
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 16:
Statistical
Machine Translation

CS447 Natural Language Processing

Midterm results out on Gradescope
Please check your exam!
— We will accept regrade  
 requests until next Friday.
— Most people did really well  
 (overall Max: 24, Median 20) 
 but many of the top students 
 are grad students
We will set 23 points=100%  
(Gradescope’s percentages assume 25 points = 100%) 

It’s difficult to translate exam percentages to letter grades because:
… letter grades will depend on overall performance (incl. MPs)
… we use the undergrads as yardstick, but we don’t have that
information in Gradescope.
Come and talk to us if you’re worried about your results

2

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

CS447 Natural Language Processing

MPs and Autograder
Apologies for the confusion and frustration. 
Many thanks for your feedback (and patience)! 

This is a learning experience for us as well  
— we’re redesiging several MPs  
AND putting them on Gradescope for the first time.

The hope was that the feedback that the autograder
provides would be helpful to you…

3

CS447 Natural Language Processing

Great talk at 2pm today  
— No office hours today

4

 CS447 Natural Language Processing

Back to the material…

5

CS447 Natural Language Processing

Statistical MT with the noisy channel model

6

Translation Model
Ptr(早晨 | morning)

Language Model
Plm(honorable | good morning)

MOTION: PRESIDENT (in Cantonese): Good
morning, Honourable Members. We will now start
the meeting. First of all, the motion on the

Parallel corpora Monolingual corpora
Good morning, Honourable Members. We will now start the
meeting. First of all, the motion on the "Appointment of the
Chief Justice of the Court of Final Appeal of the Hong Kong
Special Administrative Region". Secretary for Justice.

Good morning, Honourable Members. We will now start the
meeting. First of all, the motion on the "Appointment of the
Chief Justice of the Court of Final Appeal of the Hong Kong
Special Administrative Region". Secretary for Justice.

Good morning, Honourable Members. We will now start the
meeting. First of all, the motion on the "Appointment of the
Chief Justice of the Court of Final Appeal of the Hong Kong
Special Administrative Region". Secretary for Justice.

Decoding algorithm
Input

主席：各位議
員，早晨。

Translation
President: Good
morning, Honourable
Members.

 CS447 Natural Language Processing

IBM models
First statistical MT models, based on noisy channel:

Translate from source f to target e  
via a translation model P(f | e) and a language model P(e)
The translation model goes from target e to source f  
via word alignments a: P(f | e) = ∑a P(f, a | e)  

Original purpose: Word-based translation models
Today: Can be used to obtain word alignments,  
which are then used to obtain phrase alignments  
for phrase-based translation models  

Sequence of 5 translation models
Model 1 is too simple to be used by itself,  
but can be trained very easily on parallel data.

7

 CS447 Natural Language Processing

IBM translation models: assumptions
The model “generates” the ‘foreign’ source sentence f
conditioned on the ‘English’ target sentence e  
by the following stochastic process:

1. Generate the length of the source f  
 with probability p = ...
2. Generate the alignment of the source f  
 to the target e with probability p = ...
3. Generate the words of the source f  
 with probability p = ...

8

 CS447 Natural Language Processing

Word alignments in the
IBM models

9

 CS447 Natural Language Processing

Word alignment

10

Jean aime Marie

John

loves

Mary

dass John Maria liebt

that

John

loves

Mary

John loves Mary. … that John loves Mary. 

Jean aime Marie. … dass John Maria liebt.

 CS447 Natural Language Processing

Word alignment

11

Maria no dió una bofetada a la bruja verde

Mary

did

not

slap

the

green

witch

 CS447 Natural Language Processing

Word alignment

12

Marie a traversé le lac à la nage

Mary

swam

across

the

lake

 CS447 Natural Language Processing

Word alignment

13

Ta
rg

et

Source
Marie a traversé le lac à la nage

Mary

swam

across

the

lake

One target word can be aligned to many source words.

