
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 17:
Formal Grammars
of English

CS447: Natural Language Processing (J. Hockenmaier)

Previous key concepts
NLP tasks dealing with words...
-POS-tagging, morphological analysis 

… require finite-state representations,
-Finite-State Automata and Finite-State Transducers 

… the corresponding probabilistic models,
-Probabilistic FSAs and Hidden Markov Models
-Estimation: relative frequency estimation, EM algorithm 

… and appropriate search algorithms
-Dynamic programming: Forward, Viterbi, Forward-Backward

2

CS447: Natural Language Processing (J. Hockenmaier)

The next key concepts
NLP tasks dealing with sentences...
-Syntactic parsing and semantic analysis 

… require (at least) context-free representations,
-Context-free grammars, unification grammars 

… the corresponding probabilistic models,
-Probabilistic Context-Free Grammars, Loglinear models
-Estimation: Relative Frequency estimation, EM algorithm, etc. 

… and appropriate search algorithms
-Dynamic programming: chart parsing, inside-outside
algorithm

3

CS447: Natural Language Processing (J. Hockenmaier)

Search  
Algorithm
(e.g Viterbi)

Dealing with ambiguity

Structural  
Representation

(e.g FSA)

Scoring
Function

(Probability model,  
e.g HMM)

4

CS447: Natural Language Processing (J. Hockenmaier)

Today’s lecture
Introduction to natural language syntax (‘grammar’): 

Constituency and dependencies
Context-free Grammars
Dependency Grammars
A simple CFG for English

5

CS447: Natural Language Processing (J. Hockenmaier)

What is grammar?

6

No, not
really, not in

this class

CS447: Natural Language Processing (J. Hockenmaier)

What is grammar?
Grammar formalisms
(= linguists’ programming languages)

A precise way to define and describe  
the structure of sentences.
(N.B.: There are many different formalisms out there, which each define their
own data structures and operations)

Specific grammars
(= linguists’ programs)

Implementations (in a particular formalism) for a particular
language (English, Chinese,....)

7

CS447: Natural Language Processing (J. Hockenmaier)

Can we define a program that
generates all English sentences?

The number of sentences is infinite.
But we need our program to be finite.

8

CS447: Natural Language Processing (J. Hockenmaier)

Overgeneration

Undergeneration

John saw Mary.
I ate sushi with tuna.

I ate the cake that John had  
made for me yesterday

I want you to go there.

John made some cake.

English

Did you go there?

.....

John Mary saw.

 with tuna sushi ate I.

Did you went there?

....

9

CS447: Natural Language Processing (J. Hockenmaier)

Noun
(Subject) Verb

(Head)
Noun

(Object)

I eat sushi.

Basic sentence structure

10

CS447: Natural Language Processing (J. Hockenmaier)

A finite-state-automaton (FSA)

Noun
(Subject)

Noun
(Object)Verb (Head)

11

CS447: Natural Language Processing (J. Hockenmaier)

A Hidden Markov Model (HMM)

Noun
(Subject)

Noun
(Object)Verb (Head)

I, you, eat, drink sushi, ...

12

CS447: Natural Language Processing (J. Hockenmaier)

Words take arguments
I eat sushi. ✔
I eat sushi you. ???
I sleep sushi ???
I give sushi ???
I drink sushi ?

Subcategorization  
(purely syntactic: what set of arguments do words take?)
Intransitive verbs (sleep) take only a subject.
Transitive verbs (eat) take also one (direct) object.
Ditransitive verbs (give) take also one (indirect) object.

Selectional preferences  
(semantic: what types of arguments do words tend to take) 
The object of eat should be edible.

13

CS447: Natural Language Processing (J. Hockenmaier)

A better FSA

Noun
(Subject)

Noun
(Object)

Transitive
Verb (Head)

Intransitive
Verb (Head)

14

CS447: Natural Language Processing (J. Hockenmaier)

Language is recursive

the ball
the big ball

the big, red ball
the big, red, heavy ball

....

Adjectives can modify nouns.
The number of modifiers (aka adjuncts)  
a word can have is (in theory) unlimited.

15

CS447: Natural Language Processing (J. Hockenmaier)

Another FSA

Determiner Noun

Adjective

16

CS447: Natural Language Processing (J. Hockenmaier)

Recursion can be
more complex

the ball
the ball in the garden

the ball in the garden behind the house
the ball in the garden behind the house next to the school

....

