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Midterm results out on Gradescope

24.00

Please check your exam!

20.00

— We will accept regrade
requests until next Friday. o
— Most people did really well

10.00

(overall Max: 24, Median 20)

6.00

but many of the top students

2.00

are grad students
We will set 23 points=100%

(Gradescope’s percentages assume 25 points = 100%)

It’s difficult to translate exam percentages to letter grades because:
... letter grades will depend on overall performance (incl. MPs)
... we use the undergrads as yardstick, but we don’t have that

information in Gradescope.

Come and talk to us if you’re worried about your results
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MPs and Autograder

Apologies for the confusion and frustration.
Many thanks for your feedback (and patience)!

This is a learning experience for us as well
— we’re redesiging several MPs
AND putting them on Gradescope for the first time.

The hope was that the feedback that the autograder
provides would be helpful to you...
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Great talk at 2pm today
— No office hours today

Distinguished Lecture In Computer Science

Explainable AI: Making Visual Question Answering
Systems more Transparent

A Distinguished Lecture Sponsored by the Department of Computer Science
Guest Speaker: Raymond Mooney, Professor, University of Texas at Austin
Date/Time: Friday, Oct. 18, 2019, 2:00 pm

Location: 2405 Thomas M. Siebel Center for Computer Science

Abstract: Artificial Intelligence systems’ ability to explain their conclusions is
crucial to their utility and trustworthiness. Deep neural networks have enabled significant progress
on many challenging problems such as visual question answering (VQA), the task of answering
natural language questions about images. However, most of them are opaque black boxes with
limited explanatory capability. The goal of Explainable Al is to increase the transparency of complex
Al systems such as deep networks. We have developed a novel approach to XAl and used it to build a
high-performing VQA system that can elucidate its answers with multi-modal natural-language and
visual explanations that faithfully reflect important aspects of its underlying reasoning while
capturing the style of comprehensible human explanations. Crowd-sourced human evaluation of
these explanations demonstrate the advantages of our approach.

Bio: Raymond J. Mooney is a Professor in the Department of Computer Science at the University of
Texas at Austin. He received his Ph.D. in 1988 from the University of lllinois at Urbana/Champaign.
He is an author of over 170 published research papers, primarily in the areas of machine learning
and natural language processing. He was the President of the International Machine Learning Society
from 2008-2011, program co-chair for AAAI 2006, general chair for HLT-EMNLP 2005, and co-chair for
ICML 1990. He is a Fellow of AAAI, ACM, and ACL and the recipient of the Classic Paper award from
AAAI-19 and best paper awards from AAAI-96, KDD-04, ICML-05 and ACL-07.

CS447 Natural Language Processing



Back to the matenal...
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Statistical MT with the noisy channel model

Parallel corpora

HE
VI SRR 0 R - ATEIERMGTEL > E A (BRI B R R A k
El

| MOTION: PRESIDENT (in Cantonese): Good
T” morning, Honourable Members. We will now start

the meeting. First of all, the motion on the

Monolinqual corpora

Good morning, Honourable Members. We will now start the
meeting. First of all, the motion on the "Appointment of the

Chief Justice of the Court of Final Appeal of the Hong Kong
Special Administrative ion". Secretary for Justice.

~
Transla}lo/n Model

P.(BBR | morning) l

S~

Language Model

Pim(honorable | good morning)l

~
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President: Good
morning, Honourable
Members.




IBM models

First statistical MT models, based on noisy channel:

Translate from source f to target e
via a translation model P(f | ¢) and a language model P(e)

The translation model goes from target e to source f
via word alignments a: P(f|e)=>Y.P({,a|e)

Original purpose: Word-based translation models
Today: Can be used to obtain word alignments,
which are then used to obtain phrase alignments
for phrase-based translation models

Sequence of 5 translation models

Model 1 is too simple to be used by itself,

but can be trained very easily on parallel data.
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IBM translation models: assumptions

The model “generates” the ‘foreign’ source sentence f
conditioned on the ‘English’ target sentence e
by the following stochastic process:

1. Generate the length of the source f
with probability p = ...

2. Generate the alignment of the source f
to the target e with probability p = ...

3. Generate the words of the source f
with probability p = ...
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Word alignments in the
IBM models
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Word alignment

John loves Mary. ... that John loves Mary.