 CS447 Natural Language Processing

Word alignment

14

Ta
rg

et

Source
Marie a traversé le lac à la nage

Mary

swam

across

the

lake

One target word can be aligned to many source words.
But each source word can only be aligned to one target word.
This allows us to model P(source | target)

 CS447 Natural Language Processing

Word alignment

15

Some source words may not align to any target words.

Ta
rg

et

Source
Marie a traversé le lac à la nage

Mary

swam

across

the

lake

 CS447 Natural Language Processing

Some source words may not align to any target words.

Word alignment

16

Ta
rg

et

Source
Marie a traversé le lac à la nage

NULL

Mary

swam

across

the

lake

To handle this we assume a NULL word in the target sentence.

 CS447 Natural Language Processing

Representing word alignments

17

1 2 3 4 5 6 7 8
Marie a traversé le lac à la nage

0 NULL
1 Mary
2 swam
3 across
4 the
5 lake

Position 1 2 3 4 5 6 7 8
Foreign Marie a traversé le lac à la nage

Alignment 1 3 3 4 5 0 0 2

Every source word f[i] is aligned to one target word e[j] (incl. NULL).  
We represent alignments as a vector a (of the same length as the
source) with a[i] = j

 CS447 Natural Language Processing

The IBM alignment models

18

 CS447 Natural Language Processing

Use the noisy channel (Bayes rule) to get the best
(most likely) target translation e for source sentence f: 
 

The translation model P(f | e) requires alignments a 
 
 

Generate f and the alignment a with P(f, a | e): 
 

m = #words  
in fj

marginalize (=sum)  
over all alignments a

The IBM models

19

noisy channelarg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

arg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

probability of  
alignment aj

probability 
of word fj

arg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

 CS447 Natural Language Processing

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2

0 1 2 3 4 5
NULL Mary swam across the lake

IBM model 1: Generative process
For each target sentence e = e1..en of length n:  
 
 

1. Choose a length m for the source sentence (e.g m = 8)
 
2. Choose an alignment a = a1...am for the source sentence
Each aj corresponds to a word ei in e: 0 ≤ aj ≤ n 
 
 

3. Translate each target word eaj into the source language

20

0 1 2 3 4 5
NULL Mary swam across the lake

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2
Translation Marie a traversé le lac à la nage

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2

 CS447 Natural Language Processing

Model parameters
Length probability P(m | n):

What’s the probability of generating a source sentence of
length m given a target sentence of length n?  
Count in training data, or use a constant

Alignment probability: P(a | m, n):
Model 1 assumes all alignments have the same probability:
For each position a1...am, pick one of the n+1 target positions
uniformly at random

Translation probability: P(fj = lac | aj = i, ei = lake):
In Model 1, these are the only parameters we have to learn.

21

 CS447 Natural Language Processing

IBM model 1: details
The length probability is constant: P(m | e) = ε
The alignment probability is uniform 
(n = length of target string): P(ai | e) = 1/(n+1)
The translation probability depends only on eai  
(the corresponding target word): P(fi | eai)

22

P (f ,a|e) = P (m|e)⌅ ⇤⇥ ⇧
Length: |f |=m

m�

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⌅ ⇤⇥ ⇧

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⌅ ⇤⇥ ⇧

Translation fj

= �
m�

j=1

1
n + 1

P (fj |eaj)

=
�

(n + 1)m

m�

j=1

P (fj |eaj)
All alignments have
the same probability

Translation depends
only on the aligned

English word

 CS447 Natural Language Processing

Finding the best alignment
How do we find the best alignment between e and f?

