CS447: Natural Language Processing

http.//courses.engtr.illinois.edu/cs447

Lecture 12:
Midterm Review

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Topics

— What is NLP and why is NLP hard?

— Finite-State Methods and Morphology

— Language Models

— Classification for NLP

— Neural Nets for NLP

— Vector Semantics and Word Embeddings
— POS Tagging and Sequence Labeling

CS447: Natural Language Processing (J. Hockenmaier)

Midterm Exam

When: Friday, October 11, 2019 in class
Where: DCL 1310 (this room)
What: Closed book exam:

- You are not allowed to use any cheat sheets, computers,

calculators, phones etc.
(you shouldn’t have to anyway)

- Only the material covered in lectures
- Bring a pen (black/blue) or pencil
- Short questions — we expect short answers!

- Tip: If you can’t answer a question, move on to the next one.
You may not be able to complete the whole exam in the time
given — there will be a lot of questions, so first do the ones

you know how to answer!

CS447: Natural Language Processing (J. Hockenmaier)

Question types

Define X:
Provide a mathematical/formal definition of X

Explain X; Explain what X is/does:
Use plain English to define X and say what X is/does

Compute X:
Return X; Show the steps required to calculate it

Draw X:
Draw a figure of X

Show/Prove that X is true/is the case/...:
This may require a (typically very simple) proof.

Discuss/Argue whether ...
Use your knowledge (of X,Y,Z) to argue your point

CS447: Natural Language Processing (J. Hockenmaier)

Basics:
What is NLP
and why is it hard?

What is NLP and why is it hard?

Describe the NLP pipeline.

Explain why ambiguity is one of the core challenges
of NLP. Give examples.

Explain the challenges that Zipf’s Law poses for NLP.
Describe two different ways for how to represent

words in an NLP system. Discuss their relative
advantages and disadvantages.

CS447: Natural Language Processing (J. Hockenmaier) 6

“I made her duck”

What does this sentence mean?
“duck” noun or verb?
‘make™ “cook X” or “cause Xtodo Y”?
“her”: “for her” or “belonging to her” ?

Language has different kinds of ambiguity, e.g.:
Structural ambiguity

“l eat sushi with tuna”vs. “I eat sushi with chopsticks”
“I saw the man with the telescope on the hill”

Lexical (word sense) ambiguity

“I went to the bank”. financial institution or river bank?
Referential ambiguity

“John saw Jim. He was drinking coffee.”

CS447: Natural Language Processing (J. Hockenmaier)

Disambiguation requires
statistical models

Ambiguity is a core problem for any NLP task

Statistical models™ are one of the main tools
to deal with ambiguity.

*more generally: a lot of the models (classifiers, structured prediction models)
you learn about in CS446 (Machine Learning) can be used for this purpose.
You can learn more about the connection to machine learning in CS546
(Machine learning in Natural Language).

These models need to be trained (estimated, learned)

before they can be used (tested).

We will see lots of examples in this class
(CS446 is NOT a prerequisite for CS447)

CS447: Natural Language Processing (J. Hockenmaier) 8

“I made her duck cassoulet”

(Cassoulet = a French bean casserole)

The second major problem in NLP is coverage:
We will always encounter unfamiliar words
and constructions.

Our models need to be able to deal with this.
This means that our models need to be able

to generalize from what they have been trained on
to what they will be used on.

CS447: Natural Language Processing (J. Hockenmaier)

Summary: The NLP Pipeline

An NLP system may use some or all
of the following steps:

Tokenizer/Segmenter

to identify words and sentences
Morphological analyzer/POS-tagger

to identify the part of speech and structure of words
Word sense disambiguation

to identify the meaning of words
Syntactic/semantic Parser

to obtain the structure and meaning of sentences
Coreference resolution/discourse model

to keep track of the various entities and events mentioned

CS447: Natural Language Processing (J. Hockenmaier) 10

NLP Pipeline: Assumptions

Each step in the NLP pipeline embellishes the input

with explicit information about its linguistic structure

POS tagging: parts of speech of word,
Syntactic parsing: grammatical structure of sentence,....

Each step in the NLP pipeline requires its own explicit

(“symbolic”) output representation:
POS tagging requires a POS tag set

(e.g. NN=common noun singular, NNS = common noun plural, ...)

Syntactic parsing requires constituent or dependency labels
(e.g. NP = noun phrase, or nsubj = nominal subject)

These representations should capture linguistically
appropriate generalizations/abstractions

Designing these representations requires linguistic expertise
CS447: Natural Language Processing (J. Hockenmaier) 11

NLP Pipeline: Shortcomings

Each step in the pipeline relies on a learned model
that will return the most likely representations
- This requires a lot of annotated training data for each step

- Annotation is expensive and sometimes difficult
(people are not 100% accurate)

- These models are never 100% accurate
-Models make more mistakes if their input contains mistakes
How do we know that we have captured the “right”

generalizations when designing representations?
- Some representations are easier to predict than others

-Some representations are more useful for the next steps
In the pipeline than others

-But we won’t know how easy/useful a representation is until
we have a model that we can plug into a particular pipeline

CS447: Natural Language Processing (J. Hockenmaier) 12

How many words are there?

How large is the vocabulary of English

(or any other language)?
Vocabulary size = nr of distinct word types

Google N-gram corpus: 1 trillion tokens,
13 million word types that appear 40+ times

If you count words in text, you will find that...
...a few words (mostly closed-class) are very frequent
(the, be, to, of, and, a, in, that,...)

... most words (all open class) are very rare.
... even if you've read a lot of text, you will keep finding
words you haven’t seen before.

CS447: Natural Language Processing (J. Hockenmaier)

13

Zi[?f’s law: the long tall

Hov/ many words occur once, twice, 100 times, 1000 times?

100000 —— — —

A few words

the rth most 10000 | are very frequent

common word w;,
has P(w;) o« 1/r

1000 |

Most words
are very rare

100 |

Word frequency (log-scale)

1

1 10 106 i
English words, sorted by frequency (log-scale)
w1 = the, Wy = to,, W5346 = computer, ...

TOU00 100000

In natural language:

- A small number of events (e.g. words) occur with high frequency
- A large number of events occur with very low frequency

CS447: Natural Language Processing (J. Hockenmaier) 14

Implications of Zipf's Law for NLP

The good:
Any text will contain a number of words that are very common.

We have seen these words often enough that we know (almost)
everything about them. These words will help us get at the
structure (and possibly meaning) of this text.

The bad:

Any text will contain a number of words that are rare.

We know something about these words, but haven’t seen them

often enough to know everything about them. They may occur

with a meaning or a part of speech we haven’t seen before.
The ugly:

Any text will contain a number of words that are unknown to us.

We have never seen them before, but we still need to get at the
structure (and meaning) of these texts.

CS447: Natural Language Processing (J. Hockenmaier) 15

Dealing with the bad and the ugly

Our systems need to be able to generalize
from what they have seen to unseen events.

