
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447 

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 16:
Statistical 
Machine Translation 



CS447 Natural Language Processing

Midterm results out on Gradescope
Please check your exam!
— We will accept regrade  
     requests until next Friday.
— Most people did really well  
    (overall Max: 24, Median 20) 
    but many of the top students 
    are grad students
We will set 23 points=100%  
(Gradescope’s percentages assume 25 points = 100%) 

It’s difficult to translate exam percentages to letter grades because: 
… letter grades will depend on overall performance (incl. MPs)
… we use the undergrads as yardstick, but we don’t have that 
information in Gradescope. 
Come and talk to us if you’re worried about your results
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MPs and Autograder
Apologies for the confusion and frustration. 
Many thanks for your feedback (and patience)! 

This is a learning experience for us as well  
— we’re redesiging several MPs  
AND putting them on Gradescope for the first time. 

The hope was that the feedback that the autograder 
provides would be helpful to you… 
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Great talk at 2pm today  
— No office hours today
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Back to the material… 
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Statistical MT with the noisy channel model
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Translation Model
Ptr(早晨 | morning)

Language Model
Plm(honorable | good morning)

MOTION: PRESIDENT (in Cantonese): Good 
morning, Honourable Members. We will now start 
the meeting. First of all, the motion on the 

Parallel corpora Monolingual corpora
Good morning, Honourable Members. We will now start the 
meeting. First of all, the motion on the "Appointment of the 
Chief Justice of the Court of Final Appeal of the Hong Kong 
Special Administrative Region". Secretary for Justice.

Good morning, Honourable Members. We will now start the 
meeting. First of all, the motion on the "Appointment of the 
Chief Justice of the Court of Final Appeal of the Hong Kong 
Special Administrative Region". Secretary for Justice.

Good morning, Honourable Members. We will now start the 
meeting. First of all, the motion on the "Appointment of the 
Chief Justice of the Court of Final Appeal of the Hong Kong 
Special Administrative Region". Secretary for Justice.

Decoding algorithm
Input

主席：各位議
員，早晨。

Translation
President:  Good 
morning, Honourable 
Members.
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IBM models
First statistical MT models, based on noisy channel:

Translate from source f to target e  
via a translation model P(f | e) and a language model P(e) 
The translation model goes from target e to source f  
via word alignments a:  P(f | e) = ∑a P(f, a | e)  

Original purpose: Word-based translation models
Today: Can be used to obtain word alignments,  
which are then used to obtain phrase alignments  
for phrase-based translation models  

Sequence of 5 translation models
Model 1 is too simple to be used by itself,  
but can be trained very easily on parallel data.
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IBM translation models: assumptions
The model “generates” the ‘foreign’ source sentence f 
conditioned on the ‘English’ target sentence e  
by the following stochastic process:

1. Generate the length of the source f  
    with probability p = ... 
2. Generate the alignment of the source f  
    to the target e with probability p = ...
3. Generate the words of the source f  
    with probability p = ...
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Word alignments in the 
IBM models

9
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Word alignment

10

Jean aime Marie

John

loves

Mary

dass John Maria liebt

that

John

loves

Mary

John loves Mary.           … that John loves Mary. 

Jean aime Marie.         … dass John Maria liebt.
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Word alignment
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Maria no dió una bofetada a la bruja verde

Mary

did

not

slap

the

green

witch
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Word alignment
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Marie a traversé le lac à la nage

Mary

swam

across

the

lake
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Word alignment

13

Ta
rg

et

Source
Marie a traversé le lac à la nage

Mary

swam

across

the

lake

One target word can be aligned to many source words.
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Word alignment

14

Ta
rg

et

Source
Marie a traversé le lac à la nage

Mary

swam

across

the

lake

One target word can be aligned to many source words.
But each source word can only be aligned to one target word.
This allows us to model P(source | target)
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Word alignment

15

Some source words may not align to any target words.

Ta
rg

et

Source
Marie a traversé le lac à la nage

Mary

swam

across

the

lake
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Some source words may not align to any target words.