17

CS447: Natural Language Processing (J. Hockenmaier)

Yet another FSA

Det Noun

Adj

Preposition

So, why do we need anything  
beyond regular (finite-state) grammars?

18

CS447: Natural Language Processing (J. Hockenmaier)

What does this mean?

the ball in the garden behind the house

19

There is an
attachment
ambiguity

CS447: Natural Language Processing (J. Hockenmaier)

FSAs do not generate  
hierarchical structure

20

Det Noun

Adj

Preposition

CS447: Natural Language Processing (J. Hockenmaier)

Strong vs. weak
generative capacity
Formal language theory:
-defines language as string sets
- is only concerned with generating these strings 
(weak generative capacity) 

Formal/Theoretical syntax (in linguistics):
-defines language as sets of strings with (hidden) structure
- is also concerned with generating the right structures 
(strong generative capacity)

21

CS447: Natural Language Processing (J. Hockenmaier)

 [] [] [] I eat sushi with tuna

What is the structure
 of a sentence?
Sentence structure is hierarchical:

A sentence consists of words (I, eat, sushi, with, tuna) 
…which form phrases or constituents: “sushi with tuna” 

Sentence structure defines dependencies  
between words or phrases:

22

 []

CS447: Natural Language Processing (J. Hockenmaier)

Two ways to represent structure

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

Phrase structure trees Dependency trees

23

eat sushi with tuna

eat sushi with chopsticks

CS447: Natural Language Processing (J. Hockenmaier)

Structure (syntax) corresponds
to meaning (semantics)

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

24

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks

eat sushi with tuna

CS447: Natural Language Processing (J. Hockenmaier)

This is a dependency tree:

I eat sushi.

sbj obj

eat

sushiI

sbj obj

25

CS447: Natural Language Processing (J. Hockenmaier)

Dependency grammar
DGs describe the structure of sentences as a  
directed acyclic graph.

The nodes of the graph are the words
The edges of the graph are the dependencies.

Typically, the graph is assumed to be a tree.

Note: the relationship between DG and CFGs:
If a CFG phrase structure tree is translated into DG,
the resulting dependency graph has no crossing edges.

26

CS447: Natural Language Processing (J. Hockenmaier)

Context-free grammars
A CFG is a 4-tuple 〈N, Σ, R, S〉 consisting of:

A set of nonterminals N  
(e.g. N = {S, NP, VP, PP, Noun, Verb,}) 

A set of terminals Σ 
(e.g. Σ = {I, you, he, eat, drink, sushi, ball, }) 

A set of rules R  
R ⊆ {A → β with left-hand-side (LHS) A ∈ N  
 and right-hand-side (RHS) β ∈ (N ∪ Σ)* }
 
A start symbol S ∈ N

27

CS447: Natural Language Processing (J. Hockenmaier)

Context-free grammars (CFGs)
define phrase structure trees

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

28

DT → {the, a}
N → {ball, garden, house, sushi }
P → {in, behind, with}
NP → DT N
NP → NP PP
PP → P NP

N: noun
P: preposition
NP: “noun phrase”
PP: “prepositional phrase”

CS447: Natural Language Processing (J. Hockenmaier)

Context-free grammars (CFGs)
capture recursion
Language has simple and complex constituents

(simple: “the garden”, complex: “the garden behind the house”)
Complex constituents behave just like simple ones.

(“behind the house” can always be omitted) 

CFGs define nonterminal categories (e.g. NP) 
to capture equivalence classes of constituents.
 
Recursive rules (where the same nonterminal
appears on both sides) generate recursive structures

NP → DT N (Simple, i.e. non-recursive NP)
NP → NP PP (Complex, i.e. recursive, NP)

29

CS447: Natural Language Processing (J. Hockenmaier)

CFGs and center embedding
The mouse ate the corn.

The mouse that the snake ate ate the corn.
The mouse that the snake that the hawk ate ate ate the corn.

....

30

CS447: Natural Language Processing (J. Hockenmaier)

CFGs and center embedding
Formally, these sentences are all grammatical,  
because they can be generated by the CFG  
that is required for the first sentence:

S → NP VP
NP → NP RelClause
RelClause → that NP ate

Problem: CFGs are not able to capture bounded recursion. 
(bounded = “only embed one or two relative clauses”).  
 
