
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 12:
Midterm Review

CS447: Natural Language Processing (J. Hockenmaier)

Topics
— What is NLP and why is NLP hard?
— Finite-State Methods and Morphology
— Language Models
— Classification for NLP
— Neural Nets for NLP
— Vector Semantics and Word Embeddings
— POS Tagging and Sequence Labeling

2

CS447: Natural Language Processing (J. Hockenmaier)

Midterm Exam
When: Friday, October 11, 2019 in class
Where: DCL 1310 (this room)
What: Closed book exam:

- You are not allowed to use any cheat sheets, computers,
calculators, phones etc. 
(you shouldn’t have to anyway)

- Only the material covered in lectures
- Bring a pen (black/blue) or pencil
- Short questions — we expect short answers!
- Tip: If you can’t answer a question, move on to the next one.

You may not be able to complete the whole exam in the time
given — there will be a lot of questions, so first do the ones
you know how to answer!

3

CS447: Natural Language Processing (J. Hockenmaier)

Question types
Define X: 
Provide a mathematical/formal definition of X
Explain X; Explain what X is/does: 
Use plain English to define X and say what X is/does
Compute X: 
Return X; Show the steps required to calculate it
Draw X: 
Draw a figure of X
Show/Prove that X is true/is the case/…: 
This may require a (typically very simple) proof.
Discuss/Argue whether … 
Use your knowledge (of X,Y,Z) to argue your point

4

CS447: Natural Language Processing (J. Hockenmaier)

Basics:  
What is NLP  
and why is it hard?

5

CS447: Natural Language Processing (J. Hockenmaier)

What is NLP and why is it hard?
Describe the NLP pipeline.

Explain why ambiguity is one of the core challenges
of NLP. Give examples.

Explain the challenges that Zipf’s Law poses for NLP.

Describe two different ways for how to represent
words in an NLP system. Discuss their relative
advantages and disadvantages.

6

CS447: Natural Language Processing (J. Hockenmaier)

“I made her duck”
What does this sentence mean?

“duck”: noun or verb?
“make”: “cook X” or “cause X to do Y” ?
“her”: “for her” or “belonging to her” ?  

Language has different kinds of ambiguity, e.g.:
Structural ambiguity

“I eat sushi with tuna” vs. “I eat sushi with chopsticks”
“I saw the man with the telescope on the hill”

Lexical (word sense) ambiguity
“I went to the bank”: financial institution or river bank?

Referential ambiguity
“John saw Jim. He was drinking coffee.”

7

CS447: Natural Language Processing (J. Hockenmaier)

Disambiguation requires  
statistical models
Ambiguity is a core problem for any NLP task
 
Statistical models* are one of the main tools 
to deal with ambiguity.

*more generally: a lot of the models (classifiers, structured prediction models)
you learn about in CS446 (Machine Learning) can be used for this purpose. 
You can learn more about the connection to machine learning in CS546
(Machine learning in Natural Language). 

These models need to be trained (estimated, learned) 
before they can be used (tested).

We will see lots of examples in this class  
(CS446 is NOT a prerequisite for CS447)

8

CS447: Natural Language Processing (J. Hockenmaier)

“I made her duck cassoulet”
(Cassoulet = a French bean casserole)

The second major problem in NLP is coverage:
We will always encounter unfamiliar words  
and constructions. 

Our models need to be able to deal with this.

This means that our models need to be able  
to generalize from what they have been trained on  
to what they will be used on.

9

CS447: Natural Language Processing (J. Hockenmaier)

Summary: The NLP Pipeline
An NLP system may use some or all  
of the following steps:  

Tokenizer/Segmenter
to identify words and sentences

Morphological analyzer/POS-tagger
to identify the part of speech and structure of words

Word sense disambiguation
to identify the meaning of words

Syntactic/semantic Parser
to obtain the structure and meaning of sentences

Coreference resolution/discourse model
to keep track of the various entities and events mentioned

10

CS447: Natural Language Processing (J. Hockenmaier)

NLP Pipeline: Assumptions
Each step in the NLP pipeline embellishes the input
with explicit information about its linguistic structure

POS tagging: parts of speech of word,
Syntactic parsing: grammatical structure of sentence,…. 

Each step in the NLP pipeline requires its own explicit
(“symbolic”) output representation:

POS tagging requires a POS tag set
(e.g. NN=common noun singular, NNS = common noun plural, …)
Syntactic parsing requires constituent or dependency labels
(e.g. NP = noun phrase, or nsubj = nominal subject) 

These representations should capture linguistically
appropriate generalizations/abstractions

Designing these representations requires linguistic expertise
11

CS447: Natural Language Processing (J. Hockenmaier)

NLP Pipeline: Shortcomings
Each step in the pipeline relies on a learned model
that will return the most likely representations
-This requires a lot of annotated training data for each step
-Annotation is expensive and sometimes difficult  
(people are not 100% accurate)
-These models are never 100% accurate
-Models make more mistakes if their input contains mistakes

How do we know that we have captured the “right”
generalizations when designing representations?
-Some representations are easier to predict than others
-Some representations are more useful for the next steps  
in the pipeline than others
-But we won’t know how easy/useful a representation is until
we have a model that we can plug into a particular pipeline

12

CS447: Natural Language Processing (J. Hockenmaier)

How many words are there?
How large is the vocabulary of English  
(or any other language)?

Vocabulary size = nr of distinct word types  

Google N-gram corpus: 1 trillion tokens,  
13 million word types that appear 40+ times

If you count words in text, you will find that…
…a few words (mostly closed-class) are very frequent  
(the, be, to, of, and, a, in, that,…)
… most words (all open class) are very rare.
… even if you’ve read a lot of text, you will keep finding  
words you haven’t seen before.

13

CS447: Natural Language Processing (J. Hockenmaier)

Zipf’s law: the long tail

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

Fr
eq

ue
nc

y
(lo

g)

Number of words (log)

How many words occur N times?

W
or

d
fre

qu
en

cy
 (l

og
-s

ca
le

)

In natural language:
-A small number of events (e.g. words) occur with high frequency
-A large number of events occur with very low frequency

14

A few words  
are very frequent

English words, sorted by frequency (log-scale)
w1 = the, w2 = to, …., w5346 = computer, ...

Most words  
are very rare

How many words occur once, twice, 100 times, 1000 times?

the r-th most
common word wr
has P(wr) ∝ 1/r

CS447: Natural Language Processing (J. Hockenmaier)

Implications of Zipf’s Law for NLP
The good:

Any text will contain a number of words that are very common.
We have seen these words often enough that we know (almost)
everything about them. These words will help us get at the
structure (and possibly meaning) of this text.

The bad:
Any text will contain a number of words that are rare.
We know something about these words, but haven’t seen them
often enough to know everything about them. They may occur
with a meaning or a part of speech we haven’t seen before.

The ugly:
Any text will contain a number of words that are unknown to us.
We have never seen them before, but we still need to get at the
structure (and meaning) of these texts.

15

CS447: Natural Language Processing (J. Hockenmaier)

Dealing with the bad and the ugly
Our systems need to be able to generalize  
from what they have seen to unseen events.