Word alignment

16

Ta
rg

et

Source 
Marie a traversé le lac à la nage

NULL

Mary

swam

across

the

lake

To handle this we assume a NULL word in the target sentence.
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Representing word alignments
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1 2 3 4 5 6 7 8
Marie a traversé le lac à la nage

0 NULL
1 Mary
2 swam
3 across
4 the
5 lake

Position 1 2 3 4 5 6 7 8
Foreign Marie a traversé le lac à la nage

Alignment 1 3 3 4 5 0 0 2

Every source word f[i] is aligned to one target word e[j] (incl. NULL).  
We represent alignments as a vector a (of the same length as the 
source) with a[i] = j
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The IBM alignment models

18
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Use the noisy channel (Bayes rule) to get the best 
(most likely) target translation e for source sentence f: 
 

The translation model P(f | e) requires alignments a 
 
 

Generate f and the alignment a with P(f, a | e): 
 

m = #words  
in fj

marginalize (=sum)  
over all alignments a

The IBM models

19

noisy channelarg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

arg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

probability of  
alignment aj

probability 
of word fj

arg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj
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Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2

0 1 2 3 4 5
NULL Mary swam across the lake

IBM model 1: Generative process
For each target sentence e = e1..en of length n:  
 
 

1. Choose a length m  for the source sentence (e.g m = 8)
 
2. Choose an alignment a = a1...am for the source sentence
Each aj corresponds to a word ei  in e: 0 ≤ aj ≤ n 
 
 

3. Translate each target word eaj into the source language

20

0 1 2 3 4 5
NULL Mary swam across the lake

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2
Translation Marie a traversé le lac à la nage

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2
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Model parameters
Length probability P(m | n): 

What’s the probability of generating a source sentence of 
length m given a target sentence of length n?  
Count in training data, or use a constant

Alignment probability:  P(a  | m, n):
Model 1 assumes all alignments have the same probability: 
For each position a1...am, pick one of the n+1 target positions 
uniformly at random

Translation probability:  P(fj = lac  | aj = i, ei = lake):
In Model 1, these are the only parameters we have to learn.

21
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IBM model 1: details
The length probability is constant:         P(m | e) = ε
The alignment probability is uniform 
(n = length of target string):             P(ai | e) = 1/(n+1)
The translation probability depends only on eai  
(the corresponding target word):              P(fi | eai)
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P (f ,a|e) = P (m|e)⌅ ⇤⇥ ⇧
Length: |f |=m

m�

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⌅ ⇤⇥ ⇧

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⌅ ⇤⇥ ⇧

Translation fj

= �
m�

j=1

1
n + 1

P (fj |eaj )

=
�

(n + 1)m

m�

j=1

P (fj |eaj )
All alignments have 
the same probability 

Translation depends 
only on the aligned 

English word
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Finding the best alignment
How do we find the best alignment between e and f?
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â = arg max
a

P (f ,a|e)

= arg max
a

�

(n + 1)m

m�

j=1

P (fj |eaj )

= arg max
a

m�

j=1

P (fj |eaj )

âj = arg max
aj

P (fj |eaj )
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Learning translation probabilities
The only parameters that need to be learned are the 
translation probabilities P(f | e)  

P(fj = lac  | ei = lake)

If the training corpus had word alignments, we could 
simply count how often  ‘lake’ is aligned to ‘lac’:  

P( lac | lake) = count(lac, lake) ⁄ ∑w count(w, lake) 

But we don’t have gold word alignments.
So, instead of relative frequencies, we have to use 
expected relative frequencies: 

P( lac | lake) = 〈count(lac, lake)〉 ⁄ 〈∑w count(w, lake)〉 

24
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Training Model 1 with EM
The only parameters that need to be learned are the 
translation probabilities P(f | e)   

We use the EM algorithm to estimate these parameters 
from a corpus with S sentence pairs s = 〈 f (s), e(s)〉 with 
alignments A(f (s), e(s))  

- Initialization: guess P(f | e)
-Expectation step: compute expected counts  
 

-Maximization step: recompute probabilities P(f |e)

25

P̂ (f |e) =
�c(f, e)⇥�
f ��c(f �, e)⇥

�c(f, e)⇥ =
�

s�S

�c(f, e|e(s), f (s))⇥
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Expectation-Maximization (EM)
1. Initialize a first model, M0  

2. Expectation (E) step:  
Go through training data to gather expected counts 
〈count(lac, lake)〉 

3. Maximization (M) step:  
Use expected counts to compute a new model Mi+1 
Pi+1( lac | lake) = 〈count(lac, lake)〉 ⁄ 〈∑w count(w, lake)〉 

4.Check for convergence: 
Compute log-likelihood of training data with Mi+1  
If the difference between new and old log-likelihood 
smaller than a threshold, stop. Else go to 2.

26
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The E-step
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Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj )

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj )�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj )

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj )�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj )

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj )�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj )

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj )�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj )

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj )�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

We need to know                   , the probability that word fj 
is aligned to word eaj under the alignment a

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj )

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj )�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)
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Other translation models
Model 1 is a very simple (and not very good) translation model.
 