There are two (complementary) approaches

to generalization:
— Linguistics provides us with insights about the rules and
structures in language that we can exploit in the (symbolic)

representations we use
E.g.: a finite set of grammar rules is enough to describe an infinite language

— Machine Learning/Statistics allows us to learn models
(and/or representations) from real data that often work well

empirically on unseen data
E.g. most statistical or neural NLP

CS447: Natural Language Processing (J. Hockenmaier) 16

How do we represent words?

Option 1: Words are atomic symbols
Can’t capture syntactic/semantic relations between words

— Each (surface) word form is its own symbol

— Map different forms of a word to the same symbol
- Lemmatization: map each word to its lemma
(esp. in English, the lemma is still a word in the language,
but lemmatized text is no longer grammatical)
-Stemming: remove endings that differ among word forms
(no guarantee that the resulting symbol is an actual word)
-Normalization: map all variants of the same word (form) to

the same canonical variant (e.g. lowercase everything,
normalize spellings, perhaps spell-check)

CS447: Natural Language Processing (J. Hockenmaier)

17

How do we represent words?

Option 2: Represent the structure of each word
“books” => “book N pl” (or “book V 3rd sg”)

This requires a morphological analyzer (more later today)
The output is often a lemma plus morphological information

This is particularly useful for highly inflected languages
(less so for English or Chinese)

CS447: Natural Language Processing (J. Hockenmaier) 18

How do we represent unknown words?

Systems that use machine learning may need to have
a unique representation of each word.

Option 1: the UNK token

Replace all rare words (in your training data)

with an UNK token (for Unknown word).

Replace all unknown words that you come across after training
(including rare training words) with the same UNK token

Option 2: substring-based representations
Represent (rare and unknown) words as sequences of

characters or substrings
-Byte Pair Encoding: learn which character sequences are

common in the vocabulary of your language

CS447: Natural Language Processing (J. Hockenmaier) 19

Finite-State Methods
and Morphology

Finite-State Methods and Morphology

What is inflectional morphology? Give examples.

Explain how finite-state transducers can be used for
morphological analysis.

Give an example of a language that cannot be
recognized by a finite-state automaton.

CS447: Natural Language Processing (J. Hockenmaier) 21

Inflectional morphology in English

Verbs:

Infinitive/present tense: walk, go

3rd person singular present tense (s-form): walks, goes
Simple past: walked, went

Past participle (ed-form): walked, gone
Present participle (ing-form): walking, going

Nouns:

Common nouns inflect for number:
singular (book) vs. plural (books)

Personal pronouns inflect for person, number, gender, case:
I saw him; he saw me; you saw her; we saw them; they saw us.

CS447: Natural Language Processing (J. Hockenmaier) 22

Derivational morphology in English

Nominalization:
V + -ation: computerization
V+ -er: killer
Adj + -ness: fuzziness

Negation:
un-: undo, unseen, ...
mis-: mistake,...

Adjectivization:

V+ -able: doable
N + -al: national

CS447: Natural Language Processing (J. Hockenmaier)

23

Morphemes: stems, affixes

dis-grace-ful-ly
prefix-stem-suffix-suffix

Many word forms consist of a stem plus a number of

affixes (prefixes or suffixes)

Exceptions: Infixes are inserted inside the stem
Circumfixes (German gesehen) surround the stem

Morphemes: the smallest (meaningful/grammatical)

parts of words.

Stems (grace) are often free morphemes.
Free morphemes can occur by themselves as words.

Affixes (dis-, -ful, -ly) are usually bound morphemes.
Bound morphemes have to combine with others to form words.

CS447: Natural Language Processing (J. Hockenmaier) 24

Morphological parsing

disgracefully
dis grace ful ly
prefix stem suffix suffix
NEG grace+N +ADJ +ADV

CS447: Natural Language Processing (J. Hockenmaier)

25

Morphological generation

We cannot enumerate all possible English words,
but we would like to capture the rules that define
whether a string could be an English word or not.

That is, we want a procedure that can generate

(or accept) possible English words...
grace, graceful, gracefully
disgrace, disgraceful, disgracefully,
ungraceful, ungracefully,
undisgraceful, undisgracefully,...
without generating/accepting impossible English words
*gracelyful, *gracefuly, *disungracetully,...

NB: * is linguists’ shorthand for “this is ungrammatical”
CS447: Natural Language Processing (J. Hockenmaier) 26

Finite-state automata

A (deterministic) finite-state automaton (FSA)

consists of:

- a finite set of states Q = {qo....qn}, including a start state qo
and one (or more) final (=accepting) states (say, qn)

-a (deterministic) transition function

thal stabe
olqw)=q forqg,geQ,we “fb alL state

(note the
_ double Line)

move from state 92
‘ to stake Q4

u you read 'y

skart state

/

CS447: Natural Language Processing (J. Hockenmaier) 27

Recognition vs. Analysis

FSAs can recognize (accept) a string, but they don’t
tell us its internal structure.

We need is a machine that maps (transduces)
the input string into an output string that encodes

Its structure:

Input cla|t]|s
(Surface form)

Output
(Lexical form) ‘ & I & I L I"‘NI*’p'l

CS447: Natural Language Processing (J. Hockenmaier)

28

Finite-state transducers

— FSTs define a relation between two regular
languages.

— Each state transition maps (transduces) a
character from the input language to a character (or
a sequence of characters) in the output language

o ST

— By using the empty character (¢), characters can
be deleted (x:€) or inserted(c:y)

C X:E O O £y '<>

— FSTs can be composed (cascaded), allowing us to

define intermediate representations.
CS447: Natural Language Processing (J. Hockenmaier) 29

Finite-state transducers

An FST T =L;, X L.,;defines a relation between two
regular languages L, and Lou:

Lin = {cat, cats, fox, foxes, ...}

P ST

Low = {cat+N+sg, cat+N+pl, fox+N+sg, fox+N+pl ...}

T = { {cat, cat+N+sg),
(cats, cattN+pl),
(fox, fox+N+sg),
(foxes, fox+N+pl) }

CS447: Natural Language Processing (J. Hockenmaier)

30

FST composition/cascade:

Lexicalé flo| X |[+N|+PI f

T ©OOOO

Intermediate é flo|x|M|s | # f

Teinsert © @ © OB @ <

Sun‘aceéfoxes f

CS447: Natural Language Processing (J. Hockenmaier)

Language Models

CS447: Natural Language Processing (J. Hockenmaier)

32

Language Models
What is a language model?

What independence assumptions does an n-gram
language model make?

Describe how to use maximum likelihood estimation
for a bigram n-gram model.

Why is it important to use smoothing for language
models?

CS447: Natural Language Processing (J. Hockenmaier)

33

What is a language model?