23

â = arg max
a

P (f ,a|e)

= arg max
a

�

(n + 1)m

m�

j=1

P (fj |eaj)

= arg max
a

m�

j=1

P (fj |eaj)

âj = arg max
aj

P (fj |eaj)

 CS447 Natural Language Processing

Learning translation probabilities
The only parameters that need to be learned are the
translation probabilities P(f | e)

P(fj = lac | ei = lake)

If the training corpus had word alignments, we could
simply count how often ‘lake’ is aligned to ‘lac’:

P(lac | lake) = count(lac, lake) ⁄ ∑w count(w, lake)

But we don’t have gold word alignments.
So, instead of relative frequencies, we have to use
expected relative frequencies:

P(lac | lake) = 〈count(lac, lake)〉 ⁄ 〈∑w count(w, lake)〉

24

 CS447 Natural Language Processing

Training Model 1 with EM
The only parameters that need to be learned are the
translation probabilities P(f | e)  

We use the EM algorithm to estimate these parameters 
from a corpus with S sentence pairs s = 〈 f (s), e(s)〉 with
alignments A(f (s), e(s))  

- Initialization: guess P(f | e)
-Expectation step: compute expected counts  
 

-Maximization step: recompute probabilities P(f |e)

25

P̂ (f |e) =
�c(f, e)⇥�
f ��c(f �, e)⇥

�c(f, e)⇥ =
�

s�S

�c(f, e|e(s), f (s))⇥

 CS447 Natural Language Processing

Expectation-Maximization (EM)
1. Initialize a first model, M0  

2. Expectation (E) step:  
Go through training data to gather expected counts
〈count(lac, lake)〉

3. Maximization (M) step:  
Use expected counts to compute a new model Mi+1
Pi+1(lac | lake) = 〈count(lac, lake)〉 ⁄ 〈∑w count(w, lake)〉

4.Check for convergence: 
Compute log-likelihood of training data with Mi+1  
If the difference between new and old log-likelihood
smaller than a threshold, stop. Else go to 2.

26

 CS447 Natural Language Processing

The E-step

27

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

We need to know , the probability that word fj
is aligned to word eaj under the alignment a

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

 CS447 Natural Language Processing

Other translation models
Model 1 is a very simple (and not very good) translation model.
 
IBM models 2-5 are more complex. They take into account:
-“fertility”: the number of foreign words 
generated by each target word
- the word order and string position of the aligned words

28

CS447: Natural Language Processing (J. Hockenmaier)

Phrase-based
translation models

29

CS447: Natural Language Processing (J. Hockenmaier)

Phrase-based translation models
Assumption: fundamental units of translation are phrases: 
 
 
 

Phrase-based model of P(F | E):
1. Split target sentence deterministically into phrases ep1...epn
2. Translate each target phrase epi into source phrase fpi  
with translation probability φ(fpi |epi)
3. Reorder foreign phrases with distortion probability  
d(ai-bi-1) = c|ai-bi-1 -1|
ai = start position of source phrase generated by ei
bi-1 = end position of source phrase generated by ei-1

30

主席：各位議員，早晨。 

President (in Cantonese): Good morning, Honourable Members. 

CS447: Natural Language Processing (J. Hockenmaier)

Phrase-based models of P(f | e)
Split target sentence e=e1..n into phrases ep1..epN: 
[The green witch] [is] [at home] [this week]  

Translate each target phrase epi into source phrase
fpi with translation probability P(fpi |epi): 
 [The green witch] = [die grüne Hexe], ... 

 Arrange the set of source phrases { fpi } to get s  
 with distortion probability P(fp |{ fpi }):  
 [Diese Woche] [ist] [die grüne Hexe] [zuhause]  
 

31

P (f |e = ⇤ep1, ..., epl) =
�

i

P (fpi|epi)P (fp|{fpi})

CS447: Natural Language Processing (J. Hockenmaier)

Translation probability P(fpi | epi)
Phrase translation probabilities can be obtained from
a phrase table: 
 
 
 
 
 
 
 
 

This requires phrase alignment

32

EP FP count
green witch grüne Hexe …

at home zuhause 10534
at home daheim 9890

is ist 598012
this week diese Woche ….