Jean aime Marie. ... dass John Maria liebt.
John that
loves John
Mary loves
Mary
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Word alignment

no

Mary

dio

una

bofetada

la

bruja

verde

did

not

slap

the

green

witch
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Word alignment

traversé

la

nage

Mary

swam

dCross

the

lake

CS447 Natural Language Processing




Word alignment

Source

traversé le

a la nage

Mary
B swam
O)
E across
=
the
lake

One target word can be aligned to many source words.
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Word alignment

Source

traversé

dCross

the

lake

One target word can be aligned to many source words.
But each source word can only be aligned to one target word.
This allows us to model P(source | target)

CS447 Natural Language Processing
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Word alignment

Source
traversé le a la nage

Mary
= swam
(@)
@ | across
=

the

lake

Some source words may not align to any target words.
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Word alignment

Source

a traversé le lac

Mary

sSwam

Target

dCross

the

lake

Some source words may not align to any target words.
To handle this we assume a NULL word in the target sentence.
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Representing word alignments

1 2 3 4 5 6 7 8
a [traversé| le lac a la nage

o .
1
: -
3 | across
4 the
5 | lake
Position 1 2 3 4 5 6 7 8
Foreign Marie a |traversé| le lac a la nage
Alignment 1 3 3 4 5 0 0 2

Every source word f[i] is aligned to one target word e[j] (incl. NULL).
We represent alignments as a vector a (of the same length as the
source) with a[i] = j
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The IBM alignment models
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The IBM models

Use the noisy channel (Bayes rule) to get the best
(most likely) target translation Surce sentence f:

The translatlon model P(fI e) reqmres allgnments a
a1 wmwarginalize (=sum)
over all aligihments a

TIPS

 , (fj ‘al..jfl..j—l, e,m) |

J/

SRS

1 TV
) Translation ji7

wm = #wards Mrv LLLE'j —

i §i alignment a; of wac:rrci i
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IBM model 1: Generative process

For each target sentence e = ej..e, of length n:

0

1

2

3

4

5

NULL

Mary

swam

dCross

the

lake

1. Choose a length m for the source sentence (e.g m = 8)

| Position

1

2

3

4

5

6

7

8

2. Choose an alignment a = a;...a., for the source sentence
Each aj correspondsto awordeiine:0<a;j<n

Position

1

2

3

4

Alignment

1

3

3

4

3. Translate each target word ¢,; into the source language

Position 1 2 3 5 6 7 8
Alignment 1 3 3 5 0 0 2
Translation | Marie a |[traverseé| le lac a la nage
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Model parameters

Length probability P(m | n):
What'’s the probability of generating a source sentence of

length m given a target sentence of length n?
Count in training data, or use a constant

Alignment probability: P(a | m, n):
Model 1 assumes all alignments have the same probability:
For each position a;...a,, pick one of the n+1 target positions

uniformly at random

Translation probability: P(fj=lac | aj=1, ei= lake):
In Model 1, these are the only parameters we have to learn.
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IBM model 1: detalls

The length probability is constant: Pmle)=¢

The IS uniform
(n = length of target string): P(aile)=1/(n+1)
The translation probability depends only on e
(the corresponding target word): P(fi | eai)
P(f,ale) = Hf’ ajlai.j—1, f1.j-1,m, e)A (fj’al..jfl..j—laeamz
Length |f| j:1 Word ah;lment a; Transl;;ion i
|
= fj|eaj — Translation depends
j= only on the aligned
‘ All alignments have ? m English worad
the same probability € .
(7’L‘|— ]_)m P(fj‘ea/j)

J=1
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Finding the best alignment

How do we find the best alignment between e and £?

a = argmax P(f, ale)

= argmax (n—:l)m HP(fj]eaj)

= argmax H P(fjlea;)

g=1

a; = argmaxP(fjleq,)
a;
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Learning translation probabilities

The only parameters that need to be learned are the
translation probabilities P(f | e)
P(fj = lac | ei= lake)

If the training corpus had word alignments, we could
simply count how often ‘lake’ is aligned to ‘lac’:
P( lac | lake) = count(lac, lake)/ ) w count(w, lake)

But we don’t have gold word alignments.

So, instead of relative frequencies, we have to use
expected relative frequencies:

P( lac | lake) = {count(lac, lake))/ (> count(w, lake))
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Training Model 1 with EM

The only parameters that need to be learned are the
translation probabilities P(f |l e)

We use the EM algorithm to estimate these parameters
from a corpus with S sentence pairs s = ( f©, e®) with
alignments A(f ®, e®)

- Initialization: guess P(f | e)
- Expectation step: compute expected counts

(c(f,e)) =D {c(f ele!), )

seS
- Maximization step: recompute probabilities P(f le)

el e)
PUIE) = 5 e, o

CS447 Natural Language Processing 25




Expectation-Maximization (EM)
1. Initialize a first model, Mo

2. Expectation (E) step:
Go through training data to gather expected counts
(count(lac, lake))

3. Maximization (M) step:
Use expected counts to compute a new model M.+
Pis1( lac | lake) = {count(lac, lake))/ (> w count(w, lake))

4.Check for convergence:
Compute log-likelihood of training data with Mi+
If the difference between new and old log-likelihood

smaller than a threshold, stop. Else go to 2.

