S3

with tuna

S

I S1

eat S2

sushi S3

with chopsticks

29

CS447 Natural Language Processing

Aside: Bias/Variance tradeoff

A probability model has low bias if it makes  
few independence assumptions. 
⇒ It can capture the structures in the training data.
This typically leads to a more fine-grained partitioning
of the training data.
 
Hence, fewer data points are available to estimate
the model parameters. 

This increases the variance of the model. 
⇒ This yields a poor estimate of the distribution.

30

CS447: Natural Language Processing (J. Hockenmaier)

Penn Treebank
parsing

31

CS447 Natural Language Processing

The Penn Treebank
The first publicly available syntactically annotated
corpus

Wall Street Journal (50,000 sentences, 1 million words)
also Switchboard, Brown corpus, ATIS 

The annotation:
– POS-tagged (Ratnaparkhi’s MXPOST)
– Manually annotated with phrase-structure trees
– Richer than standard CFG: Traces and other null

elements used to represent non-local dependencies
(designed to allow extraction of predicate-argument
structure) [more on this later in the semester]  

Standard data set for English parsers
32

CS447 Natural Language Processing

The Treebank label set
48 preterminals (tags):

– 36 POS tags, 12 other symbols (punctuation etc.)
– Simplified version of Brown tagset (87 tags) 

(cf. Lancaster-Oslo/Bergen (LOB) tag set: 126 tags) 

14 nonterminals:
standard inventory (S, NP, VP,...)

33

CS447 Natural Language Processing

A simple example

34

Relatively flat structures:
– There is no noun level
– VP arguments and adjuncts appear at the same level  

Function tags, e.g. -SBJ (subject), -MNR (manner)

CS447 Natural Language Processing

A more realistic (partial) example
Until Congress acts, the government hasn't any authority to issue new debt
obligations of any kind, the Treasury said

35

CS447 Natural Language Processing

The Penn Treebank CFG

The Penn Treebank uses very flat rules, e.g.: 
 
 
 
 
 
 
 

– Many of these rules appear only once.
– Many of these rules are very similar.
– Can we pool these counts?

36

CS447 Natural Language Processing

PCFGs in practice:
Charniak (1996) Tree-bank grammars

How well do PCFGs work on the Penn Treebank?  

– Split Treebank into test set (30K words)  
and training set (300K words).

– Estimate a PCFG from training set.
– Parse test set (with correct POS tags).
– Evaluate unlabeled precision and recall

37

CS447 Natural Language Processing

Two ways to improve performance
… change the (internal) grammar:
- Parent annotation/state splits:  

Not all NPs/VPs/DTs/… are the same. 
It matters where they are in the tree  

… change the probability model:
- Lexicalization:  

Words matter!
- Markovization:  

Generalizing the rules

38

CS447 Natural Language Processing

PCFGs assume the expansion of any nonterminal
is independent of its parent.

But this is not true: NP subjects more likely to be modified
than objects.

We can change the grammar by adding the name
of the parent node to each nonterminal

The parent transformation

39

CS447 Natural Language Processing

Markov PCFGs (Collins parser)
The RHS of each CFG rule consists of:  
one head HX, n left sisters Li and m right sisters Ri:  
 
 

Replace rule probabilities with a generative process: 
For each nonterminal X

-generate its head HX (nonterminal or terminal)
- then generate its left sisters L1..n and a STOP symbol  

conditioned on HX

- then generate its right sisters R1...n and a STOP symbol
conditioned on HX

X → Ln...L1
︸ ︷︷ ︸

left sisters

HX R1...Rm
︸ ︷︷ ︸

right sisters

40

CS447 Natural Language Processing

Lexicalization
PCFGs can’t distinguish between  
“eat sushi with chopsticks” and “eat sushi with tuna”. 

We need to take words into account!
P(VPeat → VP PPwith chopsticks | VPeat)  
vs. P(VPeat → VP PPwith tuna | VPeat)

Problem: sparse data (PPwith fatty|white|... tuna....) 
Solution: only take head words into account!

Assumption: each constituent has one head word.

41

CS447 Natural Language Processing

At the root (start symbol S), generate the head word of the
sentence, wS , with P(wS)  

Lexicalized rule probabilities: 
Every nonterminal is lexicalized: Xwx  

Condition rules Xwx → αYβ on the lexicalized LHS Xwx 

P(Xwx → αYβ | Xwx)  

Word-word dependencies: 
For each nonterminal Y in RHS of a rule Xwx → αYβ,  
condition wY (the head word of Y) on X and wX: 
P(wY | Y, X, wX)  

Lexicalized PCFGs

42

CS447 Natural Language Processing

Dealing with unknown words
A lexicalized PCFG assigns zero probability 
to any word that does not appear in the training data.

Solution: 

Training: Replace rare words in training data  
with a token ‘UNKNOWN’.  

Testing: Replace unseen words with ‘UNKNOWN’

43

CS447 Natural Language Processing

Refining the set of categories

Unlexicalized Parsing (Klein & Manning ’03)
Unlexicalized PCFGs with various transformations  
of the training data and the model, e.g.:
– Parent annotation (of terminals and nonterminals):
distinguish preposition IN from subordinating conjunction IN etc.
– Add head tag to nonterminals
(e.g. distinguish finite from infinite VPs)
– Add distance features
Accuracy: 86.3 Precision and 85.1 Recall

The Berkeley parser (Petrov et al. ’06, ’07)
Automatically learns refinements of the nonterminals
Accuracy: 90.2 Precision, 89.9 Recall

44

CS447: Natural Language Processing (J. Hockenmaier)

Summary
The Penn Treebank has a large number of very flat
rules.
Accurate parsing requires modifications to the basic
PCFG model: refining the nonterminals, relaxing the
independence assumptions by including grandparent
information, modeling word-word dependencies, etc.

How much of this transfers to other treebanks or
languages?  

45

