
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 11:
More POS tagging,
Sequence labeling

CS447: Natural Language Processing (J. Hockenmaier)

Midterm Exam
When: Friday, October 11, 2019 in class
Where: DCL 1310 (this room)
What: Closed book exam:

- You are not allowed to use any cheat sheets, computers,
calculators, phones etc. 
(you shouldn’t have to anyway)

- Only the material covered in lectures
- Bring a pen (black/blue) or pencil
- Short questions — we expect short answers!
- Tip: If you can’t answer a question, move on to the next one.

You may not be able to complete the whole exam in the time
given — there will be a lot of questions, so first do the ones
you know how to answer!

2

CS447: Natural Language Processing (J. Hockenmaier)

Question types
Define X: 
Provide a mathematical/formal definition of X
Explain X; Explain what X is/does: 
Use plain English to define X and say what X is/does
Compute X: 
Return X; Show the steps required to calculate it
Draw X: 
Draw a figure of X
Show/Prove that X is true/is the case/…: 
This may require a (typically very simple) proof.
Discuss/Argue whether … 
Use your knowledge (of X,Y,Z) to argue your point

3

CS447: Natural Language Processing (J. Hockenmaier)

Basics about language
Explain Zipf’s law and why it makes NLP difficult. 
 

Explain why we often use statistical models in NLP.  
 

Give two examples of ambiguity and explain how they
make natural language understanding difficult.

4

CS447: Natural Language Processing (J. Hockenmaier)

Basics about language
Explain Zipf’s law and why it makes NLP difficult.

Zipf’s law says that a few words are very frequent, and most
words are very rare. This makes NLP difficult because we will
always come across rare/unseen words.

Explain why we often use statistical models in NLP.
To handle ambiguity (and make NLP systems more robust/to
deal with the coverage problem).

Give two examples of ambiguity and explain why we
have to resolve them.

POS ambiguity: back = noun or verb? Need to resolve this to
understand the structure of sentences.
Word sense ambiguity: bank = river bank or institution. Need to
resolve this to understand the meaning of sentences.

5

CS447: Natural Language Processing (J. Hockenmaier)

Back to HMMs: 
The Viterbi algorithm

6

CS447: Natural Language Processing (J. Hockenmaier)

HMM decoding (Viterbi)
We observe a sentence w = w(1)…w(N)

 w= “she promised to back the bill” 
We want to use an HMM tagger to find its POS tags t

t* = argmaxt P(w, t)
 = argmaxt P(t(1))·P(w(1)| t(1))·P(t(2)| t(1))·…·P(w(N)| t(N))

To do this efficiently, we will use a dynamic
programming technique called the Viterbi algorithm
which exploits the independence assumptions  
in the HMM.

7

CS447: Natural Language Processing (J. Hockenmaier)

States

Bookkeeping: the trellis

We use a N×T table (“trellis”) to keep track of the HMM. 
The HMM can assign one of the T tags to each of the N words.

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

q1

...

qj

...

qT

Words (“time steps”)

8

word w(i) has tag tj

CS447: Natural Language Processing (J. Hockenmaier)

Using the trellis to find t*
Let trellis[i][j] (word w(j) and tag tj) store the  
probability of the best tag sequence for w(1)…w(i) that ends in tj

trellis[i][j] =def max P(w(1)…w(i), t(1)…, t(i) = tj)

For each cell trellis[i][j], we find the best cell in the previous
column (trellis[i–1][k*]) based on the entries in the previous
column and the transition probabilities P(tj |tk)

k* for trellis[i][j] := Maxk (trellis[i–1][k] ⋅ P(tj |tk))

The entry in trellis[i][j] includes the emission probability P(w(i)|tj)

trellis[i][j] := P(w(i)|tj) ⋅ (trellis[i–1][k*] ⋅ P(tj |tk*))

We also associate a backpointer from trellis[i][j] to trellis[i–1][k*]  
 
Finally, we pick the highest scoring entry in the last column of
the trellis (= for the last word) and follow the backpointers

9

CS447: Natural Language Processing (J. Hockenmaier)