Probability distribution over the strings in a language,
typically factored into distributions P(w;il ...)
for each word:

P(w) =P(wi...wp) = [Ii P(Wi l wi...Wi1)

N-gram models assume each word depends only
preceding n—1 words:

P(wil wi...Wi-1) =det P(Wi | Wicn+1...Wi-1)
To handle variable length strings, we assume each string starts
with n—1 start-of-sentence symbols (BOS), or (S)

and ends in a special end-of-sentence symbol (EOS) or {\S)

CS546 Machine Learning in NLP 34

Why do we need language models?

Many NLP tasks require natural language output:
- Machine translation: return text in the target language
-Speech recognition: return a transcript of what was spoken
-Natural language generation: return natural language text
- Spell-checking: return corrected spelling of input

Language models define probability distributions
over (natural language) strings or sentences.

- We can use a language model to score possible
output strings so that we can choose the best (i.e.
most likely) one: if PLm(A) > Povm(B), return A, not B

CS447: Natural Language Processing (J. Hockenmaier) 35

Language modeling with N-grams

A language model over a vocabulary V
assigns probabilities to strings drawn from V*,

Recall the chain rule:
PowW . w®) = pw®) . Pow@ [wDy . P @ |l D)

An n-gram language model assumes each word
depends only on the last n-1 words:
P (W(l) N .w(i)) — P(w(l)) : p(W(Z) | W(l)) . .p(w(i) | wl=b W(l—(n+1)))

ngram

CS447: Natural Language Processing (J. Hockenmaier) 36

N-gram models

N-gram models assume each word (event)
depends only on the previous n—1 words (events):

Unigram model: P(w® ... w®)) = HP(w(i))
i=1

N
Bigram model: P(w .. . w®™)) = HP(W(i) | wii=D)
i=1

N
Trigram model: P(w'V .. . w®)) = HP(W(i) | W=D, 4y (=2))
i=1

Such independence assumptions are called
Markov assumptions (of order n-1).

CS447: Natural Language Processing (J. Hockenmaier)

37

Learning (estimating) a language model

Where do we get the parameters of our model
(its actual probabilities) from?

Pw = ‘the’ | wi-1) = ‘on’) = 222
We need (a large amount of) text as training data
to estimate the parameters of a language model.

The most basic parameter estimation technique:
relative frequency estimation (= counts)

Pw® = ‘the’| wi-) = ‘on’) = C(‘on the’)/ C(‘on’)
Also called Maximum Likelihood Estimation (MLE)

NB: MLE assigns all probability mass to events

that occur in the training corpus.
CS447: Natural Language Processing (J. Hockenmaier) 38

Add-One (Laplace) Smoothing

A really simple way to do smoothing:

Increment the actual observed count of every possible
event (e.g. bigram) by a hallucinated count of 1

(or by a hallucinated count of some k with O<k<1).

Shakespeare bigram model (roughly):
0.88 million actual bigram counts
+ 844.xx million hallucinated bigram counts

Oops. Now almost none of the counts in our model
come from actual data. We’re back to word salad.

K needs to be really small. But it turns out that that still doesn’t
work very well.

CS447: Natural Language Processing (J. Hockenmaier) 39

How do n-gram models define P(L)?

An n-gram model defines P, (w" ... w™)) in terms of the
probability of predicting each word: p,,,,,,w®...w®) = H P(w@ | wli=D)
i=1..N

With a fixed vocabulary V, it’s easy to make sure P(w? | w1
IS a distribution: Z Pw;|w) =1 and V; ;0 < P(w;|w)) < 1
i=1...|V|

If Pw@ | w'=D) is a distribution, this model defines
one distribution (over all strings) for each length N

But the strings of a language L don't all have the same length
English = {“yes!”, “l agree”, “l see you’, ...}
And there is no Nmax that limits how long strlngs in L can get.

Solution: the EOS (end-of-sentence) token!

CS447: Natural Language Processing (J. Hockenmaier) 40

How do n-gram models define P(L)?

Think of a language model as a stochastic process:
- At each time step, randomly pick one more word.

- Stop generating more words when the word you pick is a special end-
of-sentence (EOS) token.

To be able to pick the EOS token, we have to modify our
training data so that each sentence ends in EOS.
This means our vocabulary is now VEOS =V u {EOS}
We then get an actual language model,
l.e. a distribution over strings of any length

Technically, this is only true because P(EOS | ...) will be high enough that we are always
guaranteed to stop after having generated a finite number of words

Why do we care about having one model for all lengths?
We can now compare the probabilities of strings of different
lengths, because they’re computed by the same distribution.

CS447: Natural Language Processing (J. Hockenmaier) 41

Handling unknown words: UNK

Training:
- Assume a fixed vocabulary (e.g. all words that occur at least
n times in the training corpus)

- Replace all other words in the corpus by a token <UNK>
- Estimate the model on this modified training corpus.

Testing (e.g to compute probability of a string):
-Replace any words not in the vocabulary by <UNK>

Refinements:
use different UNK tokens for different types of words
(numbers, etc.).

CS447: Natural Language Processing (J. Hockenmaier) 42

What about the beginning of the sentence?

In a trigram model
PwDy @y = oMY P @ [P ® | 1@, 1 (D)

only the third term pPw® |w®, w1y is an actual trigram
probability. What about P(w") and P(w® |w)) ?

If this bothers you:

Add n—1 beginning-of-sentence (BOS) symbols to
each sentence for an n—gram model:
BOS; BOS; Alice was ..

Now the unigram and bigram probabilities
involve only BOS symbols.

CS447: Natural Language Processing (J. Hockenmaier) 43

How do we use language models?

Independently of any application, we can use a

language model as a random sentence generator
(i.e we sample sentences according to their language model
probability)

Systems for applications such as machine translation,
speech recognition, spell-checking, generation, often
produce multiple candidate sentences as output.
-We prefer output sentences Sou that have a higher probability
-We can use a language model P(Sou) to score and rank these
different candidate output sentences, e.g. as follows:
argmaxsout P(Sout | Input) = argmaxsou P(Input | Sou) P(Sout)

CS447: Natural Language Processing (J. Hockenmaier) 44

Intrinsic vs. Extrinsic Evaluation

Perplexity tells us which LM assigns a higher
probability to unseen text

This doesn’t necessarrily tell us which LM is better for
our task (i.e. is better at scoring candidate sentences)

Task-based evaluation:
- Train model A, plug it into your system for performing task T
- Evaluate performance of system A on task T.
- Train model B, plug it in, evaluate system B on same task T.

- Compare scores of system A and system B on task T.

CS447: Natural Language Processing (J. Hockenmaier) 45

Classification

CS447: Natural Language Processing (J. Hockenmaier)

46

Classification
Define multiclass classification.

Explain why it is important to know how well a
classifier generalizes to unseen data.

Explain how generative models can be used for
classification.

