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Previous key concepts
NLP tasks dealing with words...
-POS-tagging, morphological analysis 

… require finite-state representations,
-Finite-State Automata and Finite-State Transducers 

… the corresponding probabilistic models,
-Probabilistic FSAs and Hidden Markov Models
-Estimation: relative frequency estimation, EM algorithm 

… and appropriate search algorithms
-Dynamic programming: Forward, Viterbi, Forward-Backward
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The next key concepts
NLP tasks dealing with sentences...
-Syntactic parsing and semantic analysis 

… require (at least) context-free representations,
-Context-free grammars, unification grammars 

… the corresponding probabilistic models,
-Probabilistic Context-Free Grammars, Loglinear models
-Estimation: Relative Frequency estimation, EM algorithm, etc. 

… and appropriate search algorithms
-Dynamic programming:  chart parsing, inside-outside 
algorithm
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Search  
Algorithm
(e.g Viterbi)

Dealing with ambiguity

Structural  
Representation

(e.g FSA)

Scoring
Function

(Probability model,  
e.g HMM)
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Today’s lecture
Introduction to natural language syntax (‘grammar’): 

Constituency and dependencies
Context-free Grammars
Dependency Grammars
A simple CFG for English
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What is grammar?

6

No, not 
really, not in 

this class
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What is grammar?
Grammar formalisms
(= linguists’ programming languages)

A precise way to define and describe  
the structure of sentences. 
(N.B.: There are many different formalisms out there, which each define their 
own data structures and operations)

Specific grammars
(= linguists’ programs)

Implementations (in a particular formalism) for a particular 
language (English, Chinese,....)
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Can we define a program that 
generates all English sentences? 

The number of sentences is infinite.
But we need our program to be finite.
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Overgeneration

Undergeneration

John saw Mary.
I ate sushi with tuna.

I ate the cake that John had  
made for me yesterday

I want you to go there.

John made some cake.

English

Did you go there? 

.....

John Mary saw.

 with tuna sushi ate I.

Did you went there? 

....
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Noun
(Subject) Verb

(Head)
Noun

(Object)

I   eat   sushi.

Basic sentence structure
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A finite-state-automaton (FSA)

Noun 
(Subject)

Noun 
(Object)Verb (Head)
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A Hidden Markov Model (HMM)

Noun 
(Subject)

Noun 
(Object)Verb (Head)

I, you, .... eat, drink sushi, ...
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Words take arguments
I eat sushi.     ✔ 
I eat sushi you. ??? 
I sleep sushi  ??? 
I give sushi   ??? 
I drink sushi   ? 

Subcategorization  
(purely syntactic: what set of arguments do words take?) 
Intransitive verbs (sleep)  take only a subject.
Transitive verbs (eat) take also one (direct) object. 
Ditransitive verbs (give) take also one (indirect) object.

Selectional preferences  
(semantic: what types of arguments do words tend to take) 
The object of eat should be edible.
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A better FSA

Noun 
(Subject)

Noun 
(Object)

Transitive 
Verb (Head)

Intransitive 
Verb (Head)
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Language is recursive

the ball 
the big ball 

the big, red ball 
the big, red, heavy ball 

....

Adjectives can modify nouns.
The number of modifiers (aka adjuncts)  
a word can have is (in theory) unlimited.  
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Another FSA

Determiner Noun 

Adjective
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Recursion can be  
more complex

the ball 
the ball in the garden 

the ball in the garden behind the house 
the ball in the garden behind the house next to the school 

....
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Yet another FSA

Det Noun 

Adj

Preposition

So, why do we need anything  
beyond regular (finite-state) grammars? 
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What does this mean?

the ball            in the garden   behind    the house
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There is an 
attachment 
ambiguity
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FSAs do not generate  
hierarchical structure

20

Det Noun 

Adj

Preposition
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Strong vs. weak  
generative capacity
Formal language theory:
-defines language as string sets
- is only concerned with generating these strings 
(weak generative capacity) 

Formal/Theoretical syntax (in linguistics):
-defines language as sets of strings with (hidden) structure
- is also concerned with generating the right structures 
(strong generative capacity)

21



CS447: Natural Language Processing (J. Hockenmaier)

 [                                         ]   [                                               ]   [                               ] I   eat   sushi    with  tuna

What is the structure
 of a sentence?
Sentence structure is hierarchical:

A sentence consists of words (I, eat, sushi, with, tuna) 
…which form phrases or constituents: “sushi with tuna” 

Sentence structure defines dependencies  
between words or phrases:

22
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Two ways to represent structure

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi  eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

Phrase structure trees Dependency trees
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Structure (syntax) corresponds  
to meaning (semantics)

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi  eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks
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eat  sushi  with  tuna 

eat sushi with chopsticks 

eat sushi with chopsticks 

eat sushi with tuna 
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This is a dependency tree:

I   eat   sushi.

sbj obj

eat

sushiI

sbj obj
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Dependency grammar
DGs describe the structure of sentences as a  
directed acyclic graph.

