
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 10:
Part-of-Speech Tagging

CS447: Natural Language Processing (J. Hockenmaier)

POS tagging

Pierre Vinken , 61 years old
, will join the board as a
nonexecutive director Nov.

29 .

Raw text

Pierre_NNP Vinken_NNP ,_, 61_CD
years_NNS old_JJ ,_, will_MD join_VB

the_DT board_NN as_IN a_DT
nonexecutive_JJ director_NN Nov._NNP

29_CD ._.

Tagged text

Tagset:
NNP: proper noun

CD: numeral,
JJ: adjective,

...

POS tagger

2

CS447: Natural Language Processing (J. Hockenmaier)

Why POS tagging?
POS tagging is traditionally viewed as a prerequisite
for further analysis: 

–Speech synthesis:
How to pronounce “lead”?
INsult or inSULT, OBject or obJECT, OVERflow or overFLOW, 
DIScount or disCOUNT, CONtent or conTENT
–Parsing:

What words are in the sentence?
–Information extraction:

Finding names, relations, etc.
–Machine Translation:

The noun “content” may have a different translation from the adjective.

3

CS447: Natural Language Processing (J. Hockenmaier)

POS Tagging
Words often have more than one POS:  

-The back door (adjective)
-On my back (noun)
-Win the voters back (particle)
-Promised to back the bill (verb) 

The POS tagging task is to determine the POS tag  
for a particular instance of a word.  

Since there is ambiguity, we cannot simply look up the
correct POS in a dictionary.

These examples from Dekang Lin

4

CS447: Natural Language Processing (J. Hockenmaier)

Defining a tagset

5

CS447: Natural Language Processing (J. Hockenmaier)

Defining a tag set
We have to define an inventory of labels for the
word classes (i.e. the tag set) 

-Most taggers rely on models that have to be trained on
annotated (tagged) corpora. Evaluation also requires
annotated corpora.
-Since human annotation is expensive/time-consuming,  
the tag sets used in a few existing labeled corpora become
the de facto standard.
-Tag sets need to capture semantically or syntactically
important distinctions that can easily be made by trained
human annotators.

6

CS447: Natural Language Processing (J. Hockenmaier)

Word classes
Open classes:

Nouns, Verbs, Adjectives, Adverbs 
 

Closed classes:
Auxiliaries and modal verbs
Prepositions, Conjunctions
Pronouns, Determiners
Particles, Numerals

(see Appendix for details)

7

CS447: Natural Language Processing (J. Hockenmaier)

Defining an annotation scheme
A lot of NLP tasks require systems to map  
natural language text to another representation: 

POS tagging: Text ⟶ POS tagged text
Syntactic Parsing: Text ⟶ parse trees
Semantic Parsing: Text ⟶ meaning representations
…: Text ⟶ …

8

CS447: Natural Language Processing (J. Hockenmaier)

Defining a tag set
Tag sets have different granularities:

Brown corpus (Francis and Kucera 1982): 87 tags
Penn Treebank (Marcus et al. 1993): 45 tags
Simplified version of Brown tag set
(de facto standard for English now) 

NN: common noun (singular or mass): water, book
NNS: common noun (plural): books 

Prague Dependency Treebank (Czech): 4452 tags
Complete morphological analysis:
AAFP3----3N----: nejnezajímavějším
Adjective Regular Feminine Plural Dative….Superlative
[Hajic 2006, VMC tutorial]

9

CS447: Natural Language Processing (J. Hockenmaier)

How much ambiguity is there?
Most word types are unambiguous:

Number of tags per word type: 
 
 
 
 
  
 
 
 
 
 

But a large fraction of word tokens are ambiguous
Original Brown corpus: 40% of tokens are ambiguous

10

NB: These numbers are based on word/tag combinations in the corpus.
Many combinations that don’t occur in the corpus are equally correct.

CS447: Natural Language Processing (J. Hockenmaier)

Defining an annotation scheme
Training and evaluating models for these NLP tasks
requires large corpora annotated with the desired
representations. 