There are two (complementary) approaches  
to generalization:

— Linguistics provides us with insights about the rules and
structures in language that we can exploit in the (symbolic)
representations we use
 E.g.: a finite set of grammar rules is enough to describe an infinite language  

— Machine Learning/Statistics allows us to learn models
(and/or representations) from real data that often work well
empirically on unseen data
 E.g. most statistical or neural NLP

16

CS447: Natural Language Processing (J. Hockenmaier)

How do we represent words?
Option 1: Words are atomic symbols

Can’t capture syntactic/semantic relations between words 

— Each (surface) word form is its own symbol
— Map different forms of a word to the same symbol
-Lemmatization: map each word to its lemma  
(esp. in English, the lemma is still a word in the language,  
but lemmatized text is no longer grammatical)
-Stemming: remove endings that differ among word forms  
(no guarantee that the resulting symbol is an actual word)
-Normalization: map all variants of the same word (form) to
the same canonical variant (e.g. lowercase everything,
normalize spellings, perhaps spell-check)

17

CS447: Natural Language Processing (J. Hockenmaier)

How do we represent words?
Option 2: Represent the structure of each word

 “books” => “book N pl” (or “book V 3rd sg”)
 
This requires a morphological analyzer (more later today)
The output is often a lemma plus morphological information
This is particularly useful for highly inflected languages  
(less so for English or Chinese)

18

CS447: Natural Language Processing (J. Hockenmaier)

How do we represent unknown words?
Systems that use machine learning may need to have
a unique representation of each word. 

Option 1: the UNK token
Replace all rare words (in your training data)  
with an UNK token (for Unknown word).
Replace all unknown words that you come across after training
(including rare training words) with the same UNK token  

Option 2: substring-based representations
Represent (rare and unknown) words as sequences of
characters or substrings
-Byte Pair Encoding: learn which character sequences are
common in the vocabulary of your language

19

CS447: Natural Language Processing (J. Hockenmaier)

Finite-State Methods
and Morphology

20

CS447: Natural Language Processing (J. Hockenmaier)

Finite-State Methods and Morphology
What is inflectional morphology? Give examples.

Explain how finite-state transducers can be used for
morphological analysis.

Give an example of a language that cannot be
recognized by a finite-state automaton.

21

CS447: Natural Language Processing (J. Hockenmaier)

Inflectional morphology in English
Verbs:
 Infinitive/present tense: walk, go
 3rd person singular present tense (s-form): walks, goes
 Simple past: walked, went
 Past participle (ed-form): walked, gone
 Present participle (ing-form): walking, going  

Nouns:
 Common nouns inflect for number:  
 singular (book) vs. plural (books)
 Personal pronouns inflect for person, number, gender, case:

I saw him; he saw me; you saw her; we saw them; they saw us.

22

CS447: Natural Language Processing (J. Hockenmaier)

Derivational morphology in English
Nominalization:

V + -ation: computerization
V+ -er: killer
Adj + -ness: fuzziness  

Negation:
un-: undo, unseen, ...
mis-: mistake,...
 
Adjectivization:

V+ -able: doable
N + -al: national

23

CS447: Natural Language Processing (J. Hockenmaier)

Morphemes: stems, affixes
 dis-grace-ful-ly
 prefix-stem-suffix-suffix

Many word forms consist of a stem plus a number of
affixes (prefixes or suffixes)

Exceptions: Infixes are inserted inside the stem  
 Circumfixes (German gesehen) surround the stem

Morphemes: the smallest (meaningful/grammatical)
parts of words.

Stems (grace) are often free morphemes.
Free morphemes can occur by themselves as words.
Affixes (dis-, -ful, -ly) are usually bound morphemes.
Bound morphemes have to combine with others to form words.

24

CS447: Natural Language Processing (J. Hockenmaier)

Morphological parsing

 disgracefully
 dis grace ful ly
 prefix stem suffix suffix
 NEG grace+N +ADJ +ADV

25

CS447: Natural Language Processing (J. Hockenmaier)

Morphological generation
We cannot enumerate all possible English words,  
but we would like to capture the rules that define
whether a string could be an English word or not.

That is, we want a procedure that can generate  
(or accept) possible English words…

grace, graceful, gracefully
disgrace, disgraceful, disgracefully,
ungraceful, ungracefully,
undisgraceful, undisgracefully,…

without generating/accepting impossible English words
*gracelyful, *gracefuly, *disungracefully,…

NB: * is linguists’ shorthand for “this is ungrammatical”
26

CS447: Natural Language Processing (J. Hockenmaier)

Finite-state automata
A (deterministic) finite-state automaton (FSA)  
consists of:
-a finite set of states Q = {q0….qN}, including a start state q0  
and one (or more) final (=accepting) states (say, qN)
-a (deterministic) transition function  
δ(q,w) = q’ for q, q’ ∈ Q, w ∈ Σ 

27

final state
(note the  

double line)

q0

q3

q2

q1
q4q4

a
b c

x y

move from state q2  
to state q4

if you read ‘y’

start state

CS447: Natural Language Processing (J. Hockenmaier)

FSAs can recognize (accept) a string, but they don’t
tell us its internal structure. 

We need is a machine that maps (transduces) 
the input string into an output string that encodes  
its structure:

Recognition vs. Analysis

28

c a t sInput
(Surface form)

c a t +N +plOutput 
(Lexical form)

CS447: Natural Language Processing (J. Hockenmaier)

Finite-state transducers
– FSTs define a relation between two regular

languages.
– Each state transition maps (transduces) a

character from the input language to a character (or
a sequence of characters) in the output language  
 

– By using the empty character (ε), characters can
be deleted (x:ε) or inserted(ε:y)  
 

– FSTs can be composed (cascaded), allowing us to
define intermediate representations.

29

x:y

x:ε ε:y

CS447: Natural Language Processing (J. Hockenmaier)

An FST T = Lin ⨉ Lout defines a relation between two
regular languages Lin and Lout: 

Lin = {cat, cats, fox, foxes, ...}  

Lout = {cat+N+sg, cat+N+pl, fox+N+sg, fox+N+pl ...}  

T = { ⟨cat, cat+N+sg⟩,  
 ⟨cats, cat+N+pl⟩, 
 ⟨fox, fox+N+sg⟩,  
 ⟨foxes, fox+N+pl⟩ }

Finite-state transducers

30

CS447: Natural Language Processing (J. Hockenmaier)

FST composition/cascade:

31

CS447: Natural Language Processing (J. Hockenmaier)

Language Models

32

CS447: Natural Language Processing (J. Hockenmaier)

Language Models
What is a language model?

What independence assumptions does an n-gram
language model make?

Describe how to use maximum likelihood estimation
for a bigram n-gram model.

Why is it important to use smoothing for language
models?

33

CS546 Machine Learning in NLP

What is a language model?
Probability distribution over the strings in a language,
typically factored into distributions P(wi | …)  
for each word:

P(w) = P(w1…wn) = ∏i P(wi | w1…wi-1)

N-gram models assume each word depends only
preceding n−1 words:

P(wi | w1…wi-1) =def P(wi | wi−n+1…wi−1)

To handle variable length strings, we assume each string starts
with n−1 start-of-sentence symbols (BOS), or〈S〉 
and ends in a special end-of-sentence symbol (EOS) or〈\S〉

34

CS447: Natural Language Processing (J. Hockenmaier)

Why do we need language models?
Many NLP tasks require natural language output:
-Machine translation: return text in the target language
-Speech recognition: return a transcript of what was spoken
-Natural language generation: return natural language text
-Spell-checking: return corrected spelling of input

Language models define probability distributions  
over (natural language) strings or sentences.
➔ We can use a language model to score possible
output strings so that we can choose the best (i.e.
most likely) one: if PLM(A) > PLM(B), return A, not B

35

CS447: Natural Language Processing (J. Hockenmaier)

A language model over a vocabulary V  
assigns probabilities to strings drawn from V*. 