The nodes of the graph are the words
The edges of the graph are the dependencies.

Typically, the graph is assumed to be a tree.

Note: the relationship between DG and CFGs:
If a CFG phrase structure tree is translated into DG,
the resulting dependency graph has no crossing edges.
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Context-free grammars
A CFG is a 4-tuple 〈N, Σ, R, S〉 consisting of:

A set of nonterminals N  
(e.g. N = {S, NP, VP, PP, Noun, Verb, ....}) 

A set of terminals Σ 
(e.g. Σ = {I, you, he, eat, drink, sushi, ball, }) 

A set of rules R  
R ⊆ {A → β  with left-hand-side (LHS)   A ∈ N  
                   and right-hand-side (RHS) β ∈ (N ∪ Σ)* }
 
A start symbol S ∈ N 
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Context-free grammars (CFGs) 
define phrase structure trees

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi  eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks
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DT → {the, a}
N → {ball, garden, house, sushi }
P → {in, behind, with}
NP → DT N
NP → NP PP
PP → P   NP

N: noun
P: preposition
NP: “noun phrase”
PP: “prepositional phrase”
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Context-free grammars (CFGs) 
capture recursion
Language has simple and complex constituents

(simple: “the garden”, complex: “the garden behind the house”) 
Complex constituents behave just like simple ones.

(“behind the house” can always be omitted) 

CFGs define nonterminal categories (e.g. NP) 
to capture equivalence classes of constituents. 
 
Recursive rules (where the same nonterminal 
appears on both sides) generate recursive structures

NP → DT  N      (Simple, i.e. non-recursive NP)
NP → NP  PP    (Complex, i.e. recursive, NP)
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CFGs and center embedding
The mouse ate the corn. 

The mouse that the snake ate ate the corn. 
The mouse that the snake that the hawk ate ate ate the corn. 

....
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CFGs and center embedding
Formally, these sentences are all grammatical,  
because they can be generated by the CFG  
that is required for the first sentence:

S               →  NP    VP
NP             →  NP   RelClause
RelClause  → that  NP ate

Problem: CFGs are not able to capture bounded recursion. 
(bounded = “only embed one or two relative clauses”).  
 
To deal with this discrepancy between what the model predicts 
to be grammatical, and what humans consider grammatical, 
linguists distinguish between a speaker’s competence 
(grammatical knowledge) and performance (processing and 
memory limitations) 
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CFGs are equivalent to Pushdown 
automata (PDAs)
PDAs are FSAs with an additional stack: 
Emit a symbol and push/pop a symbol from the stack 
 
 
 
 
 
 

This is equivalent to the following CFG:
S  → a X b     S  → a b 
X  → a X b     X → a b

Push ‘x’  
on stack.
Emit ‘a’

32

Pop ‘x’ 
from stack.

Emit ‘b’

Accept if 
stack empty.
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Action Stack String
1. Push x on stack. Emit a. x a
2. Push x on stack. Emit a. xx aa
3. Push x on stack. Emit a. xxx aaa
4. Push x on stack. Emit a. xxxx aaaa
5. Pop x off stack. Emit b. xxx aaaab
6. Pop x off stack. Emit b. xx aaaabb
7. Pop x off stack. Emit b. x aaaabbb
8. Pop x off stack. Emit b aaaabbbb

Generating anbn
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Defining grammars 
for natural language
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Constituents: 
Heads and dependents
There are different kinds of constituents:

Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly

Every phrase has a head:
Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly
The other parts are its dependents.
Dependents are either arguments or adjuncts
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Is string α a constituent?

Substitution test: 
Can α be replaced by a single word?  
He talks [there]. 

Movement test: 
Can α be moved around in the sentence?  
[In class], he talks.

Answer test: 
Can α be the answer to a question?  
Where does he talk? - [In class].

He talks [in class].
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Arguments are obligatory
Words subcategorize for specific sets of arguments:

Transitive verbs (sbj + obj):   [John] likes [Mary] 

All arguments have to be present:
*[John] likes.       *likes [Mary]. 

No argument can be occupied multiple times:
*[John] [Peter] likes [Ann] [Mary]. 