IBM models 2-5 are more complex. They take into account:
-“fertility”: the number of foreign words 
generated by each target word
- the word order and string position of the aligned words

28
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Phrase-based  
translation models

29
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Phrase-based translation models
Assumption:  fundamental units of translation are phrases: 
 
 
 

Phrase-based model of P(F | E):
1. Split target sentence deterministically into phrases ep1...epn 
2. Translate each target phrase epi  into source phrase fpi   
with translation probability φ(fpi |epi) 
3. Reorder foreign phrases with distortion probability  
d(ai-bi-1) = c|ai-bi-1 -1| 
ai   = start position of source phrase generated by ei  
bi-1 = end position of source phrase generated by ei-1

30

主席：各位議員，早晨。 

President (in Cantonese):  Good morning, Honourable Members. 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Phrase-based models of P( f | e)
Split target sentence e=e1..n into phrases ep1..epN: 
[The green witch]  [is]  [at home]  [this week]  

Translate each target phrase epi into source phrase 
fpi with translation probability P(fpi |epi): 
 [The green witch] = [die grüne Hexe], ... 

 Arrange the set of source phrases { fpi } to get s  
 with distortion probability  P( fp |{ fpi }):  
  [Diese Woche]  [ist]  [die grüne Hexe]  [zuhause]  
 

31

P (f |e = ⇤ep1, ..., epl) =
�

i

P (fpi|epi)P (fp|{fpi})
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Translation probability P(fpi | epi)
Phrase translation probabilities can be obtained from 
a phrase table: 
 
 
 
 
 
 
 
 

This requires phrase alignment 

32

EP FP count
green witch grüne Hexe …

at home zuhause 10534
at home daheim 9890

is ist 598012
this week diese Woche ….
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Word alignment

33

Diese Woche ist die grüne Hexe zuhause

The

green

witch

is

at

home

this

week
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 Phrase alignment

34

Diese Woche ist die grüne Hexe zuhause

The

green

witch

is

at

home

this

week
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Obtaining phrase alignments
We’ll skip over details, but here’s the basic idea:  

For a given parallel corpus (F-E)
1. Train two word aligners, (F→E and E→F)
2. Take the intersection of these alignments  
    to get a high-precision word alignment
3. Grow these high-precision alignments  
    until all words in both sentences are included  
    in the alignment. 

Consider any pair of words in the union of the alignments, and 
incrementally add them to the existing alignments

4. Consider all phrases that are consistent with  
    this improved word alignment

35
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Decoding  
(for phrase-based MT)

36
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Phrase-based models of P( f | e)
Split target sentence e=e1..n into phrases ep1..epN: 
[The green witch]  [is]  [at home]  [this week]  

Translate each target phrase epi into source phrase 
fpi with translation probability P(fpi |epi): 
 [The green witch] = [die grüne Hexe], ... 

 Arrange the set of source phrases { fpi } to get s  
 with distortion probability  P( fp |{ fpi }):  
  [Diese Woche]  [ist]  [die grüne Hexe]  [zuhause]  
 

37

P (f |e = ⇤ep1, ..., epl) =
�

i

P (fpi|epi)P (fp|{fpi})
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Translating
How do we translate a foreign sentence (e.g. “Diese 
Woche ist die grüne Hexe zuhause” ) into English?
-We need to find  ê = argmaxe P(f | e)P(e)
-There is an exponential number of candidate 
translations e
-But we can look up phrase translations ep and  

P( fp | ep ) in the phrase table:  

38

diese Woche ist die grüne Hexe zuhause
this 0.2 week 0.7 is 0.8 the 0.3 green 0.3 witch 0.5 at home 1.00.5

these 0.5 the green 0.4 sorceress 0.6
this week 0.6 green witch 0.7

is this week 0.4 the green witch 0.7
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Generating a (random) translation
1. Pick the first Target phrase ep1 from the candidate list. 

                P :=  PLM(<s> ep1 )PTrans(fp1 | ep1 )
                E = the, F= <….die…>

2. Pick the next target phrase ep2 from the candidate list
                 P :=  P × PLM(ep2 | ep1)PTrans(fp2 | ep2 ) 
                 E = the green witch, F =  <….die grüne Hexe...>
3. Keep going: pick target phrases epi until the entire source 
sentence is translated
                  P :=  P × PLM(epi | ep1…i-1)PTrans(fpi | epi )
                 E = the green witch is, F = <….ist die grüne Hexe...> 

39

diese Woche ist die grüne Hexe zuhause
this 0.2 week 0.7 is 0.8 the 0.3 green 0.3 witch 0.5 at home 0.5

these 0.5 the green 0.4 sorceress 0.6
this week 0.6   green witch 0.7

is this week 0.4 the green witch 0.7

1

4 2

3 5
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Finding the best translation
How can we find the best translation efficiently? 