Recall the chain rule: 
 

An n-gram language model assumes each word  
depends only on the last n−1 words:

P(w(1) . . . w(i)) = P(w(1)) ⋅ P(w(2) |w(1)) ⋅ . . . ⋅ P(w(i) |w(i−1), . . . , w(1))

Pngram(w(1) . . . w(i)) = P(w(1)) ⋅ P(w(2) |w(1)) ⋅ . . . ⋅ P(w(i) |w(i−1), . . . , w(1−(n+1)))

Language modeling with N-grams

36

CS447: Natural Language Processing (J. Hockenmaier)

N-gram models
N-gram models assume each word (event)  
depends only on the previous n−1 words (events):

Such independence assumptions are called  
Markov assumptions (of order n−1).

Unigram model: P(w(1) . . . w(N)) =
N

∏
i=1

P(w(i))

Bigram model: P(w(1) . . . w(N)) =
N

∏
i=1

P(w(i) |w(i−1))

Trigram model: P(w(1) . . . w(N)) =
N

∏
i=1

P(w(i) |w(i−1), w(i−2))

37

CS447: Natural Language Processing (J. Hockenmaier)

Learning (estimating) a language model
Where do we get the parameters of our model 
(its actual probabilities) from?
 P(w(i) = ‘the’ | w(i–1) = ‘on’) = ???
We need (a large amount of) text as training data  
to estimate the parameters of a language model.

The most basic parameter estimation technique: 
relative frequency estimation (= counts)
 P(w(i) = ‘the’ | w(i–1) = ‘on’) = C(‘on the’) / C(‘on’)  
Also called Maximum Likelihood Estimation (MLE)
 
NB: MLE assigns all probability mass to events  
that occur in the training corpus.

38

CS447: Natural Language Processing (J. Hockenmaier)

Add-One (Laplace) Smoothing
A really simple way to do smoothing:  
Increment the actual observed count of every possible
event (e.g. bigram) by a hallucinated count of 1  
(or by a hallucinated count of some k with 0<k<1).

Shakespeare bigram model (roughly):
 0.88 million actual bigram counts
 + 844.xx million hallucinated bigram counts

Oops. Now almost none of the counts in our model
come from actual data. We’re back to word salad.

K needs to be really small. But it turns out that that still doesn’t
work very well.

39

CS447: Natural Language Processing (J. Hockenmaier)

How do n-gram models define P(L)?
An n-gram model defines in terms of the
probability of predicting each word:  

With a fixed vocabulary V, it’s easy to make sure  
is a distribution: and

 
If is a distribution, this model defines  
one distribution (over all strings) for each length N

But the strings of a language L don’t all have the same length
English = {“yes!”, “I agree”, “I see you”, …}

And there is no Nmax that limits how long strings in L can get.

Solution: the EOS (end-of-sentence) token!

Pngram(w(1) . . . w(N))
Pbigram(w(1) . . . w(N)) = ∏

i=1...N

P(w(i) |w(i−1))

P(w(i) |w(i−1))

∑
i=1...|V|

P(wi |wj) = 1 ∀i, j0 ≤ P(wi |wj) ≤ 1

P(w(i) |w(i−1))

40

CS447: Natural Language Processing (J. Hockenmaier)

How do n-gram models define P(L)?
Think of a language model as a stochastic process:
-At each time step, randomly pick one more word.
-Stop generating more words when the word you pick is a special end-

of-sentence (EOS) token.
To be able to pick the EOS token, we have to modify our
training data so that each sentence ends in EOS.

This means our vocabulary is now VEOS = V ∪ {EOS}
We then get an actual language model,  
i.e. a distribution over strings of any length

Technically, this is only true because P(EOS | …) will be high enough that we are always
guaranteed to stop after having generated a finite number of words

Why do we care about having one model for all lengths?
We can now compare the probabilities of strings of different
lengths, because they’re computed by the same distribution.

41

CS447: Natural Language Processing (J. Hockenmaier)

Handling unknown words: UNK
Training:
-Assume a fixed vocabulary (e.g. all words that occur at least
n times in the training corpus)
-Replace all other words in the corpus by a token <UNK>
-Estimate the model on this modified training corpus. 

Testing (e.g to compute probability of a string):
-Replace any words not in the vocabulary by <UNK> 

Refinements:
use different UNK tokens for different types of words
(numbers, etc.).

42

CS447: Natural Language Processing (J. Hockenmaier)

What about the beginning of the sentence?

In a trigram model

only the third term is an actual trigram
probability. What about and ?

If this bothers you:  
Add n–1 beginning-of-sentence (BOS) symbols to
each sentence for an n–gram model:
BOS1 BOS2 Alice was …

Now the unigram and bigram probabilities  
involve only BOS symbols.

P(w(1)w(2)w(3)) = P(w(1))P(w(2) |w(1))P(w(3) |w(2), w(1))
P(w(3) |w(2), w(1))

P(w(1)) P(w(2) |w(1))

43

CS447: Natural Language Processing (J. Hockenmaier)

How do we use language models?
Independently of any application, we can use a
language model as a random sentence generator
(i.e we sample sentences according to their language model
probability)

Systems for applications such as machine translation,
speech recognition, spell-checking, generation, often
produce multiple candidate sentences as output.
-We prefer output sentences SOut that have a higher probability
-We can use a language model P(SOut) to score and rank these
different candidate output sentences, e.g. as follows:

 argmaxSOut P(SOut | Input) = argmaxSOut P(Input | SOut)P(SOut)

44

CS447: Natural Language Processing (J. Hockenmaier)

Intrinsic vs. Extrinsic Evaluation
Perplexity tells us which LM assigns a higher
probability to unseen text 

This doesn’t necessarily tell us which LM is better for
our task (i.e. is better at scoring candidate sentences) 

Task-based evaluation:
-Train model A, plug it into your system for performing task T
-Evaluate performance of system A on task T.
-Train model B, plug it in, evaluate system B on same task T.
-Compare scores of system A and system B on task T.

45

CS447: Natural Language Processing (J. Hockenmaier)

Classification

46

CS447: Natural Language Processing (J. Hockenmaier)

Classification
Define multiclass classification.

Explain why it is important to know how well a
classifier generalizes to unseen data.

Explain how generative models can be used for
classification.

Explain what we mean when we say we use a
Bernoulli model in our Naive Bayes text classifier

Explain why accuracy alone may be misleading as an
evaluation metric for classification tasks

47

CS447: Natural Language Processing (J. Hockenmaier)

Classification tasks

Classification tasks: Map inputs to a fixed set of class labels
Binary classification: each input has exactly one of two classes
Multi-class classification: each input has exactly one of K classes (K > 2)
Multi-label classification: each input has N of K classes (N ≥1, varies per input)

What are “inputs”?  
To talk about machine learning mathematically, we often
assume each input item is represented as a vector x = (x1….xN)

(The number of elements N is fixed, and may be very large) 

In NLP, inputs are documents, sentences, words, …. 
⇒ How do we represent these as vectors?
Later today we’ll assume that each element xi in (x1….xN)  
corresponds to one word type (vi) in the vocabulary V = {v1,…,vN}

— If xi ∈ {0,1}: Does word vi occur in the input document?
— If xi ∈ {0, 1, 2, …}: How often does word vi occur in the input document?