Words can have multiple subcat frames:
Transitive eat (sbj + obj):   [John] eats [sushi].
Intransitive eat (sbj): [John] eats. 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Adjuncts are optional
Adverbs, PPs and adjectives can be adjuncts:

Adverbs: John runs [fast].   
                 a [very] heavy book.  
PPs:      John runs [in the gym].  
               the book [on the table]
Adjectives: a [heavy] book 

There can be an arbitrary number of adjuncts:
John saw Mary. 
John saw Mary [yesterday]. 
John saw Mary [yesterday] [in town] 
John saw Mary [yesterday] [in town] [during lunch] 
[Perhaps] John saw Mary [yesterday] [in town] [during lunch]
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Heads, Arguments and Adjuncts in CFGs

Heads:  
We assume that each RHS has one head, e.g. 

VP → Verb NP   (Verbs are heads of VPs)
NP → Det Noun  (Nouns are heads of NPs)
S  → NP VP (VPs are heads of sentences)
Exception: Coordination, lists: VP → VP conj VP  

Arguments:
The head has a different category from the parent:

VP → Verb NP   (the NP is an argument of the verb)
Adjuncts:
The head has the same category as the parent:

VP → VP PP (the PP is an adjunct)

39



CS447: Natural Language Processing (J. Hockenmaier)

A context-free grammar  
for a fragment of 
English
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Noun phrases (NPs)
Simple NPs: 
[He] sleeps.             (pronoun)
[John] sleeps.         (proper name)
[A student] sleeps. (determiner + noun)

Complex NPs: 
[A tall student] sleeps.                        (det + adj + noun)
[The student in the back] sleeps.       (NP + PP)
[The student who likes MTV] sleeps. (NP + Relative Clause)
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The NP fragment
NP → Pronoun
NP → ProperName  
NP → Det  Noun

Det → {a, the, every}
Pronoun → {he, she,...}
ProperName → {John, Mary,...}
Noun → AdjP Noun  
Noun → N
NP → NP PP
NP → NP RelClause
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Adjective phrases (AdjP) and 
prepositional phrases (PP)
AdjP → Adj
AdjP → Adv AdjP
Adj → {big, small, red,...}
Adv → {very, really,...} 

PP → P NP
P → {with, in, above,...} 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The verb phrase (VP)
He [eats]. 
He [eats sushi]. 
He [gives John sushi]. 
He [eats sushi with chopsticks]. 

VP → V
VP → V NP
VP → V NP PP
VP → VP PP

V → {eats, sleeps gives,...}
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Capturing subcategorization
He [eats]. ✔ 
He [eats sushi]. ✔ 
He [gives John sushi]. ✔ 
He [eats sushi with chopsticks]. ✔ 
*He [eats John sushi]. ??? 

VP → Vintrans
VP → Vtrans NP
VP → Vditrans NP NP
VP → VP PP
Vintrans → {eats, sleeps} 
Vtrans    → {eats} 
Vtrans    → {gives} 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Sentences

[He eats sushi]. 
[Sometimes, he eats sushi]. 
[In Japan, he eats sushi]. 
 
S → NP VP
S → AdvP S
S → PP S

He says [he eats sushi]. 
VP → Vcomp S
Vcomp → {says, think, believes}
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Sentences redefined

[He eats sushi].   ✔ 
*[I eats sushi].     ??? 
*[They eats sushi].     ??? 

S → NP3sg VP3sg
S → NP1sg VP1sg
S → NP3pl VP3pl

We need features to capture agreement:
(number, person, case,…)
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Complex VPs
In English, simple tenses have separate forms:
 
present tense: the girl eats sushi
simple past tense: the girl ate sushi  

Complex tenses, progressive aspect and passive 
voice consist of auxiliaries and participles: 
 
past perfect tense: the girl has eaten sushi
future perfect: the girl will have eaten sushi
passive voice: the sushi was eaten by the girl
progressive: the girl is/was/will be eating sushi

48



CS447: Natural Language Processing (J. Hockenmaier)

VPs redefined
He [has [eaten sushi]].
The sushi [was [eaten by him]]. 