Annotation at scale is expensive, so a few existing
corpora and their annotations and annotation
schemes (tag sets, etc.) often become the de facto
standard for the field.

It is difficult to know what the ‘right’ annotation scheme
should be for any particular task

How difficult is it to achieve high accuracy for that annotation?
How useful is this annotation scheme for downstream tasks in the pipeline?
➩ We often can’t know the answer until we’ve annotated a lot of data…

11

CS447: Natural Language Processing (J. Hockenmaier)

Evaluating POS
taggers

12

CS447: Natural Language Processing (J. Hockenmaier)

Evaluation metric: test accuracy
How many words in the unseen test data  
can you tag correctly?

State of the art on Penn Treebank: around 97%.  
➩ How many sentences can you tag correctly?

Compare your model against a baseline
Standard: assign to each word its most likely tag
(use training corpus to estimate P(t|w))
Baseline performance on Penn Treebank: around 93.7%  

… and a (human) ceiling
How often do human annotators agree on the same tag?  
Penn Treebank: around 97%  

13

CS447: Natural Language Processing (J. Hockenmaier)

Is POS-tagging a solved task?
Penn Treebank POS-tagging accuracy  
≈ human ceiling  

Yes, but:
Other languages with more complex morphology 
need much larger tag sets for tagging to be useful, 
and will contain many more distinct word forms 
in corpora of the same size.
They often have much lower accuracies.

Also: POS tagging accuracy on English text from other
domains can be significantly lower.

14

CS447: Natural Language Processing (J. Hockenmaier)

Generate a confusion matrix (for development data): 
How often was a word with tag i mistagged as tag j: 
 
 
 
 
 
 

See what errors are causing problems:
-Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
-Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Qualitative evaluation

15

Correct Tags

Predicted  
Tags

% of errors  
caused by  
mistagging
VBN as JJ

CS447: Natural Language Processing (J. Hockenmaier)

Building a POS
tagger

16

CS447: Natural Language Processing (J. Hockenmaier)

 She promised to back the bill
w = w(1) w(2) w(3) w(4) w(5) w(6)  
  

t = t(1) t(2) t(3) t(4) t(5) t(6)  

 PRP VBD TO VB DT NN
 
What is the most likely sequence of tags t= t(1)…t(N) 
for the given sequence of words w= w(1)…w(N) ?

t* = argmaxt P(t | w)

Statistical POS tagging

17

CS447: Natural Language Processing (J. Hockenmaier)

POS tagging with generative models
 
 
 
 

P(t,w): the joint distribution of the labels we want to predict (t)
and the observed data (w).
We decompose P(t,w) into P(t) and P(w | t) since these
distributions are easier to estimate. 

Models based on joint distributions of labels and observed data
are called generative models: think of P(t)P(w | t) as a stochastic
process that first generates the labels, and then generates the
data we see, based on these labels.

18

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

CS447: Natural Language Processing (J. Hockenmaier)

Hidden Markov Models (HMMs)
HMMs are the most commonly used generative models for POS tagging
(and other tasks, e.g. in speech recognition)
 
HMMs make specific independence assumptions in P(t) and P(w| t): 

1) P(t) is an n-gram (typically bigram or trigram) model over tags:

P(t(i) | t(i–1)) and P(t(i) | t(i–1), t(i–2)) are called transition probabilities

2) In P(w | t), each w(i) depends only on [is generated by/conditioned on] t(i): 
  

 P(w(i) | t(i)) are called emission probabilities  
 
These probabilities don’t depend on the string position (i),  
but are defined over word and tag types.  
With subscripts i,j,k, to index types, they become P(ti | tj), P(ti | tj, tk), P(wi | tj)

Pbigram(t) = ∏
i

P(t(i) ∣ t(i−1)) Ptrigram(t) = ∏
i

P(t(i) ∣ t(i−1), t(i−2))