Explain what we mean when we say we use a
Bernoulli model in our Naive Bayes text classifier

Explain why accuracy alone may be misleading as an

evaluation metric for classification tasks
CS447: Natural Language Processing (J. Hockenmaier) 47

Classification tasks

Classification tasks: Map inputs to a fixed set of class labels

Binary classification: each input has exactly one of two classes
Multi-class classification: each input has exactly one of K classes (K > 2)
Multi-label classification: each input has N of K classes (N =1, varies per input)

What are “inputs”?

To talk about machine learning mathematically, we often

assume each input item is represented as a vector x = (X1....XN)
(The number of elements N is fixed, and may be very large)

In NLP, inputs are documents, sentences, words,
= How do we represent these as vectors?

Later today we’ll assume that each element xiin (Xi....Xn)
corresponds to one word type (vi) in the vocabulary V = {vi,...,vn}
— If xie {0,1}: Does word vioccur in the input document?

— Ifx€{0, 1, 2, ...}: How often does word vioccur in the input document?
CS447: Natural Language Processing (J. Hockenmaier) 48

Classification as supervised machine learning

Classification tasks: Map inputs to a fixed set of class labels

Underlying assumption: Each input really has one (or N) correct labels
Corollary: The correct mapping is a function (aka the ‘target function’)

How do we obtain a classifier (model) for a given task?
— If the target function is very simple (and known), implement it directly

— Otherwise, if we have enough correctly labeled data,
estimate (aka. learn/train) a classifier based on that labeled data.

Supervised machine learning:

Given (correctly) labeled training data, obtain a classifier

that predicts these labels as accurately as possible.

Learning is supervised because the learning algorithm can get feedback
about how accurate its predictions are from the labels in the training data.

CS447: Natural Language Processing (J. Hockenmaier) 49

Probabillistic classifiers

A probabilistic classifier returns the most likely class y for input x:
y* = argmaxyP(Y =y|X =Xx)

Naive Bayes uses Bayes Rule:
yF = argmaxyP(y | x) = argmaxyP(X | v)P(y)
Naive Bayes models the joint distribution: P(x | y) P(y) = P(X,y)
Joint models are also called generative models because we can view them

as stochastic processes that generate (labeled) items:
Sample/pick a label y with P(y), and then an item x with P(xly)

Logistic Regression models P(y | X) directly

This is also called a discriminative or conditional model, because it only
models the probability of the class given the input, and not of the raw data itself.

CS447: Natural Language Processing (J. Hockenmaier) 50

Probabilistic classifiers: Naive Bayes

Return the most likely class y for the input x:
y¥* = argmaxyP(Y =y| X =Xx)

Naive Bayes classifiers use Bayes’ Rule (“the
posterior probability P(AIB) is proportional to prior
(P(A)) times likelihood P(BIA))

P(A,B) P(B|A)P(A)
P(A|B) = P - PGB x P(B|A)P(A)

yF = argmaxyP(Y =y| X =X)

PX =x|Y=y)P(Y =y)
= argmax [Bayes’ Rule]

Y P(X =Xx)
— argmaxyP(X — Xl Y = y)P(Y = y) [P(X) doesn’t change argmaxy]

CS447: Natural Language Processing (J. Hockenmaier) 51

The Naive Bayes Classifier

Assign class y* to input X = (X1...Xn) if

b — — —_ —
y* = argmax P(Y = y) H PX;=x|Y =y)

i=1..n

P(Y = y) is the prior class probability (estimated as
the fraction of items in the training data with class y)

P(X; = x;| Y = y) is the (class-conditional) likelihood
of the feature Xxi.
There are different ways to model this probability

CS447: Natural Language Processing (J. Hockenmaier) 52

Modeling P(X = x|Y = y)P(Y = y)

P(Y =) is the “prior” class probability
We can estimate this as the fraction of documents

in the training data that have class y:
P(Y = y) = #documents (X.,y;) € D,,, withy. =y

#documents (x;,y;) € D,, ;.

P(X = x| Y = y) is the “likelihood” of the input x

X = (X1....Xn) IS a vector; each xi = a word in our vocabulary

Let’s make a (naive) independence assumption:
PX =(x,,...,x)| Y=y):= H PX. =x|Y=Yy)

i=1..n

Now we need to multiply together all P(X; = x;| Y = y)

CS447: Natural Language Processing (J. Hockenmaier) 53

P(X; = x;|Y = y) as Bernoulli

P(X; = x;| Y = y) is a Bernoulli distribution (x; € {0,1})
P(X; = 1|Y = y) is the probability that word vi occurs
iIn a document of class Y.

P(X; = 0| Y = y) is the probability that word vi does not occur
iIn a document of class y

Estimation:

PO =17 =y) = #docs (X;,y;) € D, ;. withy, = y.in which x; occurs
#docs <Xi’ yi> < DtminWIth Yi=DY

PO, =07 =y) = #docs (X,,y;) € D,,,..with y; = y in which x; does not occur

#docs <Xi’ yi> S DtrainWith Yi=DY

CS447: Natural Language Processing (J. Hockenmaier) 54

P(X, = x| Y = y) as Multinomial

P(X; =x;|Y =y) is a Multinomial: (x; € {0,1,2,...})
P(X. = x;| Y = y) is the probability that word vi occurs with
frequency xi (=0, 1, 2, ...) in a document of class .

We can estimate the unigram probability P(vil Y =y)

of word v; in all documents of class y as
A #v.in all docs € Dypginof class y
Pv|Y=y) = ——

#words in all docs € Dyyginof class y

or with add-one smoothing (with N words in vocab V):
A (#v;in all docs € Dyginof class y) + 1

(#words in all docs € Dyginof class y) + N

CS447: Natural Language Processing (J. Hockenmaier) 55

Unigram probabilities P(vil Y =)

We can estimate the unigram probability P(vil Y =y)
of word vi in all documents of class y as

N #v.in all docs € Dy 4in0f class
P(Vil Y = y) = i train Y

#words in all docs € Dyygin0f class y

or with add-one smoothing (with N words in vocab V):

N #v.in all docs € Dy sinof class v) + 1
P(V,'| Y =y) = (#v; train y)

(#words in all docs € Dyginof class y) + N

CS447: Natural Language Processing (J. Hockenmaier) 56

Evaluating Classifiers

Evaluation setup:
Split data into separate training, (development) and test sets.

‘ TRAINING E ‘EITRAININGE

Better setup: n-fold cross validation:

Split data into n sets of equal size
Run n experiments, using set /to test and remainder to train

TN (TR TULTED QT TS

This gives average, maximal and minimal accuracies

When comparing two classifiers:
Use the same test and training data with the same classes

CS447: Natural Language Processing (J. Hockenmaier) 57

Evaluation Metrics

Accuracy: How many documents in the test data
did you classify correctly?