48

CS447: Natural Language Processing (J. Hockenmaier)

Classification as supervised machine learning

Classification tasks: Map inputs to a fixed set of class labels
Underlying assumption: Each input really has one (or N) correct labels 
Corollary: The correct mapping is a function (aka the ‘target function’)

How do we obtain a classifier (model) for a given task?
— If the target function is very simple (and known), implement it directly
— Otherwise, if we have enough correctly labeled data,  
 estimate (aka. learn/train) a classifier based on that labeled data.  

Supervised machine learning:
Given (correctly) labeled training data, obtain a classifier  
that predicts these labels as accurately as possible.

Learning is supervised because the learning algorithm can get feedback
about how accurate its predictions are from the labels in the training data.

49

CS447: Natural Language Processing (J. Hockenmaier)

Probabilistic classifiers
A probabilistic classifier returns the most likely class y for input x:

Naive Bayes uses Bayes Rule:

Naive Bayes models the joint distribution:
Joint models are also called generative models because we can view them  
as stochastic processes that generate (labeled) items:

Sample/pick a label y with P(y), and then an item x with P(x|y)

Logistic Regression models directly 
This is also called a discriminative or conditional model, because it only
models the probability of the class given the input, and not of the raw data itself.

y* = argmaxyP(Y = y |X = x)

y* = argmaxyP(y ∣ x) = argmaxyP(x ∣ y)P(y)
P(x ∣ y) P(y) = P(x, y)

P(y ∣ x)

50

CS447: Natural Language Processing (J. Hockenmaier)

Probabilistic classifiers: Naive Bayes
Return the most likely class y for the input x:

Naive Bayes classifiers use Bayes’ Rule (“the
posterior probability P(A|B) is proportional to prior
(P(A)) times likelihood P(B|A)”)

 [Bayes’ Rule]

 [P(X) doesn’t change argmaxy]

y* = argmaxyP(Y = y |X = x)

P(A |B) =
P(A, B)

P(B)
=

P(B |A)P(A)
P(B)

∝ P(B |A)P(A)

y* = argmaxyP(Y = y |X = x)

= argmaxy
P(X = x |Y = y)P(Y = y)

P(X = x)
= argmaxyP(X = x |Y = y)P(Y = y)

51

CS447: Natural Language Processing (J. Hockenmaier)

The Naive Bayes Classifier
Assign class y* to input x = (x1…xn) if 

 is the prior class probability (estimated as
the fraction of items in the training data with class y)

 is the (class-conditional) likelihood
of the feature xi.

There are different ways to model this probability

y* = argmaxyP(Y = y) ∏
i=1..n

P(Xi = xi |Y = y)

P(Y = y)

P(Xi = xi |Y = y)

52

CS447: Natural Language Processing (J. Hockenmaier)

Modeling P(X = x |Y = y)P(Y = y)
 is the “prior” class probability

We can estimate this as the fraction of documents  
in the training data that have class y:

 is the “likelihood” of the input x
x = (x1….xn) is a vector; each xi ≈ a word in our vocabulary 

Let’s make a (naive) independence assumption:

Now we need to multiply together all

P(Y = y)

̂P(Y = y) =
#documents ⟨xi, yi⟩ ∈ Dtrainwith yi = y

#documents ⟨xi, yi⟩ ∈ Dtrain

P(X = x |Y = y)

P(X = ⟨x1, . . . , xn⟩ |Y = y) := ∏
i=1..n

P(Xi = xi |Y = y)

P(Xi = xi |Y = y)
53

CS447: Natural Language Processing (J. Hockenmaier)

 as BernoulliP(Xi = xi |Y = y)
 is a Bernoulli distribution ()

 is the probability that word vi occurs  
in a document of class y.

 is the probability that word vi does not occur  
in a document of class y

Estimation:  

P(Xi = xi |Y = y) xi ∈ {0,1}
P(Xi = 1 |Y = y)

P(Xi = 0 |Y = y)

̂P(Xi = 1 |Y = y) =
#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y in which xi occurs

#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y

̂P(Xi = 0 |Y = y) =
#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y in which xi does not occur

#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y

54

CS447: Natural Language Processing (J. Hockenmaier)

 as MultinomialP(Xi = xi |Y = y)
 is a Multinomial: ()
 is the probability that word vi occurs with

frequency xi (= 0, 1, 2, …) in a document of class y. 

We can estimate the unigram probability P(vi | Y = y)  
of word vi in all documents of class y as

 
or with add-one smoothing (with N words in vocab V):

P(Xi = xi |Y = y) xi ∈ {0,1,2,...}
P(Xi = xi |Y = y)

̂P(vi |Y = y) =
#vi in all docs ∈ Dtrainof class y

#words in all docs ∈ Dtrainof class y

̂P(vi |Y = y) =
(#vi in all docs ∈ Dtrainof class y) + 1

(#words in all docs ∈ Dtrainof class y) + N

55

CS447: Natural Language Processing (J. Hockenmaier)

Unigram probabilities P(vi | Y = y)
We can estimate the unigram probability P(vi | Y = y)  
of word vi in all documents of class y as 

 
or with add-one smoothing (with N words in vocab V): 

̂P(vi |Y = y) =
#vi in all docs ∈ Dtrainof class y

#words in all docs ∈ Dtrainof class y

̂P(vi |Y = y) =
(#vi in all docs ∈ Dtrainof class y) + 1

(#words in all docs ∈ Dtrainof class y) + N

56

CS447: Natural Language Processing (J. Hockenmaier)

Evaluation setup:
Split data into separate training, (development) and test sets.  
 
 

Better setup: n-fold cross validation:
Split data into n sets of equal size
Run n experiments, using set i to test and remainder to train  
 

This gives average, maximal and minimal accuracies
 
When comparing two classifiers:

Use the same test and training data with the same classes

Evaluating Classifiers

57

D
E
V
TRAINING

T
E
S
T

D
E
V

TRAINING
T
E
S
T

or

CS447: Natural Language Processing (J. Hockenmaier)

Evaluation Metrics
Accuracy: How many documents in the test data  
did you classify correctly?

It’s easy to get high accuracy if one class is very
common (just label everything as that class)

But that would be a pretty useless classifier

58

CS447: Natural Language Processing (J. Hockenmaier)

Precision, recall, f-measure

59

False
Positives 

(FP)

False
Negatives

(FN)

True
Positives 

(TP)

Items labeled X  
in the gold standard  

(‘truth’)
= TP + FN

Items labeled X  
by the system

= TP + FP

Precision: P = TP ∕(TP + FP)
Recall: R = TP ∕(TP + FN)
F-measure: harmonic mean of precision and recall  
 F = (2·P·R)∕(P + R)

CS447: Natural Language Processing (J. Hockenmaier)

Confusion matrices

60

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

CS447: Natural Language Processing (J. Hockenmaier)

Micro-average vs Macro-average

61

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

Macro-average: average the precision over all classes  
 (regardless of how common each class is)
Micro-average: average the precision over all items  
 (regardless of which class they have)

CS447: Natural Language Processing (J. Hockenmaier)

P(Y | X) with Logistic Regression
Task: Model for any input (feature) vector x=(x1,…,xn)
Idea: Learn feature weights w=(w1,…,wn) (and a bias term b) to
capture how important each feature xi is for predicting the class y 

For binary classification (), (standard) logistic
regression uses the sigmoid function:

Parameters to learn: one feature weight vector w and one bias term b
 
For multiclass classification (), multinomial
logistic regression uses the softmax function:

Parameters to learn: one feature weight vector w and one bias term b per class.