P(w ∣ t) = ∏
i

P(w(i) ∣ t(i))

19

CS447: Natural Language Processing (J. Hockenmaier)

Notation: ti/wi vs t(i)/w(i)

To make the distinction between the i-th word/tag in
the vocabulary/tag set and the i-th word/tag in the
sentence clear: 

use superscript notation w(i) for the i-th token  
in the sequence  

and subscript notation wi for the i-th type  
in the inventory (tagset/vocabulary)

20

CS447: Natural Language Processing (J. Hockenmaier)

HMMs as probabilistic automata

DT

JJ

NN

0.7

0.3

0.4

0.6

0.55

VBZ

0.45
0.5

the

0.2
a

0.1every

0.1some 0.1
no

0.01
able

...
...

0.003

zealous

...
...

0.002

zone

0.00024

abandonment

0.001

yields
...
...

0.02

acts

An HMM defines 
Transition probabilities:
 P(ti | tj)
Emission probabilities:
 P(wi | ti)

21

CS447: Natural Language Processing (J. Hockenmaier)

How would the
automaton for a trigram

HMM with transition probabilities
P(ti | tjtk) look like?

 
What about unigrams  

 or n-grams?
???

???

22

CS447: Natural Language Processing (J. Hockenmaier)

DT

JJ

NN VBZq0

Encoding a trigram model as FSA

JJ_DT

NN_DT

JJ

NN VBZDT<S>

DT_<S><S>

JJ_JJ

NN_JJ

VBZ_NN

NN_NN

Bigram model:
States = Tag Unigrams

Trigram model:
States = Tag Bigrams

23

CS447: Natural Language Processing (J. Hockenmaier)

HMM definition

24

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1,qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1,qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1,qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1,qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

A HMM � = (A,B,⇥) consists of

• a set of N states Q = {q1,qN
with Q0 ⇤ Q a set of initial states
and QF ⇤ Q a set of final (accepting) states

• an output vocabulary of M items V = {v1, ...vm}

• an N �N state transition probability matrix A
with ai j the probability of moving from qi to q j.
(�N

j=1ai j = 1 ⇧i; 0 ⌅ ai j ⌅ 1 ⇧i, j)

• an N �M symbol emission probability matrix B
with bi j the probability of emitting symbol v j in state qi
(�N

j=1bi j = 1 ⇧i; 0 ⌅ bi j ⌅ 1 ⇧i, j)

• an initial state distribution vector ⇥ = �⇥1, ...,⇥N
with ⇥i the probability of being in state qi at time t = 1.
(�N

i=1⇥i = 1 0 ⌅ ⇥i ⌅ 1 ⇧i)

}

CS498JH: Introduction to NLP

An example HMM

25

D N V A .
D 0.8 0.2
N 0.7 0.3
V 0.6 0.4
A 0.8 0.2
.

Transition Matrix A
the man ball throws sees red blue .

D 1
N 0.7 0.3
V 0.6 0.4
A 0.8 0.2
. 1

Emission Matrix B

D N V A .
π 1

Initial state vector π
D N

V

A

.

CS447: Natural Language Processing (J. Hockenmaier)

Building an HMM tagger
To build an HMM tagger, we have to: 

— Train the model, i.e. estimate its parameters  
(the transition and emission probabilities)
Easy case: We have a corpus labeled with POS tags (supervised learning) 
Harder case: We have a corpus, but it’s just raw text without tags
(unsupervised learning). In that case it really helps to have a dictionary of
which POS tags each word can have  

— Define and implement a tagging algorithm that  
finds the best tag sequence t* for each input sentence w: 
 t* = argmaxt P(t)P(w | t)

26

CS498JH: Introduction to NLP

We count how often we see titj and wj_ti etc. in the data
(use relative frequency estimates): 

Learning the transition probabilities:  
 

Learning the emission probabilities: 
 

Learning an HMM from labeled data

27

P (tj |ti) =
C(titj)
C(ti)

Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS
old_JJ ,_, will_MD join_VB the_DT board_NN
as_IN a_DT nonexecutive_JJ director_NN Nov._NNP
29_CD ._.