There is an exponential number of possible translations. 

We will use a heuristic search algorithm
We cannot guarantee to find the best (= highest-scoring) 
translation, but we’re likely to get close.

We will use a “stack-based” decoder
(If you’ve taken Intro to AI: this is A* (“A-star”) search)
We will score partial translations based on how good we 
expect the corresponding completed translation to be.
Or, rather: we will score partial translations on how bad we expect the 
corresponding complete translation to be.  
That is, our scores will be costs (high=bad, low=good)

40
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Scoring partial translations
Assign expected costs to partial translations (E, F):

expected_cost(E,F) = current_cost(E,F)  
                                   + future_cost(E,F)

The current cost is based on the score  
of the partial translation (E, F)
  e.g. current_cost(E,F) = logP(E)P(F | E)
The (estimated) future cost is a lower bound on the 
actual cost of completing the partial translation (E, F):

true_cost(E,F)  (= current_cost(E,F) + actual_future_cost(E,F))  
≥ expected_cost(E,F) (= current_cost(E,F) + est_future_cost(E,F))

because actual_future_cost(E,F) ≥ est_future_cost(E,F)
(The estimated future cost ignores the distortion cost)

41
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Stack-based decoding
Maintain a priority queue (=’stack’) of partial translations 
(hypotheses) with their expected costs.
Each element on the stack is open (we haven’t yet pursued this 
hypothesis) or closed (we have already pursued this hypothesis) 

At each step:
-Expand the best open hypothesis (the open translation with 
the lowest expected cost) in all possible ways. 
-These new translations become new open elements  
on the stack.
-Close the best open hypothesis. 

Additional Pruning (n-best / beam search):  
Only keep the n best open hypotheses around

42
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E:
F: *******
Cost: 999

Stack-based decoding

43

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: current translation 
F: which words in F                  
F: have we covered?
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E:
F: *******
Cost: 999

Stack-based decoding

44

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E:
F: *******
Cost: 999

We’re done with this 
node now (all 
continuations have a 
lower cost)
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E:
F: *******
Cost: 999

Stack-based decoding
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E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E:
F: *******
Cost: 999

Expand one of these 
new yellow nodes 
next
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E:
F: *******
Cost: 999

Stack-based decoding
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E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E:
F: *******
Cost: 999

E: the at home
F: ***d*H*
Cost: 983

E: the
F: ***d***
Cost: 500

Expand the yellow 
node with the lowest 
cost
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E:
F: *******
Cost: 999

Stack-based decoding
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E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E: the at home
F: ***d*H*
Cost: 983

E:
F: *******
Cost: 999

E: the
F: ***d***
Cost: 500

E: the green witch
F: ***dgH*
Cost: 560

Expand the next node  
with the lowest cost
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E:
F: *******
Cost: 999

Stack-based decoding
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E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E: the at home
F: ***d*H*
Cost: 983

E:
F: *******
Cost: 999

E: the
F: ***d***
Cost: 500

E: the green witch
F: ***dgH*
Cost: 560
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E:
F: *******
Cost: 999

Stack-based decoding
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Cost: 852

E: the
F: ***d***
Cost: 500

Cost: 993

...

...

Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

Cost: 983

 
Cost: 999

Cost: 500 Cost: 560

Cost: 
732

Cost: 
705

Cost: 
800

We always expand the 
best (lowest-cost) 

node, even if it’s not the 
last one introduced
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Summary:
Machine Translation
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Machine translation models
Current MT models all rely on statistics.
 
Many current models do estimate P(E | F) directly,  
but may use features based on language models 
(capturing P(E)) and IBM-style translation models 
(P(F | E)) internally.

There are a number of syntax-based models,  
e.g. using synchronous context-free grammars, which 
consist of pairs of rules for the two languages in which 
each RHS NT in language A corresponds to a RHS 
NT in language B:

  Language A: XP → YP ZP   Language B: XP → ZP YP
51
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Outlook: Neural MT
Neural network-based approaches:

Recurrent neural networks (RNN) can model sequences  
(e.g. strings, sentences, etc.)
Use one RNN (the encoder) to process  
the input in the source language
Pass its output to another RNN (the decoder)  
to generate  the output in the target language
 
See e.g. http://www.tensorflow.org/tutorials/seq2seq/
index.md#sequence-to-sequence_basics
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Today’s key concepts
Why is machine translation hard?

Linguistic divergences: morphology, syntax, semantics

Different approaches to machine translation:
Vauquois triangle
Statistical MT: Noisy Channel, IBM Model 1 (more on this next 
time)

53
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Great talk at 2pm today  
— No office hours today
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