To deal with this discrepancy between what the model predicts
to be grammatical, and what humans consider grammatical,
linguists distinguish between a speaker’s competence
(grammatical knowledge) and performance (processing and
memory limitations)

31

CS447: Natural Language Processing (J. Hockenmaier)

CFGs are equivalent to Pushdown
automata (PDAs)
PDAs are FSAs with an additional stack:
Emit a symbol and push/pop a symbol from the stack 
 
 
 
 
 
 

This is equivalent to the following CFG:
S → a X b S → a b 
X → a X b X → a b

Push ‘x’  
on stack.
Emit ‘a’

32

Pop ‘x’
from stack.

Emit ‘b’

Accept if
stack empty.

CS447: Natural Language Processing (J. Hockenmaier)

Action Stack String
1. Push x on stack. Emit a. x a
2. Push x on stack. Emit a. xx aa
3. Push x on stack. Emit a. xxx aaa
4. Push x on stack. Emit a. xxxx aaaa
5. Pop x off stack. Emit b. xxx aaaab
6. Pop x off stack. Emit b. xx aaaabb
7. Pop x off stack. Emit b. x aaaabbb
8. Pop x off stack. Emit b aaaabbbb

Generating anbn

33

CS447: Natural Language Processing (J. Hockenmaier)

Defining grammars
for natural language

34

CS447: Natural Language Processing (J. Hockenmaier)

Constituents:
Heads and dependents
There are different kinds of constituents:

Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly

Every phrase has a head:
Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly
The other parts are its dependents.
Dependents are either arguments or adjuncts

35

CS447: Natural Language Processing (J. Hockenmaier)

Is string α a constituent?

Substitution test:
Can α be replaced by a single word?  
He talks [there].

Movement test:
Can α be moved around in the sentence?  
[In class], he talks.

Answer test:
Can α be the answer to a question?  
Where does he talk? - [In class].

He talks [in class].

36

CS447: Natural Language Processing (J. Hockenmaier)

Arguments are obligatory
Words subcategorize for specific sets of arguments:

Transitive verbs (sbj + obj): [John] likes [Mary] 

All arguments have to be present:
*[John] likes. *likes [Mary].

No argument can be occupied multiple times:
*[John] [Peter] likes [Ann] [Mary]. 

Words can have multiple subcat frames:
Transitive eat (sbj + obj): [John] eats [sushi].
Intransitive eat (sbj): [John] eats. 

37

CS447: Natural Language Processing (J. Hockenmaier)

Adjuncts are optional
Adverbs, PPs and adjectives can be adjuncts:

Adverbs: John runs [fast].  
 a [very] heavy book.  
PPs: John runs [in the gym].
 the book [on the table]
Adjectives: a [heavy] book 

There can be an arbitrary number of adjuncts:
John saw Mary.
John saw Mary [yesterday].
John saw Mary [yesterday] [in town]
John saw Mary [yesterday] [in town] [during lunch]
[Perhaps] John saw Mary [yesterday] [in town] [during lunch]

38

CS447 Natural Language Processing

Heads, Arguments and Adjuncts in CFGs

Heads:  
We assume that each RHS has one head, e.g.

VP → Verb NP (Verbs are heads of VPs)
NP → Det Noun (Nouns are heads of NPs)
S → NP VP (VPs are heads of sentences)
Exception: Coordination, lists: VP → VP conj VP

Arguments:
The head has a different category from the parent:

VP → Verb NP (the NP is an argument of the verb)
Adjuncts:
The head has the same category as the parent:

VP → VP PP (the PP is an adjunct)

39

CS447: Natural Language Processing (J. Hockenmaier)

A context-free grammar
for a fragment of
English

40

CS447: Natural Language Processing (J. Hockenmaier)

Noun phrases (NPs)
Simple NPs:
[He] sleeps. (pronoun)
[John] sleeps. (proper name)
[A student] sleeps. (determiner + noun)

Complex NPs:
[A tall student] sleeps. (det + adj + noun)
[The student in the back] sleeps. (NP + PP)
[The student who likes MTV] sleeps. (NP + Relative Clause)

41

CS447: Natural Language Processing (J. Hockenmaier)