It’s easy to get high accuracy if one class is very
common (just label everything as that class)

But that would be a pretty useless classifier

CS447: Natural Language Processing (J. Hockenmaier)

58

Precision, recall, f-measure

ltems labeled X ltems labeled X
in the gold standard by the system
(‘truth’) =TP + FP
=TP + FN

False
Negatives

(FN)
Precision: P =

/(
Recall: l + FN

F-measure: harmonlc mean of precision and recall
F=(2-P-R)/(P+R)

CS447: Natural Language Processing (J. Hockenmaier) 59

Confusion matrices

gold labels
urgent normal spam
8
urgent | & 10 1 precisionu= ——-—r
system T 60
output normal 5 60 50 precisionn= ———
"""" .. 200
v |3 |30 [2001 precsions sy,
' recallu= recalln srecalls =
8 1 60 1 200

8+5+3 10+60+30 1+50+200

1Dt X ®] Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,cp), how many documents from c¢; were (in)correctly assigned to ¢

CS447: Natural Language Processing (J. Hockenmaier) 60

Micro-average vs Macro-average

Class 1: Urgent Class 2: Normal Class 3: Spam Pooled
true true true true true true true true
urgent not normal not spam not yes no
system system system system
urgent| 8 | 11 normal| 60 | 55 spam [200| 33 yes [268| 99
system system system system
ynot 8 340 ynot 40 2 1 2 ynot 5 1 83 yno 99 63 5
60 200 :
precision = ——= .42 precision= —— =.52 precision= —— =. microaverage _ _268 _ 73
8+11 60+55 200+33 precision 268+99
macroaverage _ -42+.52+.86
precision 3

IDENICE N Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

Macro-average: average the precision over all classes
(regardless of how common each class is)

Micro-average: average the precision over all items
(regardless of which class they have)

CS447: Natural Language Processing (J. Hockenmaier) 61

P(Y | X) with Logistic Regression

Task: Model P(y | X) for any input (feature) vector x=(x1,...,Xn)
Idea: Learn feature weights w=(w1,...,wn) (and a bias term b) to
capture how important each feature x; is for predicting the class y

For binary classification (y € {0,1}), (standard) logistic
regression uses the sigmoid function:

P(Y=1]x) = o(Wx + b) = !

1 + exp(—(wx + b))

Parameters to learn: one feature weight vector w and one bias term b

For multiclass classification (y € {0,1,...,K}), multinomial

logistic regression uses the softmax function:

P(Y=y, | x) = softmax(z), = — 2% _ XWX + b))

ZJ-K:l exp(z)) Zj[il exp(—(Wx + b))

Parameters to learn: one feature weight vector w and one bias term b per class.

CS447: Natural Language Processing (J. Hockenmaier) 62

Using Logistic Regression
How do we create a (binary) logistic regression classifier?

1) Design: Decide how to map raw inputs to feature vectors x
2) Training: Learn parameters w and b on training da
3) Testing: Use the classifier to classify unseen inputs

Feature Design: from raw inputs to feature vectors x

In a generative model, we have to learn a model for P(x | y).

To guarantee that we get a proper distribution (ZX P(x|y)=1),we
have to assume that the features (elements of x) are independent
(more precisely, conditionally independent given y),

In a conditional model, we only have to learn P(y | x), not for P(x | y).

Advantage: Because we don’t need a distribution over x, we do not
need to assume that our features x1,...,Xn are independent.

CS447: Natural Language Processing (J. Hockenmaier) 63

Feature Design:
From raw inputs to feature vectors x

Feature design for generative models (Naive Bayes):
— In a generative model, we have to learn a model for P(x | y).
— Getting a proper distribution (ZX P(x | y)=1)is difficult
— NB assumes that the features (elements of x) are independent*

and defines P(x | y) = H,-P(xi |) via a multinomial or Bernoulli
(*more precisely, conditionally independent given y)

— Different kinds of feature values (boolean, integer, real) require
different kinds of distributions P(x; | y) (Bernoulli, multinomial, etc.)

Feature design for conditional models (Logistic Regression):
— In a conditional model, we only have to learn P(y | x)

— It is much easier to get a proper distribution (Zy P(y|x)=1)
— We don’t need to assume that our features are independent
— Any numerical feature xi can be used to compute exp(wjxi)

CS447: Natural Language Processing (J. Hockenmaier)

64

Useful features that are not independent

Different features can overlap in the input
(e.g. we can model both unigrams and bigrams, or overlapping bigrams)

Features can capture properties of the input

(e.g. whether words are capitalized, in all-caps, contain particular
[classes of] letters or characters, etc.)

This also makes it easy to use predefined dictionaries of words

(e.g. for sentiment analysis, or gazetteers for names):

Is this word “positive” (‘happy’) or “negative” (‘awfufl)?

Is this the name of a person (‘Smith’) or city (‘Boston’) [it may be both (‘Paris’)]

Features can capture combinations of properties
(e.g. whether a word is capitalized and ends in a full stop)

We can use the outputs of other classifiers as features

(e.g. to combine weak [less accurate] classifiers for the same task,
or to get at complex properties of the input that require a learned classifier)

CS447: Natural Language Processing (J. Hockenmaier) 65

Learning = Optimization = Loss Minimization

Learning = parameter estimation = optimization:

Given a particular class of model (logistic regression, Naive Bayes, ...) and data
Dtrain, find the best parameters for this class of model on Dtrain

If the model is a probabilistic classifier, think of

optimization as Maximum Likelihood Estimation (MLE)

“Best” = return (among all possible parameters for models of this class)
parameters that assign the largest probability {0 Dirain

In general (incl. for probabilistic classifiers), think of

optimization as Loss Minimization:

“Best” = return (among all possible parameters for models of this class)
parameters that have the smallest loss on Diain

“Loss’: how bad are the predictions of a model?

The loss function we use to measure loss depends on the class of model
L(y,y): how bad is it to predict y if the correct label is y ?

CS447: Natural Language Processing (J. Hockenmaier) 66

Conditional MLE = Cross-Entropy Loss

Conditional MLE: Maximize probability of labels in Dtrain

(W*’ b*) — argmax(w,b) H P(Vi | Xi)
(Xi Y i) €D train
= Maximize P(1 | x;) for any (xi,1) with a positive label in Dyain

= Maximize P(0 | x;) for any (x;,0) with a negative label in Din

This negative log likelinood loss is also called cross-entropy loss

CS447: Natural Language Processing (J. Hockenmaier) 67

The loss surface

Finding the global

Loss minimum in general
is hard

plateau

local
minimum

global Parameters
minimum

CS447: Natural Language Processing (J. Hockenmaier) 68

Gradient of the loss

We don’t even know how this
landscape looks like

CS447: Natural Language Processing (J. Hockenmaier)

Gradient of the loss

But we can compute the
slope (gradient) at the point
that we're currently at.

CS447: Natural Language Processing (J. Hockenmaier)

Gradient descent

Basic idea:
Loss Take small local steps
when updating parameters

e '\ latea
u
X O P

local
?\' minimum

global Parameters
minimum

CS447: Natural Language Processing (J. Hockenmaier) 71

(Stochastic) Gradient Descent

— We want to find parameters that have minimal cost (loss) on
our training data.