P (wj |ti) =
C(wj ti)

C(ti)

CS447: Natural Language Processing (J. Hockenmaier)

Learning an HMM from unlabeled data
 
 
We can’t count anymore.  
We have to guess how often we’d expect to see titj
etc. in our data set. Call this expected count〈C(...)〉
-Our estimate for the transition probabilities:  
 

-Our estimate for the emission probabilities: 
 

These expected counts can be obtained via dynamic
programming (the Inside-Outside algorithm)

28

Pierre Vinken , 61 years old , will
join the board as a nonexecutive
director Nov. 29 .

Tagset:
NNP: proper noun
CD: numeral,
JJ: adjective,...

P̂ (tj |ti) =
�C(titj)⇥
�C(ti)⇥

P̂ (wj |ti) =
�C(wj ti)⇥
�C(ti)⇥

CS447: Natural Language Processing (J. Hockenmaier)

Finding the best tag sequence
The number of possible tag sequences is
exponential in the length of the input sentence: 

Each word can have up to T tags.
There are N words.
There are up to NT possible tag sequences. 

We cannot enumerate all NT possible tag sequences. 

But we can exploit the independence assumptions  
in the HMM to define an efficient algorithm that
returns the tag sequence with the highest probability

29

CS447: Natural Language Processing (J. Hockenmaier)

Dynamic
Programming for
HMMs

30

CS498JH: Introduction to NLP

The three basic problems for HMMs
We observe an output sequence w=w1...wN:

w=“she promised to back the bill” 

Problem I (Likelihood): find P(w | λ)
Given an HMM λ = (A, B, π), compute the likelihood  
of the observed output, P(w | λ)  

Problem II (Decoding): find Q=q1..qT
Given an HMM λ = (A, B, π), what is the most likely sequence of
states Q=q1..qN ≈ t1...tN to generate w?  

Problem III (Estimation): find argmax λ P(w | λ)
Find the parameters A, B, π which maximize P(w | λ)

31

CS498JH: Introduction to NLP

How can we solve these problems?
I. Likelihood of the input w:

Compute P(w | λ) for the input w and HMM λ  

II. Decoding (= tagging) the input w:
Find the best tags t*=argmaxt P(t | w,λ) for the input w and HMM λ  

III. Estimation (= learning the model):
Find the best model parameters λ*=argmax λ P(t, w | λ)  
for the (unlabeled) training data w

These look like hard problems: With T tags, every input string
w1...n has Tn possible tag sequences

Can we find efficient (polynomial-time) algorithms?

32

CS447: Natural Language Processing (J. Hockenmaier)

Dynamic programming
Dynamic programming is a general technique to solve
certain complex search problems by memoization

1.) Recursively decompose the large search problem
into smaller subproblems that can be solved efficiently

–There is only a polynomial number of subproblems. 

2.) Store (memoize) the solution of each subproblem  
in a common data structure

–Processing this data structure takes polynomial time

33

CS447: Natural Language Processing (J. Hockenmaier)

Dynamic programming algorithms for
I. Likelihood of the input:
Compute P(w| λ) for an input sentence w and HMM λ
⇒ Forward algorithm  

II. Decoding (=tagging) the input:
Find best tags t*=argmaxt P(t | w,λ) for an input sentence w and
HMM λ
⇒ Viterbi algorithm  

III. Estimation (=learning the model):
Find best model parameters λ*=argmax λ P(t, w | λ)  
for unlabeled training data w
⇒ Forward-Backward algorithm

34

CS447: Natural Language Processing (J. Hockenmaier)

States

Bookkeeping: the trellis

We use a N×T table (“trellis”) to keep track of the HMM. 
The HMM can assign one of the T tags to each of the N words.