The NP fragment
NP → Pronoun
NP → ProperName  
NP → Det Noun

Det → {a, the, every}
Pronoun → {he, she,...}
ProperName → {John, Mary,...}
Noun → AdjP Noun  
Noun → N
NP → NP PP
NP → NP RelClause

42

CS447: Natural Language Processing (J. Hockenmaier)

Adjective phrases (AdjP) and
prepositional phrases (PP)
AdjP → Adj
AdjP → Adv AdjP
Adj → {big, small, red,...}
Adv → {very, really,...} 

PP → P NP
P → {with, in, above,...} 

43

CS447: Natural Language Processing (J. Hockenmaier)

The verb phrase (VP)
He [eats].
He [eats sushi].
He [gives John sushi].
He [eats sushi with chopsticks].

VP → V
VP → V NP
VP → V NP PP
VP → VP PP

V → {eats, sleeps gives,...}

44

CS447: Natural Language Processing (J. Hockenmaier)

Capturing subcategorization
He [eats]. ✔
He [eats sushi]. ✔
He [gives John sushi]. ✔
He [eats sushi with chopsticks]. ✔
*He [eats John sushi]. ???

VP → Vintrans
VP → Vtrans NP
VP → Vditrans NP NP
VP → VP PP
Vintrans → {eats, sleeps} 
Vtrans → {eats} 
Vtrans → {gives} 

45

CS447: Natural Language Processing (J. Hockenmaier)

Sentences

[He eats sushi].
[Sometimes, he eats sushi].
[In Japan, he eats sushi].
 
S → NP VP
S → AdvP S
S → PP S

He says [he eats sushi].
VP → Vcomp S
Vcomp → {says, think, believes}

46

CS447: Natural Language Processing (J. Hockenmaier)

Sentences redefined

[He eats sushi]. ✔
*[I eats sushi]. ???
*[They eats sushi]. ???

S → NP3sg VP3sg
S → NP1sg VP1sg
S → NP3pl VP3pl

We need features to capture agreement:
(number, person, case,…)

47

CS447: Natural Language Processing (J. Hockenmaier)

Complex VPs
In English, simple tenses have separate forms:
 
present tense: the girl eats sushi
simple past tense: the girl ate sushi  

Complex tenses, progressive aspect and passive
voice consist of auxiliaries and participles:
 
past perfect tense: the girl has eaten sushi
future perfect: the girl will have eaten sushi
passive voice: the sushi was eaten by the girl
progressive: the girl is/was/will be eating sushi

48

CS447: Natural Language Processing (J. Hockenmaier)

VPs redefined
He [has [eaten sushi]].
The sushi [was [eaten by him]]. 

VP → Vhave VPpastPart
VP → Vbe VPpass
VPpastPart → VpastPart NP
VPpass → VpastPart PP
Vhave→ {has} 
VpastPart→ {eaten, seen}

We need more nonterminals (e.g. VPpastpart).
N.B.: We call VPpastPart, VPpass, etc. `untensed’ VPs

49

CS447: Natural Language Processing (J. Hockenmaier)

Coordination
[He eats sushi] and [she drinks tea]
[John] and [Mary] eat sushi.
He [eats sushi] and [drinks tea]
 
S → S conj S
NP → NP conj NP
VP → VP conj VP

He says [he eats sushi].
VP → Vcomp S
Vcomp → {says, think, believes}

50

CS447: Natural Language Processing (J. Hockenmaier)

Relative clauses
Relative clauses modify a noun phrase:
the girl [that eats sushi]

Relative clauses lack a noun phrase, which is
understood to be filled by the NP they modify:
‘the girl that eats sushi’ implies ‘the girl eats sushi’ 

There are subject and object relative clauses:
subject: ‘the girl that eats sushi’
object: ‘the sushi that the girl eats’

51

CS447: Natural Language Processing (J. Hockenmaier)

Yes/No questions
Yes/no questions consist of an auxiliary, a subject
and an (untensed) verb phrase: 

does she eat sushi?
have you eaten sushi?  

YesNoQ → Aux NP VPinf
YesNoQ → Aux NP VPpastPart

52

CS447: Natural Language Processing (J. Hockenmaier)

Wh-questions
Subject wh-questions consist of an wh-word, an
auxiliary and an (untensed) verb phrase: 

Who has eaten the sushi?  

Object wh-questions consist of an wh-word, an
auxiliary, an NP and an (untensed) verb phrase: 

What does Mary eat?  
 