— But we don’t know the whole loss surface.

— However, the gradient of the cost (loss) of our current
parameters tells us how the slope of the loss surface

at the point given by our current parameters

— And then we can take a (small) step in the right (downhill)
direction (to update our parameters)

Gradient descent:
Compute loss for entire dataset before updating weights

Stochastic gradient descent:
Compute loss for one (randomly sampled) training example
before updating weights

CS447: Natural Language Processing (J. Hockenmaier) 72

Neural Nets for NLP

CS447: Natural Language Processing (J. Hockenmaier)

Neural Nets for NLP

Explain how to use a feedforward network for
classification.

Explain how to use a feedforward network
as a neural n-gram language model.

Discuss whether a one-hot encoding of the input is
suitable for neural language models

Explain what a recurrent neural network is

CS447: Natural Language Processing (J. Hockenmaier) 74

What are neural nets?

Simplest variant: single-layer feedforward net

For binary Output unit: scalar y

classification tasks: T
Single output unit (;Q Input layer: vector x

Return 1ify > 0.5
Return O otherwise

For multiclass Output layer: vector y
classification tasks:
K output units (a vector)) Input layer: vector x
Each output unit
yi=class |

Return argmaxi(y;)

CS447: Natural Language Processing (J. Hockenmaier) 75

Multiclass models: softmax(y;)

Multiclass classification = predict one of K classes.
Return the class i with the highest score: argmaxi(y;)

In neural networks, this is typically done by using the softmax
function, which maps real-valued vectors in RN into a distribution

over the N outputs

For a vector z = (zo...zx): P(i) = softmax(zi) = exp(zi) / X k=0.x exp(zx)
This is just logistic regression

CS447: Natural Language Processing (J. Hockenmaier) 76

Single-layer feedforward networks

Single-layer (linear) feedforward network
y = WX + b (binary classification)
W is a weight vector, b is a bias term (a scalar)

This is just a linear classifier (aka Perceptron)
(the output yis a linear function of the input x)

Single-layer non-linear feedforward networks:

Pass wx + b through a non-linear activation function,

e.g. y =tanh(wx + b)

CS447: Natural Language Processing (J. Hockenmaier)

77

Nonlinear activation functions

Sigmoid (logistic function): o(x) = 1/(1 + e¥)
Useful for output units (probabilities) [0,1] range
Hyperbolic tangent: tanh(x) = (e2x-1)/(e2*+1)
Useful for internal units: [-1,1] range
Hard tanh (approximates tanh)
htanh(x) = -1 for x < -1, 1 for x > 1, X otherwise
Rectified Linear Unit: ReLU(x) = max(0, x)
Useful for internal units

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

1.0 1.0 1.0 1.0
0.5 / 0.5 0.5 0.5 /
0.0 0.0 0.0 0.0

-0.5 -0.5 -0.5 -0.5

-1.0 -1.0 -1.0 -1.0

"6 420 2 46 6-4-2 02 46 6-4-2 02 46 -6-4-202 46

CS546 Machine Learning in NLP 78

Multi-layer feedforward networks

We can generalize this to multi-layer feedforward nets

T Output layer: vector y
Hidden layer: vector hn

Hidden layer: vector hy

Input layer: vector x

CS447: Natural Language Processing (J. Hockenmaier) 79

An n-gram model P(w | wi...wy)
as a feedforward net (naively)

— The vocabulary V contains n types (incl. UNK, BOS, EOS)
— We want to condition each word on k preceding words

— [Naive] Each input word w; € V (that we’re conditioning on)
IS an n-dimensional one-hot vector v(w) = (0,...0, 1,0....0)
— Our input layer x = [v(w)),...,v(wk)] has nxk elements
— To predict the probability over output words,
the output layer is a softmax over n elements
P(w | wi...wx) = softmax(hW2 + b2)

With (say) one hidden layer h we’ll need two sets of parameters,
one for h and one for the output

CS447: Natural Language Processing (J. Hockenmaier) 80

Naive neural n-gram model

Advantage over non-neural n-gram model:
— The hidden layer captures interactions among context words
— Increasing the order of the n-gram requires only a small linear
iIncrease in the number of parameters.

d|m(W1) goes from k-dim(emb)xdim(h) o (k+1)-dim(emb)xdim(h)
— Increasing the vocabulary also leads only to a linear increase
iIn the number of parameters

But: with a one-hot encoding and dim(V) = 10K or so,
this model still requires a LOT of parameters to learn.
#parameters going to hidden layer: k - dim(V) - dim(h),
with dim(h) = 300, dim(V) = 10,000 and k=3: 9,000,000
Plus #parameters going to output layer: dim(h) - dim(V)
with dim(h) = 300, dim(V) = 10,000: 3,000,000
CS447: Natural Language Processing (J. Hockenmaier) 81

Neural n-gram models

Naive neural language models have similar

shortcomings to standard n-gram models
-Models get very large (and sparse) as n increases
-We can’t generalize across similar contexts
-Markov (independence) assumptions in n-gram models are
too strict

Solutions offered by less naive neural models:

-Do not represent context words as distinct, discrete symbols
(i.e. very high-dimensional one-hot vectors), but use a dense
low-dimensional vector representation where similar words
have similar vectors [next class]

-Use recurrent nets that can encode variable-lengths contexts
[later class]

CS546 Machine Learning in NLP 82

Recurrent neural networks (RNNSs)

Basic RNN: Modify the standard feedforward
architecture (which predicts a string wo...wnone word
at a time) such that the output of the current step (wi)
IS given as additional input to the next time step

(when predicting the output for wi1).
“Output” — typically (the last) hidden layer.

output m output QQQ) [QQQ] QQQ] QQQJ

igden [@Q@) hicven [QOOHOOOHOOSH OO
i (008 v [000) [000) [000) 000

Feedforward Net Recurrent Net

CS447: Natural Language Processing (J. Hockenmaier) 83

RNNs for language modeling

If our vocabulary consists of V words, the output layer
(at each time step) has V units, one for each word.

The softmax gives a distribution over the V words for
the next word.

To compute the probability of a string wowi...wn Wit

(wWhere wo = <s>, and w1 = <\s>), feed in w; as input
at time step 1 and compute

CS447: Natural Language Processing (J. Hockenmaier) 84

Vector Semantics and
Word Embeddings

CS447: Natural Language Processing (J. Hockenmaier)

Vector Semantics and Word Embeddings

Describe the distributional hypothesis.

Explain how to represent words as vectors that
capture distributional similarities

Describe how the vectors obtained from word
embeddings like word2vec differ from vectors
obtained via distributional approaches.

What training data is used for a skipgram classifier?

CS447: Natural Language Processing (J. Hockenmaier) 86

Different approaches to lexical semantics

Lexicographic tradition:
- Use lexicons, thesauri, ontologies

- Assume words have discrete word senses:
bank1 = financial institution; bank2 = river bank, etc.