Initialization
For a bigram HMM:
Given an N-word sentence w(1)…w(N) and a tag set
consisting of T tags, create a trellis of size N×T

In the first column, initialize each cell trellis[1][k] as  
 trellis[1][k] := π(tk)P(w(1) | tk)
(there is only a single tag sequence for the first word
that assigns a particular tag to that word)

10

CS447: Natural Language Processing (J. Hockenmaier)

At any internal cell
-For each cell in the preceding column: multiply its entry with
the transition probability to the current cell.
-Keep a single backpointer to the best (highest scoring) cell in
the preceding column
-Multiply this score with the emission probability of the current
word

11

w(n-1) w(n)

t1 P(w(1..n-1), t(n-1)=t1)
... ...
ti P(w(1..n-1), t(n-1)=ti)
... ...
tN P(w(1..n-1), tn-1=ti)

P(ti |t1)

P(ti |ti)

P(ti |t
N)

trellis[n][i] =  
 P(w(n)|ti)

⋅Maxj(trellis[n-1][j]P(ti |tj))

CS447: Natural Language Processing (J. Hockenmaier)

At the end of the sentence
In the last column (i.e. at the end of the sentence)
pick the cell with the highest entry, and trace back the
backpointers to the first word in the sentence.

12

CS498JH: Introduction to NLP 13

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

q1

...

qj

...

qT

 Retrieving t* = argmaxt P(t,w)

By keeping one backpointer from each cell to the cell  
in the previous column that yields the highest probability,  
we can retrieve the most likely tag sequence when we’re done.

CS447: Natural Language Processing (J. Hockenmaier)

The Viterbi algorithm
A dynamic programming algorithm which finds the
best (=most probable) tag sequence t* for an input
sentence w: t* = argmaxt P(w | t)P(t)  

Complexity: linear in the sentence length.
With a bigram HMM, Viterbi runs in O(T2N) steps  
for an input sentence with N words and a tag set of T tags. 

The independence assumptions of the HMM tell us  
how to break up the big search problem  
(find t* = argmaxt P(w | t)P(t)) into smaller subproblems.  

The data structure used to store the solution of these
subproblems is the trellis.

14

CS447: Natural Language Processing (J. Hockenmaier)

The Viterbi algorithm
Viterbi(w1…n){

for t (1...T) // INITIALIZATION: first column  
 trellis[1][t].viterbi = p_init[t] × p_emit[t][w1]
for i (2...n){ // RECURSION: every other column
 for t (1....T){
 trellis[i][t] = 0
 for t’ (1...T){  
 tmp = trellis[i-1][t’].viterbi × p_trans[t’][t]
 if (tmp > trellis[i][t].viterbi){
 trellis[i][t].viterbi = tmp
 trellis[i][t].backpointer = t’}}
 trellis[i][t].viterbi ×= p_emit[t][wi]}}
t_max = NULL, vit_max = 0; // FINISH: find the best cell in the last column
for t (1...T)
 if (trellis[n][t].vit > vit_max){t_max = t; vit_max = trellis[n][t].value }
return unpack(n, t_max);
}

15

CS447: Natural Language Processing (J. Hockenmaier)

Unpacking the trellis
unpack(n, t){

i = n;
tags = new array[n+1];
while (i > 0){
 tags[i] = t;
 t = trellis[i][t].backpointer;
 i--;
}
return tags;

}

16

CS447: Natural Language Processing (J. Hockenmaier)

Supplementary: Viterbi for Trigram HMMs
In a Trigram HMM, transition probabilities are of the form:

P(t(i) = ti | t(i−1) = tj, t(i−2) = tk)  

The i-th tag in the sequence influences the probabilities  
of the (i+1)-th tag and the (i+2)-th tag:
 … P(t(i+1) | t(i), t(i−1)) … P(t(i+2) | t(i+1), t(i))

Hence, each row in the trellis for a trigram HMM has to
correspond to a pair of tags — the current and the preceding tag:

(abusing notation)  
trellis[i]⟨j,k⟩: word w(i) has tag tj, word w(i−1) has tag tk