CS447 Natural Language Processing 26



_The E-step

c(f,ela,e,f)

How often are f,e aligned in a?

P(a,fle) | P(a,fle)
Pfle) Lo P(@,fle)
P(a,fle) | = Hp(fj|€aj)

J
c(foelfe)) = 3 Hl%g—f—ﬂj c(f,elae. D
acA(f,e) AN

NIRRT A SR T S A A P N TP B A S I TP B S S AP IR TP B e

‘We need to know P(fjleq,) , the probablllty that word £, |
is aligned to word e,; under the alignment a |

" 'CS447 NaturaIQLanguage Processmg e




Other translation models

Model 1 is a very simple (and not very good) translation model.

IBM models 2-5 are more complex. They take into account:
- “fertility”’: the number of foreign words
generated by each target word

-the word order and string position of the aligned words

CS447 Natural Language Processing 28



Phrase-based
translation models



Phrase-based translation models

Assumption: fundamental units of translation are phrases:

i SRR, TE

|

—>
President (in Cantonese): Good morning, Honourable Members.

Phrase-based model of P(F | E):

1. Split target sentence deterministically into phrases ep;...ep
2. Translate each target phrase ep; into source phrase fp;
with translation probability o(fp: |ep;)

3. Reorder foreign phrases with distortion probability
d(ai-bi.1) = claibi-1-1|

a; = start position of source phrase generated by e;

bi.1 = end position of source phrase generated by e;.;

CS447: Natural Language Processing (J. Hockenmaier)
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Phrase-based models of P(f/ e)

Split target sentence e=e¢; , into phrases ep;..epn:
[The green witch] [is] [at home] [this week]

Translate each target phrase ep; into source phrase
fp: with translation probability P(fp:/ep)):
[The green witch] = [die griine Hexe], ...

Arrange the set of source phrases { fp; } to get s
with distortion probability P( fpl{ fp: }):
[Diese Woche] [ist] [die griine Hexe] [zuhause

P(fle = (ep1,....ep) = HP(fpz-!epi)P(fp {fo:})

CS447: Natural Language Processing (J. Hockenmaier) 31



Translation probability P(fp;l ep;)

Phrase translation probabilities can be obtained from

a phrase table:

EP FP count
green witch| grune Hexe
at home Zzuhause 10534
at home daheim 9890
IS ISt 598012
this week | diese Woche

This requires phrase alignment

CS447: Natural Language Processing (J. Hockenmaier)
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Word alignment

Diese | Woche ist die griine

Hexe

zuhause

The

green

witch

at

home

this

week

CS447: Natural Language Processing (J. Hockenmaier)
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Phrase alignment

Diese | Woche

The

green

witch

is

zuhause

at

home

this

week

CS447: Natural Language Processing (J. Hockenmaier)

34



Obtaining phrase alignments

We'll skip over detalils, but here’s the basic idea:

For a given parallel corpus (F-E)
1. Train two word aligners, (F—E and E—F)
2. Take the intersection of these alignments
to get a high-precision word alignment
3. Grow these high-precision alignments
until all words in both sentences are included
In the alignment.

Consider any pair of words in the union of the alignments, and
iIncrementally add them to the existing alignments

4. Consider all phrases that are consistent with
this improved word alignment

CS447: Natural Language Processing (J. Hockenmaier) 35



Decoding
(for phrase-based MT)
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Phrase-based models of P(f/ e)

Split target sentence e=e¢; , into phrases ep;..epn:
[The green witch] [is] [at home] [this week]

Translate each target phrase ep; into source phrase
fp: with translation probability P(fp:/ep)):
[The green witch] = [die griine Hexe], ...

Arrange the set of source phrases { fp; } to get s
with distortion probability P( fpl{ fp: }):
[Diese Woche] [ist] [die griine Hexe] [zuhause

P(fle = (ep1,....ep) = HP(fpz-!epi)P(fp {fo:})
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Translating

How do we translate a foreign sentence (e.g. “Diese
Woche ist die griine Hexe zuhause”) into English?