CS447: Natural Language Processing (J. Hockenmaier)

Word alignment

33

Diese Woche ist die grüne Hexe zuhause

The

green

witch

is

at

home

this

week

CS447: Natural Language Processing (J. Hockenmaier)

 Phrase alignment

34

Diese Woche ist die grüne Hexe zuhause

The

green

witch

is

at

home

this

week

CS447: Natural Language Processing (J. Hockenmaier)

Obtaining phrase alignments
We’ll skip over details, but here’s the basic idea:  

For a given parallel corpus (F-E)
1. Train two word aligners, (F→E and E→F)
2. Take the intersection of these alignments  
 to get a high-precision word alignment
3. Grow these high-precision alignments  
 until all words in both sentences are included  
 in the alignment.

Consider any pair of words in the union of the alignments, and
incrementally add them to the existing alignments

4. Consider all phrases that are consistent with  
 this improved word alignment

35

CS447: Natural Language Processing (J. Hockenmaier)

Decoding  
(for phrase-based MT)

36

CS447: Natural Language Processing (J. Hockenmaier)

Phrase-based models of P(f | e)
Split target sentence e=e1..n into phrases ep1..epN: 
[The green witch] [is] [at home] [this week]  

Translate each target phrase epi into source phrase
fpi with translation probability P(fpi |epi): 
 [The green witch] = [die grüne Hexe], ... 

 Arrange the set of source phrases { fpi } to get s  
 with distortion probability P(fp |{ fpi }):  
 [Diese Woche] [ist] [die grüne Hexe] [zuhause]  
 

37

P (f |e = ⇤ep1, ..., epl) =
�

i

P (fpi|epi)P (fp|{fpi})

CS447: Natural Language Processing (J. Hockenmaier)

Translating
How do we translate a foreign sentence (e.g. “Diese
Woche ist die grüne Hexe zuhause”) into English?
-We need to find ê = argmaxe P(f | e)P(e)
-There is an exponential number of candidate
translations e
-But we can look up phrase translations ep and  

P(fp | ep) in the phrase table:  

38

diese Woche ist die grüne Hexe zuhause
this 0.2 week 0.7 is 0.8 the 0.3 green 0.3 witch 0.5 at home 1.00.5

these 0.5 the green 0.4 sorceress 0.6
this week 0.6 green witch 0.7

is this week 0.4 the green witch 0.7

CS447: Natural Language Processing (J. Hockenmaier)

Generating a (random) translation
1. Pick the first Target phrase ep1 from the candidate list.

 P := PLM(<s> ep1)PTrans(fp1 | ep1)
 E = the, F= <….die…>

2. Pick the next target phrase ep2 from the candidate list
 P := P × PLM(ep2 | ep1)PTrans(fp2 | ep2)
 E = the green witch, F = <….die grüne Hexe...>
3. Keep going: pick target phrases epi until the entire source
sentence is translated
 P := P × PLM(epi | ep1…i-1)PTrans(fpi | epi)
 E = the green witch is, F = <….ist die grüne Hexe...>

39

diese Woche ist die grüne Hexe zuhause
this 0.2 week 0.7 is 0.8 the 0.3 green 0.3 witch 0.5 at home 0.5

these 0.5 the green 0.4 sorceress 0.6
this week 0.6   green witch 0.7

is this week 0.4 the green witch 0.7

1

4 2

3 5

CS447: Natural Language Processing (J. Hockenmaier)

Finding the best translation
How can we find the best translation efficiently?

There is an exponential number of possible translations. 

We will use a heuristic search algorithm
We cannot guarantee to find the best (= highest-scoring)
translation, but we’re likely to get close.