The trellis now has T2 rows.  
But we still need to consider only T transitions into each cell,  
since the current word’s tag is the next word’s preceding tag:
Transitions are only possible from trellis[i]⟨j,k⟩ to trellis[i+1]⟨l,j⟩

17

CS447: Natural Language Processing (J. Hockenmaier)

Other HMM algorithms
The Forward algorithm:

Computes P(w) by replacing Viterbi’s max() with sum()  

Learning HMMs from raw text with the EM algorithm:
-We have to replace the observed counts (from labeled data)  
with expected counts (according to the current model)
-Renormalizing these expected counts will give a new model
-This will be “better” than the previous model, but we will have
to repeat this multiple times to get to decent model  

The Forward-Backward algorithm:
A dynamic programming algorithm for computing the expected
counts of tag bigrams and word-tag occurrences in a sentence
under a given HMM

18

CS447: Natural Language Processing (J. Hockenmaier)

Sequence labeling

19

CS447: Natural Language Processing

POS tagging

20

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS old_JJ ,_,
will_MD join_VB IBM_NNP ‘s_POS board_NN as_IN a_DT
nonexecutive_JJ director_NN Nov._NNP 29_CD ._.

Task: assign POS tags to words

CS447: Natural Language Processing

Noun phrase (NP) chunking

21

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

[NP Pierre Vinken] , [NP 61 years] old , will join  
[NP IBM] ‘s [NP board] as [NP a nonexecutive director]  
[NP Nov. 2] .

Task: identify all non-recursive NP chunks

CS447: Natural Language Processing

The BIO encoding
We define three new tags:
– B-NP: beginning of a noun phrase chunk
– I-NP: inside of a noun phrase chunk
– O: outside of a noun phrase chunk

22

[NP Pierre Vinken] , [NP 61 years] old , will join  
[NP IBM] ‘s [NP board] as [NP a nonexecutive director]  
[NP Nov. 2] .

Pierre_B-NP Vinken_I-NP ,_O 61_B-NP years_I-NP
old_O ,_O will_O join_O IBM_B-NP ‘s_O board_B-NP as_O
a_B-NP nonexecutive_I-NP director_I-NP Nov._B-NP  
29_I-NP ._O

CS447: Natural Language Processing

Shallow parsing

23

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

[NP Pierre Vinken] , [NP 61 years] old , [VP will join]  
[NP IBM] ‘s [NP board] [PP as] [NP a nonexecutive
director] [NP Nov. 2] .

Task: identify all non-recursive NP,  
verb (“VP”) and preposition (“PP”) chunks

CS447: Natural Language Processing

The BIO encoding for shallow parsing
We define several new tags:
– B-NP B-VP B-PP: beginning of an NP, “VP”, “PP” chunk
– I-NP I-VP I-PP: inside of an NP, “VP”, “PP” chunk
– O: outside of any chunk

24

Pierre_B-NP Vinken_I-NP ,_O 61_B-NP years_I-NP
old_O ,_O will_B-VP join_I-VP IBM_B-NP ‘s_O board_B-NP
as_B-PP a_B-NP nonexecutive_I-NP director_I-NP Nov._B-
NP 29_I-NP ._O

[NP Pierre Vinken] , [NP 61 years] old , [VP will join]  
[NP IBM] ‘s [NP board] [PP as] [NP a nonexecutive
director] [NP Nov. 2] .

CS447: Natural Language Processing

Named Entity Recognition

25

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

[PERS Pierre Vinken] , 61 years old , will join  
[ORG IBM] ‘s board as a nonexecutive director  
[DATE Nov. 2] .

Task: identify all mentions of named entities 
 (people, organizations, locations, dates)

CS447: Natural Language Processing

The BIO encoding for NER
We define many new tags:
– B-PERS, B-DATE, …: beginning of a mention of a person/date...
– I-PERS, I-DATE, …: inside of a mention of a person/date...
– O: outside of any mention of a named entity

26

Pierre_B-PERS Vinken_I-PERS ,_O 61_O years_O old_O ,_O
will_O join_O IBM_B-ORG ‘s_O board_O as_O a_O
nonexecutive_O director_O Nov._B-DATE 29_I-DATE ._O

[PERS Pierre Vinken] , 61 years old , will join  
[ORG IBM] ‘s board as a nonexecutive director  
[DATE Nov. 2] .