 

53

CS447: Natural Language Processing (J. Hockenmaier)

The CKY parsing
algorithm

54

CS447 Natural Language Processing

CKY chart parsing algorithm
Bottom-up parsing:

start with the words
Dynamic programming:

save the results in a table/chart
re-use these results in finding larger constituents 

Complexity: O(n3|G|)
n: length of string, |G|: size of grammar)

Presumes a CFG in Chomsky Normal Form:
Rules are all either A → B C or A → a  
(with A,B,C nonterminals and a a terminal)

55

CS447 Natural Language Processing

The right-hand side of a standard CFG can have an arbitrary
number of symbols (terminals and nonterminals): 

 VP → ADV eat NP 

A CFG in Chomsky Normal Form (CNF) allows only two
kinds of right-hand sides:

– Two nonterminals: VP → ADV VP
– One terminal: VP → eat  

Any CFG can be transformed into an equivalent CNF:
VP → ADVP VP1

VP1 → VP2 NP
VP2 → eat

Chomsky Normal Form

56

VP
ADV NPeat

VP2

VP
ADV

NP
eat

VP1VP
ADV NPeat

CS447 Natural Language Processing

A note about ε-productions
Formally, context-free grammars are allowed to have  
empty productions (ε = the empty string): 
VP → V NP NP → DT Noun NP → ε 

These can always be eliminated without changing the
language generated by the grammar:
VP → V NP NP → DT Noun NP → ε
becomes 
VP → V NP VP → V ε NP → DT Noun
which in turn becomes 
VP → V NP VP → V NP → DT Noun 

We will assume that our grammars don’t have ε-productions

57

CS447 Natural Language Processing

we eat sushiwe eat

eat sushi

sushi

eat

we

S → NP VP
VP → V NP
V → eat
NP → we
NP → sushi

We eat sushi

The CKY parsing algorithm

SNP

V

NP

VP

58

To recover the
parse tree, each

entry needs  
pairs of

backpointers.

CS447 Natural Language Processing

CKY algorithm
1. Create the chart

(an n×n upper triangular matrix for an sentence with n words)
– Each cell chart[i][j] corresponds to the substring w(i)…w(j)

2. Initialize the chart (fill the diagonal cells chart[i][i]):
For all rules X → w(i), add an entry X to chart[i][i]

3. Fill in the chart:
Fill in all cells chart[i][i+1], then chart[i][i+2], …, 
until you reach chart[1][n] (the top right corner of the chart)
– To fill chart[i][j], consider all binary splits w(i)…w(k)|w(k+1)…w(j)

– If the grammar has a rule X → YZ, chart[i][k] contains a Y
and chart[k+1][j] contains a Z, add an X to chart[i][j] with two
backpointers to the Y in chart[i][k] and the Z in chart[k+1][j]

4. Extract the parse trees from the S in chart[1][n].

59

CS447 Natural Language Processing

CKY: filling the chart

60

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

CS447 Natural Language Processing

CKY: filling one cell

61

w
1

... ... wi ... w
n w

1...

 ..
.wi

...

w
n

chart[2][6]:
w1 w2 w3 w4 w5 w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

w
1

... ... wi ... w
n w

1...

 ..
.wi

...
w
n

chart[2][6]:
w1 w2w3w4w5w6 w7

CS447 Natural Language Processing

V
buy

VP
buy drinks

buy drinks
with

VP
buy drinks with

milk

V, NP  
drinks

drinks with VP, NP
drinks with milk

P
with

PP
with milk

NP
milk

The CKY parsing algorithm

62

We buy drinks with milk

S → NP VP
VP → V NP
VP → VP PP
V → drinks
NP → NP PP
NP → we
NP → drinks
NP → milk
PP → P NP
P → with

Each cell may have one entry
for each nonterminal

CS447 Natural Language Processing

we we eat we eat sushi we eat sushi
with

we eat sushi
with tuna

eat eat sushi eat sushi with eat sushi with
tuna

sushi sushi with sushi with tuna

with with tuna

tuna

we we eat we eat sushi we eat sushi
with

we eat sushi
with tuna

V
eat

VP
eat sushi

eat sushi with VP
eat sushi with tuna

sushi sushi with NP
sushi with tuna

with PP
with tuna

tuna

The CKY parsing algorithm

63

We eat sushi with tuna

Each cell contains only a
single entry for each

nonterminal.
Each entry may have a list

of pairs of backpointers.