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

q1

...

qj

...

qT

Words (“time steps”)

35

word w(i) has tag tj

CS447: Natural Language Processing (J. Hockenmaier)

Computing P(t,w) for one tag sequence
w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

q1

...

qj

...

qT

P(w(1)|q1)

P(w(2) | qj)

P(w(i) | qi)

P(t(1)=q1)

P(qj | q1)

P(qi | q...)

P(q..| qi)

P(w(i+1) | qi+1)

P(w(N) | qj)

P(qj | q..)

36

-One path through the trellis = one tag sequence
-We just multiply the probabilities as before

CS447: Natural Language Processing (J. Hockenmaier)

The Viterbi algorithm

37

CS447: Natural Language Processing (J. Hockenmaier)

HMM decoding (Viterbi)
We observe a sentence w = w(1)…w(N)

 w= “she promised to back the bill” 
We want to use an HMM tagger to find its POS tags t

t* = argmaxt P(w, t)
 = argmaxt P(t(1))·P(w(1)| t(1))·P(t(2)| t(1))·…·P(w(N)| t(N))

To do this efficiently, we will use a dynamic
programming technique called the Viterbi algorithm
which exploits the independence assumptions  
in the HMM.

38

CS447: Natural Language Processing (J. Hockenmaier)

Using the trellis to find t*
Let trellis[i][j] (word w(j) and tag tj) store the  
probability of the best tag sequence for w(1)…w(i) that ends in tj

trellis[i][j] =def max P(w(1)…w(i), t(1)…, t(i) = tj)

For each cell trellis[i][j], we find the best cell in the previous
column (trellis[i–1][k*]) based on the entries in the previous
column and the transition probabilities P(tj |tk)

k* for trellis[i][j] := Maxk (trellis[i–1][k] ⋅ P(tj |tk))

The entry in trellis[i][j] includes the emission probability P(w(i)|tj)

trellis[i][j] := P(w(i)|tj) ⋅ (trellis[i–1][k*] ⋅ P(tj |tk*))

We also associate a backpointer from trellis[i][j] to trellis[i–1][k*]  
 
Finally, we pick the highest scoring entry in the last column of
the trellis (= for the last word) and follow the backpointers

39

CS447: Natural Language Processing (J. Hockenmaier)

Initialization
For a bigram HMM:
Given an N-word sentence w(1)…w(N) and a tag set
consisting of T tags, create a trellis of size N×T

In the first column, initialize each cell trellis[1][k] as  
 trellis[1][k] := π(tk)P(w(1) | tk)
(there is only a single tag sequence for the first word
that assigns a particular tag to that word)

40

CS447: Natural Language Processing (J. Hockenmaier)

At any internal cell
-For each cell in the preceding column: multiply its entry with
the transition probability to the current cell.
-Keep a single backpointer to the best (highest scoring) cell in
the preceding column
-Multiply this score with the emission probability of the current
word

41

w(n-1) w(n)

t1 P(w(1..n-1), t(n-1)=t1)
... ...
ti P(w(1..n-1), t(n-1)=ti)
... ...
tN P(w(1..n-1), tn-1=ti)

P(ti |t1)

P(ti |ti)

P(ti |t
N)

trellis[n][i] =  
 P(w(n)|ti)

⋅Maxj(trellis[n-1][j]P(ti |tj))

CS447: Natural Language Processing (J. Hockenmaier)

At the end of the sentence
In the last column (i.e. at the end of the sentence)
pick the cell with the highest entry, and trace back the
backpointers to the first word in the sentence.

42

CS498JH: Introduction to NLP 43

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

q1

...

qj

...

qT

 Retrieving t* = argmaxt P(t,w)

By keeping one backpointer from each cell to the cell  
in the previous column that yields the highest probability,  
we can retrieve the most likely tag sequence when we’re done.