P(y |x)

y ∈ {0,1}

P(Y=1 ∣ x) = σ(wx + b) =
1

1 + exp(−(wx + b))

y ∈ {0,1,...,K}

P(Y=yi ∣ x) = softmax(z)i =
exp(zi)

∑K
j=1 exp(zj)

=
exp(−(wix + bi))

∑K
j=1 exp(−(wjx + bj))

62

CS447: Natural Language Processing (J. Hockenmaier)

Using Logistic Regression
How do we create a (binary) logistic regression classifier?
 
1) Design: Decide how to map raw inputs to feature vectors x  
2) Training: Learn parameters w and b on training da  
3) Testing: Use the classifier to classify unseen inputs

Feature Design: from raw inputs to feature vectors x

In a generative model, we have to learn a model for P(x | y).
To guarantee that we get a proper distribution (), we
have to assume that the features (elements of x) are independent
(more precisely, conditionally independent given y),
In a conditional model, we only have to learn P(y | x), not for P(x | y).

Advantage: Because we don’t need a distribution over x, we do not
need to assume that our features x1,…,xn are independent.

∑x P(x ∣ y) = 1

63

CS447: Natural Language Processing (J. Hockenmaier)

Feature Design:  
From raw inputs to feature vectors x
Feature design for generative models (Naive Bayes):

— In a generative model, we have to learn a model for .
— Getting a proper distribution () is difficult 
— NB assumes that the features (elements of x) are independent*  
 and defines via a multinomial or Bernoulli
(*more precisely, conditionally independent given y)

— Different kinds of feature values (boolean, integer, real) require
different kinds of distributions (Bernoulli, multinomial, etc.)

Feature design for conditional models (Logistic Regression):
— In a conditional model, we only have to learn
— It is much easier to get a proper distribution ()
— We don’t need to assume that our features are independent
— Any numerical feature xi can be used to compute

P(x ∣ y)
∑x P(x ∣ y) = 1

P(x ∣ y) = ∏i P(xi ∣ y)

P(xi ∣ y)

P(y ∣ x)
∑y P(y ∣ x) = 1

exp(wjxi)
64

CS447: Natural Language Processing (J. Hockenmaier)

Useful features that are not independent
Different features can overlap in the input

(e.g. we can model both unigrams and bigrams, or overlapping bigrams) 

Features can capture properties of the input
(e.g. whether words are capitalized, in all-caps, contain particular 
[classes of] letters or characters, etc.)
This also makes it easy to use predefined dictionaries of words  
(e.g. for sentiment analysis, or gazetteers for names): 
Is this word “positive” (‘happy’) or “negative” (‘awful’)?
Is this the name of a person (‘Smith’) or city (‘Boston’) [it may be both (‘Paris’)] 

Features can capture combinations of properties
(e.g. whether a word is capitalized and ends in a full stop)

We can use the outputs of other classifiers as features
(e.g. to combine weak [less accurate] classifiers for the same task,  
or to get at complex properties of the input that require a learned classifier)

65

CS447: Natural Language Processing (J. Hockenmaier)

Learning = Optimization = Loss Minimization

Learning = parameter estimation = optimization:
Given a particular class of model (logistic regression, Naive Bayes, …) and data
Dtrain, find the best parameters for this class of model on Dtrain  

If the model is a probabilistic classifier, think of
optimization as Maximum Likelihood Estimation (MLE)

“Best” = return (among all possible parameters for models of this class)
parameters that assign the largest probability to Dtrain

In general (incl. for probabilistic classifiers), think of
optimization as Loss Minimization:

“Best” = return (among all possible parameters for models of this class)
parameters that have the smallest loss on Dtrain

“Loss”: how bad are the predictions of a model?  
 The loss function we use to measure loss depends on the class of model  
 : how bad is it to predict if the correct label is ?L(̂y, y) ̂y y

66

CS447: Natural Language Processing (J. Hockenmaier)

Conditional MLE ⟹ Cross-Entropy Loss
Conditional MLE: Maximize probability of labels in Dtrain

⇒ Maximize for any (xi,1) with a positive label in Dtrain

⇒ Maximize for any (xi,0) with a negative label in Dtrain

Equivalently: Minimize negative log prob. of labels in Dtrain

 
The negative log probability of the correct label is a loss function:

 is largest (+∞) when we assign all probability to the wrong label,
 is smallest (0) when we assign all probability to the correct label.

This negative log likelihood loss is also called cross-entropy loss

(w*, b*) = argmax(w,b) ∏
(xi,yi)∈Dtrain

P(yi ∣ xi)

P(1 ∣ xi)
P(0 ∣ xi)

P(yi ∣ x) = 0 ⇔ − log(P(yi ∣ x)) = +∞ if yi is the correct label for x, this is the worst possible model
P(yi ∣ x) = 1 ⇔ − log(P(yi ∣ x)) = 0 if yi is the correct label for x, this is the best possible model

−log(P(yi ∣ xi))
−log(P(yi ∣ xi))

67

CS447: Natural Language Processing (J. Hockenmaier)

The loss surface

68

Loss

global  
minimum

plateau

local
minimum

Finding the global
minimum in general  
is hard

Parameters

CS447: Natural Language Processing (J. Hockenmaier)

Gradient of the loss

69

Loss

global  
minimum

plateau

local
minimum

Parameters

We don’t even know how this
landscape looks like

CS447: Natural Language Processing (J. Hockenmaier)

Gradient of the loss

70

Loss

global  
minimum

plateau

local
minimum

Parameters

But we can compute the
slope (gradient) at the point
that we’re currently at.

CS447: Natural Language Processing (J. Hockenmaier)

Gradient descent

71

Loss

global  
minimum

plateau

local
minimum

Basic idea:  
Take small local steps
when updating parameters

Parameters

CS447: Natural Language Processing (J. Hockenmaier)

(Stochastic) Gradient Descent
— We want to find parameters that have minimal cost (loss) on
our training data.
— But we don’t know the whole loss surface.
— However, the gradient of the cost (loss) of our current
parameters tells us how the slope of the loss surface  
at the point given by our current parameters
— And then we can take a (small) step in the right (downhill)
direction (to update our parameters)

Gradient descent:  
Compute loss for entire dataset before updating weights 

Stochastic gradient descent:  
Compute loss for one (randomly sampled) training example
before updating weights

72

CS447: Natural Language Processing (J. Hockenmaier)

Neural Nets for NLP

73

CS447: Natural Language Processing (J. Hockenmaier)

Neural Nets for NLP
Explain how to use a feedforward network for
classification.

Explain how to use a feedforward network  
as a neural n-gram language model.

Discuss whether a one-hot encoding of the input is
suitable for neural language models

Explain what a recurrent neural network is

74

CS447: Natural Language Processing (J. Hockenmaier)

What are neural nets?
Simplest variant: single-layer feedforward net

75

Input layer: vector x

Output unit: scalar y

Input layer: vector x

Output layer: vector y

For binary
classification tasks:

Single output unit
Return 1 if y > 0.5
Return 0 otherwise

For multiclass  
classification tasks:

K output units (a vector)
Each output unit  

yi = class i
Return argmaxi(yi)

CS447: Natural Language Processing (J. Hockenmaier)

Multiclass models: softmax(yi)
Multiclass classification = predict one of K classes.