VP →  Vhave  VPpastPart
VP →  Vbe  VPpass
VPpastPart → VpastPart NP
VPpass → VpastPart PP
Vhave→ {has} 
VpastPart→ {eaten, seen}

We need more nonterminals (e.g. VPpastpart).
N.B.: We call VPpastPart, VPpass, etc. `untensed’ VPs
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Coordination
[He eats sushi] and [she drinks tea] 
[John] and [Mary] eat sushi. 
He [eats sushi] and [drinks tea] 
 
S   → S conj S
NP → NP conj NP
VP → VP conj VP

He says [he eats sushi]. 
VP → Vcomp S
Vcomp → {says, think, believes}
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Relative clauses
Relative clauses modify a noun phrase:
the girl [that eats sushi] 

Relative clauses lack a noun phrase, which is 
understood to be filled by the NP they modify:
‘the girl that eats sushi’  implies ‘the girl eats sushi’ 

There are subject and object relative clauses:
subject: ‘the girl that eats sushi’  
object: ‘the sushi that the girl eats’
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Yes/No questions
Yes/no questions consist of an auxiliary, a subject 
and an (untensed) verb phrase: 

does she eat sushi?
have you eaten sushi?  

YesNoQ → Aux  NP VPinf
YesNoQ → Aux  NP VPpastPart
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Wh-questions
Subject wh-questions consist of an wh-word, an 
auxiliary and an (untensed) verb phrase: 

Who has eaten the sushi?  

Object wh-questions consist of an wh-word, an 
auxiliary, an NP and an (untensed) verb phrase: 

What does Mary eat?  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The CKY parsing 
algorithm

54
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CKY chart parsing algorithm
Bottom-up parsing:

start with the words 
Dynamic programming:

save the results in a table/chart
re-use these results in finding larger constituents 

Complexity: O( n3|G| ) 
n: length of string, |G|: size of grammar)

Presumes a CFG in Chomsky Normal Form:
Rules are all either A → B C  or A → a     
(with A,B,C nonterminals and a a terminal)
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The right-hand side of a standard CFG can have an arbitrary 
number of symbols (terminals and nonterminals): 

           VP → ADV eat NP 

A CFG in Chomsky Normal Form (CNF) allows only two 
kinds of right-hand sides:

– Two nonterminals:  VP → ADV VP
– One terminal:          VP → eat   

Any CFG can be transformed into an equivalent CNF:
VP   → ADVP  VP1

VP1 → VP2  NP
VP2 → eat

Chomsky Normal Form
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A note about ε-productions
Formally, context-free grammars are allowed to have  
empty productions (ε = the empty string): 
VP → V NP       NP → DT Noun     NP → ε 

These can always be eliminated without changing the 
language generated by the grammar:
VP → V NP        NP → DT Noun     NP → ε
becomes 
VP → V NP        VP → V ε    NP → DT Noun
which in turn becomes 
VP → V NP        VP → V       NP → DT Noun 

We will assume that our grammars don’t have ε-productions
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we eat sushiwe eat

eat sushi

sushi

eat

we

S   → NP VP
VP →  V  NP
V   → eat
NP → we
NP → sushi

We eat sushi  

The CKY parsing algorithm

SNP

V

NP

VP

58

To recover the 
parse tree, each 

entry needs  
pairs of 

backpointers.
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CKY algorithm
1. Create the chart 

(an n×n upper triangular matrix for an sentence with n words)
– Each cell chart[i][j] corresponds to the substring w(i)…w(j)

2. Initialize the chart (fill the diagonal cells chart[i][i]):
For all rules X → w(i), add an entry X to chart[i][i] 

3. Fill in the chart:
Fill in all cells chart[i][i+1], then chart[i][i+2], …, 
until you reach chart[1][n] (the top right corner of the chart)
– To fill chart[i][j], consider all binary splits w(i)…w(k)|w(k+1)…w(j)

– If the grammar has a rule X → YZ,  chart[i][k] contains a Y 
and chart[k+1][j] contains a Z, add an X to chart[i][j] with two 
backpointers to the Y in chart[i][k]  and the Z in chart[k+1][j] 

4. Extract the parse trees from the S in chart[1][n].
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CKY: filling the chart
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CKY: filling one cell

61

w
1

... ... wi ... w
n w

1...

 ..
.wi

...

w
n

chart[2][6]:
w1 w2 w3 w4 w5 w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7



CS447 Natural Language Processing

V 
buy

VP 
buy drinks

buy drinks 
with

VP 
buy drinks with 

milk

V, NP  
drinks

drinks with VP, NP 
drinks with milk

P 
with

PP 
with milk

NP 
milk

The CKY parsing algorithm

62

We buy drinks with milk  

S   → NP VP 
VP →  V  NP 
VP → VP PP 
V   → drinks 
NP → NP PP 
NP → we 
NP → drinks 
NP → milk 
PP →  P  NP 
P →  with

Each cell may have one entry 
for each nonterminal



CS447 Natural Language Processing

we we eat we eat sushi we eat sushi 
with

we eat sushi 
with tuna

eat eat sushi eat sushi with eat sushi with 
tuna

sushi sushi with sushi with tuna

with with tuna

tuna

we we eat we eat sushi we eat sushi 
with

we eat sushi 
with tuna

V 
eat

VP 
eat sushi

eat sushi with VP 
eat sushi with tuna

sushi sushi with NP 
sushi with tuna

with PP 
with tuna

tuna

The CKY parsing algorithm
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We eat sushi with tuna  

Each cell contains only a 
single entry for each 

nonterminal.
Each entry may have a list 

of pairs of backpointers.