CS447: Natural Language Processing

Many NLP tasks are
sequence labeling tasks

Input: a sequence of tokens/words:
Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .  

Output: a sequence of labeled tokens/words: 

POS-tagging: Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS
old_JJ ,_, will_MD join_VB IBM_NNP ‘s_POS board_NN
as_IN a_DT nonexecutive_JJ director_NN Nov._NNP
29_CD ._.  

Named Entity Recognition: Pierre_B-PERS Vinken_I-PERS ,_O
61_O years_O old_O ,_O will_O join_O IBM_B-ORG ‘s_O
board_O as_O a_O nonexecutive_O director_O Nov._B-DATE
29_I-DATE ._O  

27

CS447 Natural Language Processing

Graphical models for
sequence labeling

28

CS447: Natural Language Processing

Directed graphical models
Graphical models are a notation for probability models.
In a directed graphical model, each node represents  
a distribution over one random variable:
 P(X) =
Arrows represent dependencies (they define what other
random variables the current node is conditioned on)
 P(Y) P(X | Y) =  

 
 P(Y) P(Z) P(X | Y, Z) = 

Shaded nodes represent observed variables.
White nodes represent hidden variables
 P(Y) P(X | Y) with Y hidden and X observed =

29

X

XY

X
Y

Z

XY

CS447: Natural Language Processing

HMMs as graphical models
HMMs are generative models of the observed string w 
 
They ‘generate’ w with P(w,t) = ∏iP(t(i)| t(i−1))P(w(i)| t(i))
When we use an HMM for tagging,  
we observe w, and need to find t

t(1) t(2) t(3) t(4)

w(1) w(2) w(3) w(4)

HMM: Arrows
go from tags

to words
(Generative
Model of w)

CS447: Natural Language Processing

Models for sequence labeling
Sequence labeling: Given an input sequence w = w(1)…w(n),  
predict the best (most likely) label sequence t = t(1)…t(n)  
 
 

Generative models use Bayes Rule:  
 
 
 
 
 
 

Discriminative (conditional) models model P(t |w) directly

31

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

CS447: Natural Language Processing

Advantages of discriminative models
We’re usually not really interested in P(w | t).
– w is given. We don’t need to predict it!
Why not model what we’re actually interested in: P(t | w)  

Modeling P(w | t) well is quite difficult:
– Prefixes (capital letters) or suffixes are good predictors for

certain classes of t (proper nouns, adverbs,…)
– Se we don’t want to model words as atomic symbols, but in

terms of features
– These features may also help us deal with unknown words
– But features may not be independent
Modeling P(t | w) with features should be easier:
– Now we can incorporate arbitrary features of the word,

because we don’t need to predict w anymore
32

CS447: Natural Language Processing

Discriminative probability models
A discriminative or conditional model of the labels t
given the observed input string w models  
 P(t | w) = ∏iP(t(i) |w(i), t(i−1)) directly. 

t(1) t(2) t(3) t(4)

w(1) w(2) w(3) w(4)

Arrows go
from words  

to tags
(Conditional
Model of t
given w)

CS447: Natural Language Processing

Discriminative models
There are two main types of discriminative  
probability models:

–Maximum Entropy Markov Models (MEMMs)
–Conditional Random Fields (CRFs)

MEMMs and CRFs:
–are both based on logistic regression
–have the same graphical model
– require the Viterbi algorithm for tagging
–differ in that MEMMs consist of independently

learned distributions, while CRFs are trained to
maximize the probability of the entire sequence

CS447: Natural Language Processing

Probabilistic classification
Classification:  
Predict a class (label) c for an input x

There are only a (small) finite number of possible class labels 

Probabilistic classification:
– Model the probability P(c | x)
P(c|x) is a probability if 0 ≤ P (ci | x) ≤ 1, and ∑iP(ci | x) = 1
–Return the class c* = argmaxi P (ci | x)  

that has the highest probability 

One standard way to model P(c | x) is logistic
regression (used by MEMMs and CRFs)

35

CS447: Natural Language Processing

Using features
Think of feature functions as useful questions you can
ask about the input x:  

– Binary feature functions:
 ffirst-letter-capitalized(Urbana) = 1
 ffirst-letter-capitalized(computer) = 0 

– Integer (or real-valued) features:  
fnumber-of-vowels(Urbana) = 3 

Which specific feature functions are useful  
will depend on your task (and your training data).