CS447: Natural Language Processing (J. Hockenmaier)

The Viterbi algorithm
A dynamic programming algorithm which finds the
best (=most probable) tag sequence t* for an input
sentence w: t* = argmaxt P(w | t)P(t)  

Complexity: linear in the sentence length.
With a bigram HMM, Viterbi runs in O(T2N) steps  
for an input sentence with N words and a tag set of T tags. 

The independence assumptions of the HMM tell us  
how to break up the big search problem  
(find t* = argmaxt P(w | t)P(t)) into smaller subproblems.  

The data structure used to store the solution of these
subproblems is the trellis.

44

CS447: Natural Language Processing (J. Hockenmaier)

The Viterbi algorithm
Viterbi(w1…n){

for t (1...T) // INITIALIZATION: first column  
 trellis[1][t].viterbi = p_init[t] × p_emit[t][w1]
for i (2...n){ // RECURSION: every other column
 for t (1....T){
 trellis[i][t] = 0
 for t’ (1...T){  
 tmp = trellis[i-1][t’].viterbi × p_trans[t’][t]
 if (tmp > trellis[i][t].viterbi){
 trellis[i][t].viterbi = tmp
 trellis[i][t].backpointer = t’}}
 trellis[i][t].viterbi ×= p_emit[t][wi]}}
t_max = NULL, vit_max = 0; // FINISH: find the best cell in the last column
for t (1...T)
 if (trellis[n][t].vit > vit_max){t_max = t; vit_max = trellis[n][t].value }
return unpack(n, t_max);
}

45

CS447: Natural Language Processing (J. Hockenmaier)

Unpacking the trellis
unpack(n, t){

i = n;
tags = new array[n+1];
while (i > 0){
 tags[i] = t;
 t = trellis[i][t].backpointer;
 i--;
}
return tags;

}

46

CS447: Natural Language Processing (J. Hockenmaier)

Supplementary: Viterbi for Trigram HMMs
In a Trigram HMM, transition probabilities are of the form:

P(t(i) = ti | t(i−1) = tj, t(i−2) = tk)  

The i-th tag in the sequence influences the probabilities  
of the (i+1)-th tag and the (i+2)-th tag:
 … P(t(i+1) | t(i), t(i−1)) … P(t(i+2) | t(i+1), t(i))

Hence, each row in the trellis for a trigram HMM has to
correspond to a pair of tags — the current and the preceding tag:

(abusing notation)  
trellis[i]⟨j,k⟩: word w(i) has tag tj, word w(i−1) has tag tk

The trellis now has T2 rows.  
But we still need to consider only T transitions into each cell,  
since the current word’s tag is the next word’s preceding tag:
Transitions are only possible from trellis[i]⟨j,k⟩ to trellis[i+1]⟨l,j⟩

47

CS447: Natural Language Processing (J. Hockenmaier)

Appendix:
English parts of
speech

48

CS447: Natural Language Processing (J. Hockenmaier)

Nouns
Nouns describe entities and concepts:

Common nouns: dog, bandwidth, dog, fire, snow,
information
- Count nouns have a plural (dogs) and need an article in the singular (the dog

barks)
- Mass nouns don’t have a plural (*snows) and don’t need an article in the

singular (snow is cold, metal is expensive). But some mass nouns can also
be used as count nouns: Gold and silver are metals.

Proper nouns (Names): Mary, Smith, Illinois, USA, France, IBM 

Penn Treebank tags:
NN: singular or mass
NNS: plural
NNP: singular proper noun
NNPS: plural proper noun

49

CS447: Natural Language Processing (J. Hockenmaier)

(Full) verbs
Verbs describe activities, processes, events:

eat, write, sleep, ….
Verbs have different morphological forms:  
infinitive (to eat), present tense (I eat), 3rd pers sg. present tense (he eats),  
past tense (ate), present participle (eating), past participle (eaten)

Penn Treebank tags:
VB: infinitive (base) form
VBD: past tense
VBG: present participle
VBD: past tense
VBN: past participle
VBP: non-3rd person present tense
VBZ: 3rd person singular present tense

50

CS447: Natural Language Processing (J. Hockenmaier)

Adjectives
Adjectives describe properties of entities:

blue, hot, old, smelly,… 

Adjectives have an...
… attributive use (modifying a noun):
the blue book
… and a predicative use (e.g. as argument of be):
The book is blue. 