S   → NP VP 
VP →  V  NP 
VP → VP PP 
V   → eat 
NP → NP PP 
NP → we 
NP → sushi 
NP → tuna 
PP →  P  NP 
P →  with
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What are the terminals in NLP?
Are the “terminals”: words or POS tags?  

For toy examples (e.g. on slides), it’s typically the words

With POS-tagged input, we may either treat the POS tags as 
the terminals, or we assume that the unary rules in our 
grammar are of the form
     POS-tag → word
(so POS tags are the only nonterminals that can be rewritten 
as words; some people call POS tags “preterminals”)
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Additional unary rules
In practice, we may allow other unary rules, e.g.     
     NP → Noun    
(where Noun is also a nonterminal)

In that case, we apply all unary rules to the entries in 
chart[i][j]  after we’ve checked all binary splits  
(chart[i][k], chart[k+1][j])

Unary rules are fine as long as there are no “loops” 
that could lead to an infinite chain of unary 
productions, e.g.:  

 X → Y   and  Y → X   
 or: X → Y   and  Y → Z  and Z → X 
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CKY so far…
Each entry in a cell chart[i][j] is associated with a 
nonterminal X.
 
If there is a rule X → YZ in the grammar, and there is 
a pair of cells chart[i][k], chart[k+1][j] with a Y in 
chart[i][k] and a Z in chart[k+1][j], 
we can add an entry X to cell chart[i][j], and associate 
one pair of backpointers with the X in cell chart[i][k]  

Each entry might have multiple pairs of backpointers.
When we extract the parse trees at the end,  
we can get all possible trees.
We will need probabilities to find the single best tree!
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Exercise: CKY parser
I eat sushi with chopsticks with you
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S ⟶ NP VP
NP ⟶ NP PP
NP ⟶ sushi
NP ⟶ I
NP ⟶ chopsticks
NP ⟶ you
VP ⟶ VP PP
VP ⟶ Verb NP
Verb ⟶ eat
PP ⟶ Prep NP
Prep ⟶ with
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How do you count the number of parse 
trees for a sentence?

1. For each pair of backpointers  
(e.g.VP →  V  NP): multiply #trees of children  

trees(VPVP →  V  NP) =  trees(V) × trees(NP)  

2. For each list of pairs of backpointers  
(e.g.VP →  V  NP and VP →  VP  PP): sum #trees 
trees(VP) =  trees(VPVP→V  NP) + trees(VPVP→VP PP)
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Cocke Kasami Younger (1)
w1 ... ... wi ... wn

w1

...

 ...

wi

...

wn

initChart(n): 
   for i = 1...n:  
      initCell(i,i) 
initCell(i,i):  
   for c in lex(word[i]):  
       addToCell(cell[i][i], c, null, null) 
addToCell(Parent,cell,Left, Right)  
    if (cell.hasEntry(Parent)):  
        P = cell.getEntry(Parent)  
       P.addBackpointers(Left, Right)  
 else cell.addEntry(Parent, Left, Right)
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ckyParse(n):  
   initChart(n) 
   fillChart(n)

fillChart(n):  
   for span = 1...n-1: 
        for i = 1...n-span:  
              fillCell(i,i+span)  

fillCell(i,j):  
   for k = i..j-1:  
      combineCells(i, k, j)  

combineCells(i,k,j):  
   for Y in cell[i][k]:  
      for Z in cell[k +1][j]:  
          for X in Nonterminals:  
               if X →Y Z in Rules:  
                    addToCell(cell[i][j],X, Y, Z) 

w1 ... ... wi ... wn

w1

...

Y X wj

Z ...

...

wn



CS447: Natural Language Processing (J. Hockenmaier)

Today’s key concepts
Natural language syntax

Constituents
Dependencies
Context-free grammar
Arguments and modifiers
Recursion in natural language
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Today’s reading
Textbook:

Jurafsky and Martin, Chapter 12, sections 1-7
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