-We need to find é = argmaxe P(f1 e)P(e)
-There is an exponential number of candidate

translations e

- But we can look up phrase translations e¢p and

P(fplep)in the phrase table:

diese Woche ist die griine Hexe zuhause
this 0.2 [ week 0.7 1s0.8 | the 0.3 |green 0.3| witch 0.5 |home 1.00
these 0.5 the green 0.4  [sorceress 0.6
this week 0.6 green witch 0.7

1s this week 0.4

the green witch 0.7

CS447: Natural Language Processing (J. Hockenmaier)
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Generating a (random) translation

1. Pick the first Target phrase ep: from the candidate list.

P :=

Pryv(<s> ep1)Prrans(fp1| ep1)
E =the, F=<....die...>

2. Pick the next target phrase ep, from the candidate list
P := P x Pru(ep2| ep1)Prrans(fp2 1 ep2)
E = the green witch, F = <....die griine Hexe...>

3. Keep going: pick target phrases ep; until the entire source
sentence is translated

P ‘= P x Pru(epil epi. i) Prians(fpil epi)
= the qreen witch is, F = <....ist die grine Hexe...>
diese Woche k\ (\ die griine Hexe zuhause
this 0.2 week 07 [ 3)is08 the 0.3 green 0.3 witch 0.5 (5 )t home 0.5
these 0.5 the green Q.4 sorceress 0.6
C) this week 0.6 ( 2 ) green witch 0.7
is this week 0.4 the green witch 0.7
CS447: Natural Language Processing (J. Hockenmaier) 39




Finding the best translation

How can we find the best translation efficiently?
There is an exponential number of possible translations.

We will use a heuristic search algorithm

We cannot guarantee to find the best (= highest-scoring)
translation, but we’'re likely to get close.

We will use a “stack-based” decoder
(If you’ve taken Intro to Al: this is A* (*A-star”) search)

We will score partial translations based on how good we

expect the corresponding completed translation to be.

Or, rather: we will score partial translations on how bad we expect the
corresponding complete translation to be.

That is, our scores will be costs (high=bad, low=good)

CS447: Natural Language Processing (J. Hockenmaier) 40



Scoring partial translations

Assign expected costs to partial translations (£, F):
expected_cost(E,F) = current_cost(E,F)
+ future_cost(E,F)
The current cost is based on the score
of the partial translation (£, F)
e.q. current_cost(E,F) = 1ogP(E)P(F' | E)

The (estimated) future cost is allower bound|on the
actual cost of completing the partial translation (E, F):
true_cost(E,F) (= current_cost(E.F) + actual_future_cost(E F))

> expected_cost(EF) (= current_cost(EF) + est_future_cost(E.F))

because actual_future_cost(EF) = est_future_cost(E F)
(The estimated future cost ignores the distortion cost)

CS447: Natural Language Processing (J. Hockenmaier) 41



Stack-based decoding

Maintain a priority queue (='stack’) of partial translations
(hypotheses) with their expected costs.

Each element on the stack is open (we haven’t yet pursued this
hypothesis) or closed (we have already pursued this hypothesis)

At each step:

-Expand the best open hypothesis (the open translation with
the lowest expected cost) in all possible ways.

- These new translations become new open elements
on the stack.

- Close the best open hypothesis.

Additional Pruning (n-best / beam search):
Only keep the n best open hypotheses around

CS447: Natural Language Processing (J. Hockenmaier) 42



Stack-based decoding

E: these
F: d******
Cost: 852

e

F- ***d***
F- *kkkkkk

' Cost: 500
Cost: 999 § —

E: at home

F: ******Z

/\

E: current translation
F: which words in F
have we covered?

\—
CS447: Natural Language Processing (J. Hockenmaier)
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Stack-based decoding

E:

F n kkkkkkk

Cost: 999

7

We’re done with this
node now (all
continuations have a
lower cost)

N

E: these
F: d******
Cost: 852

E: the
F: ***d***

Cost: 500

—

E: at home

F: ******Z

Cost: 993

CS447: Natural Language Processing (J. Hockenmaier)
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Stack-based decoding

E: these
F: d******
Cost: 852

E: the
F: ***d***

Cost: 500

E:

F n kkkkkkk

Cost: 999

E: at home

F: ******Z

Cost: 993

r

Expand one of these
new yellow nodes
next

CS447: Natural Language Processing (J. Hockenmaier)



Stack-based decoding

E:

F n kkkkkkk

Cost: 999

r

Expand the yellow
node with the lowest
cost

E: these
F: d******
Cost: 852

\—

E: the
F: ***d***

Cost: 500

- at home

F: ******Z

Cost: 993

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

|E: the at home
F: ***d*H*
Cost: 983

CS447: Natural Language Processing (J. Hockenmaier)
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Stack-based decoding

E: these
F: d******
Cost: 852

E:

F n kkkkkkk

Cost: 999

E: the
F: ***d***

Cost: 500 ‘

r

_~

Expand the next node
with the lowest cost

\—

E: at br
*Z
ost: 993

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

|E: the at home
F: ***d*H*
Cost: 983

CS447: Natural Language Processing (J. Hockenmaier)
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Stack-based decoding

E: these
F: d******
Cost: 852

E: the
F: ***d***

Cost: 500

E:

F n kkkkkkk

Cost: 999

E: the witch
F: ***d*H*
Cost: 700

F: ******Z

Cost: 993

E: at home

E: the green witch
F: ***dgH*
Cost: 560

|E: the at home
F: ***d*H*
Cost: 983

CS447: Natural Language Processing (J. Hockenmaier)
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Stack-based decoding

Cost: 852

L

Cost: 700

Cost: 999

Cost: 500

We always expand the
best (lowest-cost)
node, even if it’s not the
last one introduced

Cost:
| 732

Cost: 560

Cost:
705

Cost: 983

CS447: Natural Language Processing (J. Hockenmaier)
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Summary:
Machine Translation

CS498JH: Introduction to NLP
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Machine translation models
Current MT models all rely on statistics.

Many current models do estimate P(E | F) directly,
but may use features based on language models
(capturing P(E)) and IBM-style translation models
(P(F | E)) internally.

There are a number of syntax-based models,

e.g. using synchronous context-free grammars, which
consist of pairs of rules for the two languages in which
each RHS NT in language A corresponds to a RHS

NT in language B:
Language A: XP = YP ZP Language B: XP = ZP YP

CS447: Natural Language Processing (J. Hockenmaier) 51



Outlook: Neural MT

Neural network-based approaches:
Recurrent neural networks (RNN) can model sequences
(e.g. strings, sentences, etc.)

Use one RNN (the encoder) to process
the input in the source language

Pass its output to another RNN (the decoder)
to generate the output in the target language

See e.g. http://www.tensorflow.org/tutorials/seqg2seq/
iIndex.md#sequence-to-sequence_basics

CS447: Natural Language Processing (J. Hockenmaier)
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Today’s key concepts

Why is machine translation hard?
Linguistic divergences: morphology, syntax, semantics

Different approaches to machine translation:
Vauquois triangle

Statistical MT: Noisy Channel, IBM Model 1 (more on this next
time)
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Great talk at 2pm today
— No office hours today

Distinguished Lecture In Computer Science

Explainable AI: Making Visual Question Answering
Systems more Transparent

A Distinguished Lecture Sponsored by the Department of Computer Science
Guest Speaker: Raymond Mooney, Professor, University of Texas at Austin
Date/Time: Friday, Oct. 18, 2019, 2:00 pm

Location: 2405 Thomas M. Siebel Center for Computer Science

Abstract: Artificial Intelligence systems’ ability to explain their conclusions is
crucial to their utility and trustworthiness. Deep neural networks have enabled significant progress
on many challenging problems such as visual question answering (VQA), the task of answering
natural language questions about images. However, most of them are opaque black boxes with
limited explanatory capability. The goal of Explainable Al is to increase the transparency of complex
Al systems such as deep networks. We have developed a novel approach to XAl and used it to build a
high-performing VQA system that can elucidate its answers with multi-modal natural-language and
visual explanations that faithfully reflect important aspects of its underlying reasoning while
capturing the style of comprehensible human explanations. Crowd-sourced human evaluation of
these explanations demonstrate the advantages of our approach.

Bio: Raymond J. Mooney is a Professor in the Department of Computer Science at the University of
Texas at Austin. He received his Ph.D. in 1988 from the University of lllinois at Urbana/Champaign.
He is an author of over 170 published research papers, primarily in the areas of machine learning
and natural language processing. He was the President of the International Machine Learning Society
from 2008-2011, program co-chair for AAAI 2006, general chair for HLT-EMNLP 2005, and co-chair for
ICML 1990. He is a Fellow of AAAI, ACM, and ACL and the recipient of the Classic Paper award from
AAAI-19 and best paper awards from AAAI-96, KDD-04, ICML-05 and ACL-07.
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