Many gradable adjectives also have a… 
...comparative form: greater, hotter, better, worse
...superlative form: greatest, hottest, best, worst 

Penn Treebank tags:
JJ: adjective JJR: comparative JJS: superlative

51

CS447: Natural Language Processing (J. Hockenmaier)

Adverbs
Adverbs describe properties of events/states.

- Manner adverbs: slowly (slower, slowest) fast, hesitantly,…
- Degree adverbs: extremely, very, highly….
- Directional and locative adverbs: here, downstairs, left
- Temporal adverbs: yesterday, Monday,… 

Adverbs modify verbs, sentences, adjectives or other adverbs:
Apparently, the very ill man walks extremely slowly  

NB: certain temporal and locative adverbs (yesterday, here) 
can also be classified as nouns  

Penn Treebank tags:
RB: adverb RBR: comparative adverb RBS: superlative adverb

52

CS447: Natural Language Processing (J. Hockenmaier)

Auxiliary and modal verbs
Copula: be with a predicate

She is a student. I am hungry. She was five years old. 

Modal verbs: can, may, must, might, shall,…
She can swim. You must come  

Auxiliary verbs:
-Be, have, will when used to form complex tenses:
He was being followed. She has seen him. We will have been gone.
-Do in questions, negation:
Don’t go. Did you see him?  

Penn Treebank tags:
MD: modal verbs

53

CS447: Natural Language Processing (J. Hockenmaier)

Prepositions
Prepositions occur before noun phrases 
to form a prepositional phrase (PP):

on/in/under/near/towards the wall,
with(out) milk,
by the author,
despite your protest 

PPs can modify nouns, verbs or sentences:
I drink [coffee [with milk]] 
I [drink coffee [with my friends]]

Penn Treebank tags:
IN: preposition  
TO: ‘to’ (infinitival ‘to eat’ and preposition ‘to you’)

54

CS447: Natural Language Processing (J. Hockenmaier)

Conjunctions
Coordinating conjunctions conjoin two elements:

X and/or/but X
[[John]NP and [Mary]NP] NP,  
[[Snow is cold]S but [fire is hot]S]S. 

Subordinating conjunctions introduce a subordinate
(embedded) clause:

[He thinks that [snow is cold]S]S
[She wonders whether [it is cold outside]S]S

Penn Treebank tags:
CC: coordinating
IN: subordinating (same as preposition)

55

CS447: Natural Language Processing (J. Hockenmaier)

Particles
Particles resemble prepositions (but are not followed
by a noun phrase) and appear with verbs: 

come on
he brushed himself off
turning the paper over
turning the paper down

Phrasal verb: a verb + particle combination that has a different
meaning from the verb itself

Penn Treebank tags:
RP: particle

56

CS447: Natural Language Processing (J. Hockenmaier)

Pronouns
Many pronouns function like noun phrases, and refer
to some other entity:
-Personal pronouns: I, you, he, she, it, we, they
-Possessive pronouns: mine, yours, hers, ours
-Demonstrative pronouns: this, that,
-Reflexive pronouns: myself, himself, ourselves
-Wh-pronouns (question words): 
what, who, whom, how, why, whoever, which

Relative pronouns introduce relative clauses
the book that [he wrote] 

Penn Treebank tags:
PRP: personal pronoun PRP$ possessive WP: wh-pronoun

57

CS447: Natural Language Processing (J. Hockenmaier)

Determiners
Determiners precede noun phrases:

the/that/a/every book

-Articles: the, an, a
-Demonstratives: this, these, that
-Quantifiers: some, every, few,…

Penn Treebank tags:
DT: determiner

58