-May capture explicit relations between word (senses):
“dog” is a “mammal”, etc.

Distributional tradition:
-Map words to (sparse) vectors that capture corpus statistics

- Contemporary variant: use neural nets to learn dense vector

“embeddings” from very large corpora
(this is a prerequisite for most neural approaches to NLP)

- If each word type is mapped to a single vector, this ignores
the fact that words have multiple senses or parts-of-speech

CS447: Natural Language Processing (J. Hockenmaier) 87

The Distributional Hypothesis

Zellig Harris (1954):

“oculist and eye-doctor ... occur in almost the same
environments”

“If A and B have almost identical environments we say that
they are synonyms.”

John R. Firth 1957:

You shall know a word by the company it keeps.

The contexts in which a word appears

tells us a lot about what it means.
Words that appear in similar contexts have similar meanings

CS447: Natural Language Processing (J. Hockenmaier) 88

Two ways NLP uses context for semantics

Distributional similarities (vector-space semantics):
Use the set of contexts in which words (= word types)
appear to measure their similarity

Assumption: Words that appear in similar contexts (tea, coffee)
have similar meanings.

Word sense disambiguation (future lecture)
Use the context of a particular occurrence of a word
(token) to identify which sense it has.

Assumption: If a word has multiple distinct senses

(e.g. plant. factory or green plant), each sense will appear in
different contexts.

CS447: Natural Language Processing (J. Hockenmaier) 89

Distributional Similarities

Measure the semantic similarity of words
in terms of the similarity of the contexts
in which the words appear

Represent words as vectors such that

— each vector element (dimension)
corresponds to a different context

— the vector for any particular word captures
how strongly it is associated with each context

Compute the semantic similarity of words
as the similarity of their vectors.

CS447: Natural Language Processing (J. Hockenmaier)

90

What is a ‘context’?

There are many different definitions of context
that yield different kinds of similarities:

Contexts defined by nearby words:
How often does w appear near the word drink?

Near = “drink appears within a window of +k words of w”,
or “drink appears in the same document/sentence as w”

This yields fairly broad thematic similarities.

Contexts defined by grammatical relations:

How often is (the noun) w used as the subject (object)
of the verb drink? (Requires a parser).

This gives more fine-grained similarities.

CS447: Natural Language Processing (J. Hockenmaier)

91

Vector representations of words

“Traditional” distributional similarity approaches

represent words as sparse vectors
- Each dimension represents one specific context

-Vector entries are based on word-context co-occurrence
statistics (counts or PMI values)

Alternative, dense vector representations:

-We can use Singular Value Decomposition to turn these
sparse vectors into dense vectors (Latent Semantic Analysis)

-We can also use neural models to explicitly learn a dense
vector representation (embedding) (word2vec, Glove, etc.)

Sparse vectors = most entries are zero
Dense vectors = most entries are non-zero

CS447: Natural Language Processing (J. Hockenmaier) 92

Word2Vec Embeddings

Main idea:

Use a binary classifier to predict which words appear in
the context of (i.e. near) a target word.

The parameters of that classifier provide a dense vector
representation of the target word (embedding)

Words that appear in similar contexts (that have high
distributional similarity) will have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pre-trained embeddings can be downloaded)

CS447: Natural Language Processing (J. Hockenmaier) 93

Skip-Gram with negative sampling

Train a binary classifier that decides whether a target

word t appears in the context of other words ¢1.«
— Context: the set of k words near (surrounding) t

— Treat the target word t and any word that actually appears
In its context in a real corpus as positive examples

— Treat the target word t and randomly sampled words
that don’t appear in its context as negative examples

— Train a binary logistic regression classifier to distinguish
these cases

— The weights of this classifier depend on the similarity of t
and the words in ¢1.«

Use the weights of this classifier as embeddings for ¢

CS447: Natural Language Processing (J. Hockenmaier) 94

The Skip-Gram classifier

Use logistic regression to predict whether
the pair (¢, ¢) (target word t and a context word c)
IS a positive or negative example:

1 P(—|t,c) = 1—P(+]t,c)
PN = e -t

Assume that t and c are represented as vectors,
so that their dot product tc captures their similarity

CS447: Natural Language Processing (J. Hockenmaier) 95

Summary: How to learn word2vec (skip-gram)
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings

Train a logistic regression classifier to distinguish words
that co-occur in corpus from those that don'’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples

Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

CS447: Natural Language Processing (J. Hockenmaier)

POS tagging and
sequence labeling

POS tagging and sequence labeling

Why has POS tagging been seen as an important step
in the NLP pipeline?

Discuss the advantages and disadvantages of a very coarse POS
tag set vs. a very fine grained one.

Define a bigram HMM model.
Explain the Viterbi algorithm for POS tagging with a bigram HMM.

Explain how to frame named entity recognition as a sequence
labeling task

Explain the advantages of discriminative models for sequence
labeling

CS447: Natural Language Processing (J. Hockenmaier) 98

POS Tagging

Words often have more than one POS:

- The back door (adjective)
- On my back (noun)
- Win the voters back (particle)

- Promised to back the bill ~ (verb)

The POS tagging task is to determine the POS tag
for a particular instance of a word.

Since there is ambiguity, we cannot simply look up the
correct POS in a dictionary.

These examples from Dekang Lin

CS447: Natural Language Processing (J. Hockenmaier) 99

Why POS tagging?

POS tagging is traditionally viewed as a prerequisite
for further analysis:

—Speech synthesis:

How to pronounce “lead”?

INsult or inSULT, OBject or obJECT, OVERflow or overFLOW,
DIScount or disCOUNT, CONtent or conTENT

—Parsing:
What words are in the sentence?

—Information extraction:

Finding names, relations, etc.

—Machine Translation:
The noun “content” may have a different translation from the adjective.

CS447: Natural Language Processing (J. Hockenmaier) 100

Defining an annotation scheme

Training and evaluating models for these NLP tasks

requires large corpora annotated with the desired
representations.

Annotation at scale is expensive, so a few existing
corpora and their annotations and annotation
schemes (tag sets, etc.) often become the de facto
standard for the field.

It is difficult to know what the ‘right’ annotation scheme
should be for any particular task

How difficult is it to achieve high accuracy for that annotation?
How useful is this annotation scheme for downstream tasks in the pipeline?
=> We often can’t know the answer until we’ve annotated a lot of data...

CS447: Natural Language Processing (J. Hockenmaier) 101

Evaluation metric: test accuracy

How many words in the unseen test data

can you tag correctly?
State of the art on Penn Treebank: around 97%.
= How many sentences can you tag correctly?