36

CS447: Natural Language Processing

Recall: From features to probabilities
We associate a real-valued weight wic with each
feature function fi(x) and output class c

Note that the feature function fi(x) does not have to depend  
on c as long as the weight does (note the double index wic)

This gives us a real-valued score for predicting class c
for input x: score(x,c) = ∑iwic fi(x)  

This score could be negative, so we exponentiate it:
score(x,c) = exp(∑iwic fi(x))

To get a probability distribution over all classes c,  
we renormalize these scores:
P(c | x) = score(x,c)∕∑j score(x,cj)
 = exp(∑iwic fi(x))∕∑j exp(∑iwij fi(x))

37

CS447: Natural Language Processing

Learning = finding weights w
We use conditional maximum likelihood estimation
(and standard convex optimization algorithms or
gradient descent) to find/learn w

(for more details, attend CS446 and CS546) 

The conditional MLE training objective:
Find the w that assigns highest probability to all observed
outputs ci given the inputs xi

Learning: finding w

ŵ = argmax
w �

i
P(ci|xi,w)

= argmax
w ⇥

i
log(P(ci|xi,w))

= argmax
w ⇥

i
log

�
e⇥ j w j f j(xi,c)

⇥c� e⇥ j w j f j(xi,c�)

⇥ 38

CS447: Natural Language Processing (J. Hockenmaier)

NB: Terminology
Models that are of the form  
 P(c | x) = score(x,c)∕∑j score(x,cj)
 = exp(∑iwic fi(x))∕∑j exp(∑iwij fi(x))  

are also called loglinear models, Maximum Entropy
(MaxEnt) models, or multinomial logistic regression
models.

CS446 and CS546 should give you more details about these.

The normalizing term ∑j exp(∑iwij fi(x)) is also called  
the partition function and is often abbreviated as Z

39

CS447: Natural Language Processing

MEMMs use a MaxEnt classifier for each P(t(i) |w(i), t(i−1)):
 

Since we use w to refer to words, let’s use λjk as the weight
for the feature function fj(t(i−1), w(i)) when predicting tag tk:

Maximum Entropy Markov Models

t(i−1) t(i)

w(i)

P(t(i) = tk | t(i�1),w(i)) =
exp(Â j l jk f j(t(i�1),w(i))

Âl exp(Â j l jl f j(t(i�1),w(i))

CS447: Natural Language Processing (J. Hockenmaier)

Supplementary: Viterbi for MEMMs
trellis[n][i] stores the probability of the most likely (Viterbi)
tag sequence t(1)…(n) that ends in tag ti for the prefix w(1)…w(n)

Remember that we do not generate w in MEMMs. So:
trellis[n][i] = maxt(1)..(n−1)[P(t(1)…(n−1), t(n)=ti | w(1)…(n))]
 = maxj [trellis[n−1][j] × P(ti | tj, w(n))]  
 = maxj [maxt(1)..(n−2)[P(t(1)..(n−2), t(n−1)=tj | w(1)..(n−1))] ×P(ti | tj,w(n))]

41

w(n−1) w(n)

t1 maxt(1)..(n−2) P(t(1)..(n−2), t(n−1)=t1 | w(1)..(n−1))
... ...
ti maxt(1)..(n−2) P(t(1)..(n−2), t(n−1)=ti | w(1)..(n−1))
... ...
tT maxt(1)..(n−2) P(t(1)..(n−2), t(n−1)=tT | w(1)..(n−1))

P(ti |t1,w (n))

P(ti |ti,w(n))

P(ti |tT,w
(n))

trellis[n][i] = 
maxj[trellis[n−1][j]

×P(ti |tj, w(n))]