Return the class i with the highest score: argmaxi(yi)

In neural networks, this is typically done by using the softmax
function, which maps real-valued vectors in RN into a distribution
over the N outputs

For a vector z = (z0…zK): P(i) = softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)
This is just logistic regression

76

CS447: Natural Language Processing (J. Hockenmaier)

Single-layer feedforward networks
Single-layer (linear) feedforward network

y = wx + b (binary classification)
w is a weight vector, b is a bias term (a scalar)

This is just a linear classifier (aka Perceptron) 
(the output y is a linear function of the input x)

Single-layer non-linear feedforward networks:
Pass wx + b through a non-linear activation function,
e.g. y = tanh(wx + b)

77

CS546 Machine Learning in NLP

Nonlinear activation functions
Sigmoid (logistic function): σ(x) = 1/(1 + e−x)

Useful for output units (probabilities) [0,1] range
Hyperbolic tangent: tanh(x) = (e2x −1)/(e2x+1)

Useful for internal units: [-1,1] range
Hard tanh (approximates tanh)
 htanh(x) = −1 for x < −1, 1 for x > 1, x otherwise
Rectified Linear Unit: ReLU(x) = max(0, x)

Useful for internal units

78

�� �� '&&%�'038"3% /&63"- /&5803,4
UJNFT UP QSPEVDF FYDFMMFOU SFTVMUT�ŉ ɩF 3F-6 VOJU DMJQT FBDI WBMVF x < 0 BU �� %FTQJUF JUT TJN�
QMJDJUZ
 JU QFSGPSNT XFMM GPS NBOZ UBTLT
 FTQFDJBMMZ XIFO DPNCJOFE XJUI UIF ESPQPVU SFHVMBSJ[BUJPO
UFDIOJRVF 	TFF 4FDUJPO ���
�

3F-6.x/ D NBY.0; x/ D
(

0 x < 0

x PUIFSXJTF: 	���

"T B SVMF PG UIVNC
 CPUI 3F-6 BOE UBOI VOJUT XPSL XFMM
 BOE TJHOJmDBOUMZ PVUQFSGPSN UIF
TJHNPJE� :PV NBZ XBOU UP FYQFSJNFOU XJUI CPUI UBOI BOE 3F-6 BDUJWBUJPOT
 BT FBDI POF NBZ
QFSGPSN CFUUFS JO EJĊFSFOU TFUUJOHT�

'JHVSF ��� TIPXT UIF TIBQFT PG UIF EJĊFSFOU BDUJWBUJPOT GVODUJPOT
 UPHFUIFS XJUI UIF TIBQFT
PG UIFJS EFSJWBUJWFT�

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

!f

!x

!f

!x

!f

!x

!f

!x

'JHVSF ���� "DUJWBUJPO GVODUJPOT 	UPQ
 BOE UIFJS EFSJWBUJWFT 	CPUUPN
�

��� -044 '6/$5*0/4
8IFO USBJOJOH B OFVSBM OFUXPSL 	NPSF PO USBJOJOH JO $IBQUFS �

 NVDI MJLF XIFO USBJOJOH B
MJOFBS DMBTTJmFS
 POF EFmOFT B MPTT GVODUJPO L. Oy; y/
 TUBUJOH UIF MPTT PG QSFEJDUJOH Oy XIFO UIF
USVF PVUQVU JT y � ɩF USBJOJOH PCKFDUJWF JT UIFO UP NJOJNJ[F UIF MPTT BDSPTT UIF EJĊFSFOU USBJOJOH
FYBNQMFT� ɩF MPTT L. Oy; y/ BTTJHOT B OVNFSJDBM TDPSF 	B TDBMBS
 UP UIF OFUXPSL�T PVUQVU Oy HJWFO
UIF USVF FYQFDUFE PVUQVU y � ɩF MPTT GVODUJPOT EJTDVTTFE GPS MJOFBS NPEFMT JO 4FDUJPO ����� BSF
SFMFWBOU BOE XJEFMZ VTFE BMTP GPS OFVSBM OFUXPSLT� 'PS GVSUIFS EJTDVTTJPO PO MPTT GVODUJPOT JO UIF
ŉɩF UFDIOJDBM BEWBOUBHFT PG UIF 3F-6 PWFS UIF TJHNPJE BOE UBOI BDUJWBUJPO GVODUJPOT JT UIBU JU EPFT OPU JOWPMWF FYQFOTJWF�
UP�DPNQVUF GVODUJPOT
 BOE NPSF JNQPSUBOUMZ UIBU JU EPFT OPU TBUVSBUF� ɩF TJHNPJE BOE UBOI BDUJWBUJPO BSF DBQQFE BU 1
 BOE
UIF HSBEJFOUT BU UIJT SFHJPO PG UIF GVODUJPOT BSF OFBS [FSP
 ESJWJOH UIF FOUJSF HSBEJFOU OFBS [FSP� ɩF 3F-6 BDUJWBUJPO EPFT
OPU IBWF UIJT QSPCMFN
 NBLJOH JU FTQFDJBMMZ TVJUBCMF GPS OFUXPSLT XJUI NVMUJQMF MBZFST
 XIJDI BSF TVTDFQUJCMF UP UIF WBOJTIJOH
HSBEJFOUT QSPCMFN XIFO USBJOFE XJUI UIF TBUVSBUJOH VOJUT�

CS447: Natural Language Processing (J. Hockenmaier)

We can generalize this to multi-layer feedforward nets

Input layer: vector x

 Hidden layer: vector h1

Multi-layer feedforward networks

79

Hidden layer: vector hn

Output layer: vector y

… … …
… … …
… … ….

CS447: Natural Language Processing (J. Hockenmaier)

An n-gram model P(w | w1…wk)  
as a feedforward net (naively)
— The vocabulary V contains n types (incl. UNK, BOS, EOS) 
— We want to condition each word on k preceding words 

— [Naive] Each input word wi ∈ V (that we’re conditioning on)  
 is an n-dimensional one-hot vector v(w) = (0,…0, 1,0….0)
— Our input layer x = [v(w1),…,v(wk)] has n×k elements  
— To predict the probability over output words,  
 the output layer is a softmax over n elements  
 P(w | w1…wk) = softmax(hW2 + b2)

With (say) one hidden layer h we’ll need two sets of parameters,
one for h and one for the output

80

CS447: Natural Language Processing (J. Hockenmaier)

Naive neural n-gram model
Advantage over non-neural n-gram model:

— The hidden layer captures interactions among context words

— Increasing the order of the n-gram requires only a small linear
increase in the number of parameters.

dim(W1) goes from k·dim(emb)×dim(h) to (k+1)·dim(emb)×dim(h)

— Increasing the vocabulary also leads only to a linear increase
in the number of parameters 

But: with a one-hot encoding and dim(V) ≈ 10K or so,  
this model still requires a LOT of parameters to learn.

#parameters going to hidden layer: k·dim(V)·dim(h),  
with dim(h) = 300, dim(V) = 10,000 and k=3: 9,000,000
Plus #parameters going to output layer: dim(h)·dim(V)
with dim(h) = 300, dim(V) = 10,000: 3,000,000

81

CS546 Machine Learning in NLP

Neural n-gram models
Naive neural language models have similar
shortcomings to standard n-gram models
-Models get very large (and sparse) as n increases
-We can’t generalize across similar contexts
-Markov (independence) assumptions in n-gram models are
too strict

Solutions offered by less naive neural models:
-Do not represent context words as distinct, discrete symbols
(i.e. very high-dimensional one-hot vectors), but use a dense
low-dimensional vector representation where similar words
have similar vectors [next class]
-Use recurrent nets that can encode variable-lengths contexts 
[later class]

82

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward
architecture (which predicts a string w0…wn one word
at a time) such that the output of the current step (wi)
is given as additional input to the next time step
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.

83

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for language modeling
If our vocabulary consists of V words, the output layer
(at each time step) has V units, one for each word.