We will use a “stack-based” decoder
(If you’ve taken Intro to AI: this is A* (“A-star”) search)
We will score partial translations based on how good we
expect the corresponding completed translation to be.
Or, rather: we will score partial translations on how bad we expect the
corresponding complete translation to be.  
That is, our scores will be costs (high=bad, low=good)

40

CS447: Natural Language Processing (J. Hockenmaier)

Scoring partial translations
Assign expected costs to partial translations (E, F):

expected_cost(E,F) = current_cost(E,F)  
 + future_cost(E,F)

The current cost is based on the score  
of the partial translation (E, F)
 e.g. current_cost(E,F) = logP(E)P(F | E)
The (estimated) future cost is a lower bound on the
actual cost of completing the partial translation (E, F):

true_cost(E,F) (= current_cost(E,F) + actual_future_cost(E,F))  
≥ expected_cost(E,F) (= current_cost(E,F) + est_future_cost(E,F))

because actual_future_cost(E,F) ≥ est_future_cost(E,F)
(The estimated future cost ignores the distortion cost)

41

CS447: Natural Language Processing (J. Hockenmaier)

Stack-based decoding
Maintain a priority queue (=’stack’) of partial translations
(hypotheses) with their expected costs.
Each element on the stack is open (we haven’t yet pursued this
hypothesis) or closed (we have already pursued this hypothesis) 

At each step:
-Expand the best open hypothesis (the open translation with
the lowest expected cost) in all possible ways.
-These new translations become new open elements  
on the stack.
-Close the best open hypothesis. 

Additional Pruning (n-best / beam search):  
Only keep the n best open hypotheses around

42

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

43

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: current translation
F: which words in F
F: have we covered?

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

44

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E:
F: *******
Cost: 999

We’re done with this
node now (all
continuations have a
lower cost)

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

45

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E:
F: *******
Cost: 999

Expand one of these
new yellow nodes
next

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

46

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E:
F: *******
Cost: 999

E: the at home
F: ***d*H*
Cost: 983

E: the
F: ***d***
Cost: 500

Expand the yellow
node with the lowest
cost

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

47

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E: the at home
F: ***d*H*
Cost: 983

E:
F: *******
Cost: 999

E: the
F: ***d***
Cost: 500

E: the green witch
F: ***dgH*
Cost: 560

Expand the next node  
with the lowest cost

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

48

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E: the at home
F: ***d*H*
Cost: 983

E:
F: *******
Cost: 999

E: the
F: ***d***
Cost: 500

E: the green witch
F: ***dgH*
Cost: 560

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

49

Cost: 852

E: the
F: ***d***
Cost: 500

Cost: 993

...

...

Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

Cost: 983

 
Cost: 999

Cost: 500 Cost: 560

Cost:
732

Cost:
705

Cost:
800

We always expand the
best (lowest-cost)

node, even if it’s not the
last one introduced

CS498JH: Introduction to NLP

Summary:
Machine Translation

50

CS447: Natural Language Processing (J. Hockenmaier)

Machine translation models
Current MT models all rely on statistics.
 
Many current models do estimate P(E | F) directly,  
but may use features based on language models
(capturing P(E)) and IBM-style translation models
(P(F | E)) internally.

There are a number of syntax-based models,  
e.g. using synchronous context-free grammars, which
consist of pairs of rules for the two languages in which
each RHS NT in language A corresponds to a RHS
NT in language B:

 Language A: XP → YP ZP Language B: XP → ZP YP
51

CS447: Natural Language Processing (J. Hockenmaier)

Outlook: Neural MT
Neural network-based approaches:

Recurrent neural networks (RNN) can model sequences  
(e.g. strings, sentences, etc.)
Use one RNN (the encoder) to process  
the input in the source language
Pass its output to another RNN (the decoder)  
to generate the output in the target language
 
See e.g. http://www.tensorflow.org/tutorials/seq2seq/
index.md#sequence-to-sequence_basics

52

CS447 Natural Language Processing

Today’s key concepts
Why is machine translation hard?

Linguistic divergences: morphology, syntax, semantics

Different approaches to machine translation:
Vauquois triangle
Statistical MT: Noisy Channel, IBM Model 1 (more on this next
time)

53

CS447 Natural Language Processing

Great talk at 2pm today  
— No office hours today

54