Compare your model against a baseline
Standard: assign to each word its most likely tag

(use training corpus to estimate P(tlw))
Baseline performance on Penn Treebank: around 93.7%

... and a (human) ceiling
How often do human annotators agree on the same tag?
Penn Treebank: around 97%

CS447: Natural Language Processing (J. Hockenmaier) 102

Qualitative evaluation

Generate a confusion matrix (for development data):
How often was a word with tag | mistagged as tag j:

Correct Tags
IN JJ] NN NNP RB VBD VBN

IN — 2 7 r % of
o2 — 33 21 17 2 o O errors
Predicted NN 87 — B caused by
Tags NNP 2 33 41 — 2 mistagging
RB 22 20 5 — VBN as JJ

VBD 35 — 44

VBN 2.8 2.6 -

See what errors are causing problems:
-Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
- Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

CS447: Natural Language Processing (J. Hockenmaier) 103

POS tagging with generative models

P(t,w)
P t p—
argmax (t|w) argmax — W)

= argmtaXP(t, W)

= argmtaXP(t)P(w\t)
P(t.w): the joint distribution of the labels we want to predict (t)

and the observed data (w).

We decompose P(t,w) into P(t) and P(w | t) since these
distributions are easier to estimate.

Models based on joint distributions of labels and observed data
are called generative models: think of P(t)P(w | t) as a stochastic
process that first generates the labels, and then generates the
data we see, based on these labels.

CS447: Natural Language Processing (J. Hockenmaier) 104

Hidden Markov Models (HMMSs)

HMMs are the most commonly used generative models for POS tagging
(and other tasks, e.g. in speech recognition)

HMMs make specific independence assumptions in P(t) and P(wl t):

1) P(t) is an n-gram (typically bigram or trigram) model over tags:
Pbigram(t) = HP(t(i) | t(i_l)) Ptrigrarn(t) — HP(t(i) | t(i_l)a t(i_z))

l l
P(t® | ri-D) and P(r® | (-1, (-2)) are called transition probabilities

2) In P(w | t), each w(® depends only on [is generated by/conditioned on] t®:
P(w | t) = []Pov® |)
i

Pw® | t®) are called emission probabilities
These probabilities don’t depend on the string position),

but are defined over word and tag types.
With subscripts ijk, to index types, they become P(1;! t), P(t:1 tj, tx), P(wil 1))

CS447: Natural Language Processing (J. Hockenmaier) 105

HMMs as probabilistic automata

An HMM defines

Transition probabilities:
able P(ti| t)

0.01 g4 Emission probabilities:
Zealous \\ P(wi| ti)

CS447: Natural Language Processing (J. Hockenmaier) 106

Learning an HMM from /abeled data

Pierre_NNP Vinken NNP , , 61 _CD years_NNS

old JJ , , will MD join VB the DT board NN
as_IN a_ DT nonexecutive JJ director NN Nov._ NNP
29 CD L] L]

We count how often we see 1z, and wj t; etc. in the data
(use relative frequency estimates):

Learning the transition probabilities:

C(t;t;)
P(t;t; /
Learning the emission probabilities:
O(U} '_ti)
P(w;l|t;) = J

CS498JH: Introduction to NLP 107

HMM decoding (Viterbi)

We observe a sentence w = w(),. . w®N)
w= “she promised to back the bill”
We want to use an HMM tagger to find its POS tags t
t* = argmax¢ P(w, t)
= argmax¢ P(tD) - P(wD| t) - Pt@] tD) - ... - P(wM] ()

To do this efficiently, we will use a dynamic
programming technique called the Viterbi algorithm

which exploits the independence assumptions
in the HMM.

CS447: Natural Language Processing (J. Hockenmaier) 108

sajels

Bookkeeping: the trellis

w) | w(2) wii-1) [(i) | yw(i+1) w(N-1){ ywi(N)
d1
di
word w() has tag t;
ar

We use a NxT table (“trellis”) to keep track of the HMM.

W

ords (“time steps™)

The HMM can assign one of the T tags to each of the N words.

CS447: Natural Language Processing (J. Hockenmaier)

109

Using the trellis to find t*

Let trellis[i][j] (word w(and tag t;) store the
probability of the best tag sequence for w...w® that ends in t;
trellis[i][j] =der max P(w.. . wd, t, , tO=t;)

For each cell trellis[i][j], we find the best cell in the previous
column (trellis[i—1][k*]) based on the entries in the previous

column and the transition probabilities P(t; Itx)
k* for trellis[1][j] := Maxx (trellis[i—1][k] - P(%; |tk))

The entry in trellis[i][j] includes the emission probability P(w®lt;)
trellis[i][j] ;= P(wOIlty) - (trellis[i—1][k*] - P(t; ltx=))
We also associate a backpointer from trellis[i][j] to trellis[i—1][k*]

Finally, we pick the highest scoring entry in the last column of

the trellis (= for the last word) and follow the backpointers
CS447: Natural Language Processing (J. Hockenmaier) 110

At any internal cell

- For each cell in the preceding column: multiply its entry with
the transition probability to the current cell.

-Keep a single backpointer to the best (highest scoring) cell in
the preceding column

- Multiply this score with the emission probability of the current
word

win-1) | w(n)
t4 P(w(1.n-1) t(-1)=t) /o\/\
&
7)
trellis[n][1] =
t P(w(t.n-1) t-N=t;) | pg 1ty P(Wm[t;)
< -Max;(trellis[n-1][i]P(ti [t))
\
N P(W(1 ..Nn-1)’ tn-1 =ti) Q(&\\“\

CS447: Natural Language Processing (J. Hockenmaier) 111

HMMs as graphical models

HMMs are generative models of the observed string w

They ‘generate’ w with P(w,t) = [[iP(t®| ti-D)P(w®]| t@)
When we use an HMM for tagging,
we observe w, and need to find t

{ HMM: Arrows
™ go from tags |
! to words
! (Generative
{ Model of w) |

CS447: Natural Language Processing

Discriminative probability models

A discriminative or conditional model of the labels t
given the observed input string w models
P(t | w) = [[iP(t® [w®, tG-1) directly.

: Arrows go
} from words |
. fotags |

! (Conditional }
i Modeloft |
givenw) |

CS447: Natural Language Processing

Discriminative models

There are two main types of discriminative
probability models:

—Maximum Entropy Markov Models (MEMMS)
—Conditional Random Fields (CRFs)

MEMMs and CRFs:
—are both based on logistic regression
—have the same graphical model
—require the Viterbi algorithm for tagging

—differ in that MEMMs consist of independently
learned distributions, while CRFs are trained to
maximize the probability of the entire sequence

CS447: Natural Language Processing

Advantages of discriminative models

We’re usually not really interested in P(w | t).
—w is given. We don’t need to predict it!
Why not model what we’re actually interested in: P(t | w)

Modeling P(w | t) well is quite difficult:
— Prefixes (capital letters) or suffixes are good predictors for
certain classes of t (proper nouns, adverbs,...)

— Se we don’t want to model words as atomic symbols, but in
terms of features

— These features may also help us deal with unknown words
— But features may not be independent
Modeling P(t | w) with features should be easier:

— Now we can incorporate arbitrary features of the word,
because we don’t need to predict w anymore

CS447: Natural Language Processing 115