The softmax gives a distribution over the V words for
the next word.

To compute the probability of a string w0w1…wn wn+1
(where w0 = <s>, and wn+1 = <\s>), feed in wi as input
at time step i and compute

84

∏
i=1..n+1

P(wi |w0 . . . wi−1)

CS447: Natural Language Processing (J. Hockenmaier)

Vector Semantics and
Word Embeddings

85

CS447: Natural Language Processing (J. Hockenmaier)

Vector Semantics and Word Embeddings

Describe the distributional hypothesis.

Explain how to represent words as vectors that
capture distributional similarities

Describe how the vectors obtained from word
embeddings like word2vec differ from vectors
obtained via distributional approaches.

What training data is used for a skipgram classifier?

86

CS447: Natural Language Processing (J. Hockenmaier)

Different approaches to lexical semantics

Lexicographic tradition:
-Use lexicons, thesauri, ontologies
-Assume words have discrete word senses:
bank1 = financial institution; bank2 = river bank, etc.
-May capture explicit relations between word (senses):  
“dog” is a “mammal”, etc.

 
Distributional tradition:
-Map words to (sparse) vectors that capture corpus statistics
-Contemporary variant: use neural nets to learn dense vector
“embeddings” from very large corpora

(this is a prerequisite for most neural approaches to NLP)
- If each word type is mapped to a single vector, this ignores
the fact that words have multiple senses or parts-of-speech

87

CS447: Natural Language Processing (J. Hockenmaier)

The Distributional Hypothesis
Zellig Harris (1954):

“oculist and eye-doctor … occur in almost the same
environments”
“If A and B have almost identical environments we say that
they are synonyms.”

John R. Firth 1957:
You shall know a word by the company it keeps. 

The contexts in which a word appears  
tells us a lot about what it means.

Words that appear in similar contexts have similar meanings

88

CS447: Natural Language Processing (J. Hockenmaier)

Two ways NLP uses context for semantics

Distributional similarities (vector-space semantics):
Use the set of contexts in which words (= word types)
appear to measure their similarity

Assumption: Words that appear in similar contexts (tea, coffee)
have similar meanings.  

Word sense disambiguation (future lecture) 
Use the context of a particular occurrence of a word
(token) to identify which sense it has.

Assumption: If a word has multiple distinct senses  
(e.g. plant: factory or green plant), each sense will appear in
different contexts.

89

CS447: Natural Language Processing (J. Hockenmaier)

Distributional Similarities
Measure the semantic similarity of words  
in terms of the similarity of the contexts  
in which the words appear

Represent words as vectors such that
— each vector element (dimension)  
 corresponds to a different context
— the vector for any particular word captures  
 how strongly it is associated with each context

Compute the semantic similarity of words  
as the similarity of their vectors.

90

CS447: Natural Language Processing (J. Hockenmaier)

What is a ‘context’?
There are many different definitions of context  
that yield different kinds of similarities:

Contexts defined by nearby words:
How often does w appear near the word drink?
Near = “drink appears within a window of ±k words of w”,  
or “drink appears in the same document/sentence as w”
This yields fairly broad thematic similarities. 

Contexts defined by grammatical relations:
How often is (the noun) w used as the subject (object)  
of the verb drink? (Requires a parser).
This gives more fine-grained similarities. 

91

CS447: Natural Language Processing (J. Hockenmaier)

Vector representations of words
“Traditional” distributional similarity approaches
represent words as sparse vectors
-Each dimension represents one specific context
-Vector entries are based on word-context co-occurrence
statistics (counts or PMI values)

 
Alternative, dense vector representations:
-We can use Singular Value Decomposition to turn these
sparse vectors into dense vectors (Latent Semantic Analysis)
-We can also use neural models to explicitly learn a dense
vector representation (embedding) (word2vec, Glove, etc.) 

Sparse vectors = most entries are zero  
Dense vectors = most entries are non-zero

92

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec Embeddings
Main idea:
Use a binary classifier to predict which words appear in
the context of (i.e. near) a target word.
The parameters of that classifier provide a dense vector
representation of the target word (embedding)

Words that appear in similar contexts (that have high
distributional similarity) will have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pre-trained embeddings can be downloaded)

93

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram with negative sampling
Train a binary classifier that decides whether a target
word t appears in the context of other words c1..k

— Context: the set of k words near (surrounding) t
— Treat the target word t and any word that actually appears  
in its context in a real corpus as positive examples
— Treat the target word t and randomly sampled words  
that don’t appear in its context as negative examples
— Train a binary logistic regression classifier to distinguish  
these cases
— The weights of this classifier depend on the similarity of t
and the words in c1..k 

Use the weights of this classifier as embeddings for t 

94

CS447: Natural Language Processing (J. Hockenmaier)

The Skip-Gram classifier
Use logistic regression to predict whether  
the pair (t, c) (target word t and a context word c)  
is a positive or negative example:

Assume that t and c are represented as vectors,  
so that their dot product tc captures their similarity

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

95

CS447: Natural Language Processing (J. Hockenmaier)

Summary: How to learn word2vec (skip-gram)
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings 

Train a logistic regression classifier to distinguish words
that co-occur in corpus from those that don’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples
Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

96

CS447: Natural Language Processing (J. Hockenmaier)

POS tagging and
sequence labeling

97

CS447: Natural Language Processing (J. Hockenmaier)

POS tagging and sequence labeling
Why has POS tagging been seen as an important step  
in the NLP pipeline?

Discuss the advantages and disadvantages of a very coarse POS
tag set vs. a very fine grained one.

Define a bigram HMM model.

Explain the Viterbi algorithm for POS tagging with a bigram HMM.

Explain how to frame named entity recognition as a sequence
labeling task

Explain the advantages of discriminative models for sequence
labeling

98

CS447: Natural Language Processing (J. Hockenmaier)

POS Tagging
Words often have more than one POS:  

-The back door (adjective)
-On my back (noun)
-Win the voters back (particle)
-Promised to back the bill (verb) 

The POS tagging task is to determine the POS tag  
for a particular instance of a word.  

Since there is ambiguity, we cannot simply look up the
correct POS in a dictionary.

These examples from Dekang Lin

99

CS447: Natural Language Processing (J. Hockenmaier)

Why POS tagging?
POS tagging is traditionally viewed as a prerequisite
for further analysis: 

–Speech synthesis:
How to pronounce “lead”?
INsult or inSULT, OBject or obJECT, OVERflow or overFLOW, 
DIScount or disCOUNT, CONtent or conTENT
–Parsing:

What words are in the sentence?
–Information extraction:

Finding names, relations, etc.
–Machine Translation:

The noun “content” may have a different translation from the adjective.

100

CS447: Natural Language Processing (J. Hockenmaier)

Defining an annotation scheme
Training and evaluating models for these NLP tasks
requires large corpora annotated with the desired
representations. 

Annotation at scale is expensive, so a few existing
corpora and their annotations and annotation
schemes (tag sets, etc.) often become the de facto
standard for the field.

It is difficult to know what the ‘right’ annotation scheme
should be for any particular task

How difficult is it to achieve high accuracy for that annotation?
How useful is this annotation scheme for downstream tasks in the pipeline?
➩ We often can’t know the answer until we’ve annotated a lot of data…

101

CS447: Natural Language Processing (J. Hockenmaier)

Evaluation metric: test accuracy
How many words in the unseen test data  
can you tag correctly?

State of the art on Penn Treebank: around 97%.  
➩ How many sentences can you tag correctly?