S → NP VP
VP → V NP
VP → VP PP
V → eat
NP → NP PP
NP → we
NP → sushi
NP → tuna
PP → P NP
P → with

CS447: Natural Language Processing (J. Hockenmaier)

What are the terminals in NLP?
Are the “terminals”: words or POS tags?  

For toy examples (e.g. on slides), it’s typically the words

With POS-tagged input, we may either treat the POS tags as
the terminals, or we assume that the unary rules in our
grammar are of the form
 POS-tag → word
(so POS tags are the only nonterminals that can be rewritten
as words; some people call POS tags “preterminals”)

64

CS447: Natural Language Processing (J. Hockenmaier)

Additional unary rules
In practice, we may allow other unary rules, e.g.
 NP → Noun
(where Noun is also a nonterminal)

In that case, we apply all unary rules to the entries in
chart[i][j] after we’ve checked all binary splits  
(chart[i][k], chart[k+1][j])

Unary rules are fine as long as there are no “loops”
that could lead to an infinite chain of unary
productions, e.g.:

 X → Y and Y → X
 or: X → Y and Y → Z and Z → X

65

CS447 Natural Language Processing

CKY so far…
Each entry in a cell chart[i][j] is associated with a
nonterminal X.
 
If there is a rule X → YZ in the grammar, and there is
a pair of cells chart[i][k], chart[k+1][j] with a Y in
chart[i][k] and a Z in chart[k+1][j],
we can add an entry X to cell chart[i][j], and associate
one pair of backpointers with the X in cell chart[i][k]  

Each entry might have multiple pairs of backpointers.
When we extract the parse trees at the end,  
we can get all possible trees.
We will need probabilities to find the single best tree!

66

CS447 Natural Language Processing

Exercise: CKY parser
I eat sushi with chopsticks with you

67

S ⟶ NP VP
NP ⟶ NP PP
NP ⟶ sushi
NP ⟶ I
NP ⟶ chopsticks
NP ⟶ you
VP ⟶ VP PP
VP ⟶ Verb NP
Verb ⟶ eat
PP ⟶ Prep NP
Prep ⟶ with

CS447 Natural Language Processing 68

How do you count the number of parse
trees for a sentence?

1. For each pair of backpointers  
(e.g.VP → V NP): multiply #trees of children  

trees(VPVP → V NP) = trees(V) × trees(NP)  

2. For each list of pairs of backpointers  
(e.g.VP → V NP and VP → VP PP): sum #trees 
trees(VP) = trees(VPVP→V NP) + trees(VPVP→VP PP)

CS447 Natural Language Processing

Cocke Kasami Younger (1)
w1 wi ... wn

w1

...

 ...

wi

...

wn

initChart(n): 
 for i = 1...n:  
 initCell(i,i)
initCell(i,i):  
 for c in lex(word[i]):  
 addToCell(cell[i][i], c, null, null)
addToCell(Parent,cell,Left, Right)  
 if (cell.hasEntry(Parent)):  
 P = cell.getEntry(Parent)  
 P.addBackpointers(Left, Right)  
 else cell.addEntry(Parent, Left, Right)

69

w1 wi ... wn

w1

...

 ...

wi

...

wn

ckyParse(n):  
 initChart(n)
 fillChart(n)

fillChart(n):  
 for span = 1...n-1: 
 for i = 1...n-span:  
 fillCell(i,i+span)  

fillCell(i,j):  
 for k = i..j-1:  
 combineCells(i, k, j)  

combineCells(i,k,j):  
 for Y in cell[i][k]:  
 for Z in cell[k +1][j]:  
 for X in Nonterminals:  
 if X →Y Z in Rules:  
 addToCell(cell[i][j],X, Y, Z)

w1 wi ... wn

w1

...

Y X wj

Z ...

...

wn

CS447: Natural Language Processing (J. Hockenmaier)

Today’s key concepts
Natural language syntax

Constituents
Dependencies
Context-free grammar
Arguments and modifiers
Recursion in natural language

70

CS447: Natural Language Processing (J. Hockenmaier)

Today’s reading
Textbook:

Jurafsky and Martin, Chapter 12, sections 1-7

71