Compare your model against a baseline
Standard: assign to each word its most likely tag
(use training corpus to estimate P(t|w))
Baseline performance on Penn Treebank: around 93.7%  

… and a (human) ceiling
How often do human annotators agree on the same tag?  
Penn Treebank: around 97%  

102

CS447: Natural Language Processing (J. Hockenmaier)

Generate a confusion matrix (for development data): 
How often was a word with tag i mistagged as tag j: 
 
 
 
 
 
 

See what errors are causing problems:
-Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
-Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Qualitative evaluation

103

Correct Tags

Predicted  
Tags

% of errors  
caused by  
mistagging
VBN as JJ

CS447: Natural Language Processing (J. Hockenmaier)

POS tagging with generative models
 
 
 
 

P(t,w): the joint distribution of the labels we want to predict (t)
and the observed data (w).
We decompose P(t,w) into P(t) and P(w | t) since these
distributions are easier to estimate. 

Models based on joint distributions of labels and observed data
are called generative models: think of P(t)P(w | t) as a stochastic
process that first generates the labels, and then generates the
data we see, based on these labels.

104

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

CS447: Natural Language Processing (J. Hockenmaier)

Hidden Markov Models (HMMs)
HMMs are the most commonly used generative models for POS tagging
(and other tasks, e.g. in speech recognition)
 
HMMs make specific independence assumptions in P(t) and P(w| t): 

1) P(t) is an n-gram (typically bigram or trigram) model over tags:

P(t(i) | t(i–1)) and P(t(i) | t(i–1), t(i–2)) are called transition probabilities

2) In P(w | t), each w(i) depends only on [is generated by/conditioned on] t(i): 
  

 P(w(i) | t(i)) are called emission probabilities  
 
These probabilities don’t depend on the string position (i),  
but are defined over word and tag types.  
With subscripts i,j,k, to index types, they become P(ti | tj), P(ti | tj, tk), P(wi | tj)

Pbigram(t) = ∏
i

P(t(i) ∣ t(i−1)) Ptrigram(t) = ∏
i

P(t(i) ∣ t(i−1), t(i−2))

P(w ∣ t) = ∏
i

P(w(i) ∣ t(i))

105

CS447: Natural Language Processing (J. Hockenmaier)

HMMs as probabilistic automata

DT

JJ

NN

0.7

0.3

0.4

0.6

0.55

VBZ

0.45
0.5

the

0.2
a

0.1every

0.1some 0.1
no

0.01
able

...
...

0.003

zealous

...
...

0.002

zone

0.00024

abandonment

0.001

yields
...
...

0.02

acts

An HMM defines 
Transition probabilities:
 P(ti | tj)
Emission probabilities:
 P(wi | ti)

106

CS498JH: Introduction to NLP

We count how often we see titj and wj_ti etc. in the data
(use relative frequency estimates): 

Learning the transition probabilities:  
 

Learning the emission probabilities: 
 

Learning an HMM from labeled data

107

P (tj |ti) =
C(titj)
C(ti)

Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS
old_JJ ,_, will_MD join_VB the_DT board_NN
as_IN a_DT nonexecutive_JJ director_NN Nov._NNP
29_CD ._.

P (wj |ti) =
C(wj ti)

C(ti)

CS447: Natural Language Processing (J. Hockenmaier)

HMM decoding (Viterbi)
We observe a sentence w = w(1)…w(N)

 w= “she promised to back the bill” 
We want to use an HMM tagger to find its POS tags t

t* = argmaxt P(w, t)
 = argmaxt P(t(1))·P(w(1)| t(1))·P(t(2)| t(1))·…·P(w(N)| t(N))

To do this efficiently, we will use a dynamic
programming technique called the Viterbi algorithm
which exploits the independence assumptions  
in the HMM.

108

CS447: Natural Language Processing (J. Hockenmaier)

States

Bookkeeping: the trellis

We use a N×T table (“trellis”) to keep track of the HMM. 
The HMM can assign one of the T tags to each of the N words.

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

q1

...

qj

...

qT

Words (“time steps”)

109

word w(i) has tag tj

CS447: Natural Language Processing (J. Hockenmaier)

Using the trellis to find t*
Let trellis[i][j] (word w(j) and tag tj) store the  
probability of the best tag sequence for w(1)…w(i) that ends in tj

trellis[i][j] =def max P(w(1)…w(i), t(1)…, t(i) = tj)

For each cell trellis[i][j], we find the best cell in the previous
column (trellis[i–1][k*]) based on the entries in the previous
column and the transition probabilities P(tj |tk)

k* for trellis[i][j] := Maxk (trellis[i–1][k] ⋅ P(tj |tk))

The entry in trellis[i][j] includes the emission probability P(w(i)|tj)

trellis[i][j] := P(w(i)|tj) ⋅ (trellis[i–1][k*] ⋅ P(tj |tk*))

We also associate a backpointer from trellis[i][j] to trellis[i–1][k*]  
 
Finally, we pick the highest scoring entry in the last column of
the trellis (= for the last word) and follow the backpointers

110

CS447: Natural Language Processing (J. Hockenmaier)

At any internal cell
-For each cell in the preceding column: multiply its entry with
the transition probability to the current cell.
-Keep a single backpointer to the best (highest scoring) cell in
the preceding column
-Multiply this score with the emission probability of the current
word

111

w(n-1) w(n)

t1 P(w(1..n-1), t(n-1)=t1)
... ...
ti P(w(1..n-1), t(n-1)=ti)
... ...
tN P(w(1..n-1), tn-1=ti)

P(ti |t1)

P(ti |ti)

P(ti |t
N)

trellis[n][i] =  
 P(w(n)|ti)

⋅Maxj(trellis[n-1][j]P(ti |tj))

CS447: Natural Language Processing

HMMs as graphical models
HMMs are generative models of the observed string w 
 
They ‘generate’ w with P(w,t) = ∏iP(t(i)| t(i−1))P(w(i)| t(i))
When we use an HMM for tagging,  
we observe w, and need to find t

t(1) t(2) t(3) t(4)

w(1) w(2) w(3) w(4)

HMM: Arrows
go from tags

to words
(Generative
Model of w)

CS447: Natural Language Processing

Discriminative probability models
A discriminative or conditional model of the labels t
given the observed input string w models  
 P(t | w) = ∏iP(t(i) |w(i), t(i−1)) directly. 

t(1) t(2) t(3) t(4)

w(1) w(2) w(3) w(4)

Arrows go
from words  

to tags
(Conditional
Model of t
given w)

CS447: Natural Language Processing

Discriminative models
There are two main types of discriminative  
probability models:

–Maximum Entropy Markov Models (MEMMs)
–Conditional Random Fields (CRFs)

MEMMs and CRFs:
–are both based on logistic regression
–have the same graphical model
– require the Viterbi algorithm for tagging
–differ in that MEMMs consist of independently

learned distributions, while CRFs are trained to
maximize the probability of the entire sequence

CS447: Natural Language Processing

Advantages of discriminative models
We’re usually not really interested in P(w | t).
– w is given. We don’t need to predict it!
Why not model what we’re actually interested in: P(t | w)  

Modeling P(w | t) well is quite difficult:
– Prefixes (capital letters) or suffixes are good predictors for

certain classes of t (proper nouns, adverbs,…)
– Se we don’t want to model words as atomic symbols, but in

terms of features
– These features may also help us deal with unknown words
– But features may not be independent
Modeling P(t | w) with features should be easier:
– Now we can incorporate arbitrary features of the word,

because we don’t need to predict w anymore
115

