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CS447: Natural Language Processing (J. Hockenmaier)

Class Admin
Assignments: 
MP1: due 11:59pm Monday, Sept 30
MP2: will be released later today.

Midterm: Friday, Oct 11 in class
Closed book exam, short questions

4th Credit: Proposal due Friday, Oct 4
(via Compass)
We’ll release a template later today.
We want to make sure that you have a topic,  
that you’ve started to look at relevant papers,  
and that your project is realistic.
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Words as input to neural models
We typically think of words as atomic symbols,  
but neural nets require input in vector form.

Naive solution: one-hot encoding (dim(x) = |V| )
“a” = (1,0,0,…0), “aardvark” = (0,1,0,…,0), ….
Very high-dimensional, very sparse vectors (most elements 0) 
No ability to generalize across similar words
Still requires a lot of parameters. 

How do we obtain low-dimensional, dense vectors?
Low-dimensional => our models need far fewer parameters
Dense => lots of elements are non-zero
We also want words that are similar to have similar vectors
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Vector representations of words
“Traditional” distributional similarity approaches 
represent words as sparse vectors
-Each dimension represents one specific context 
-Vector entries are based on word-context co-occurrence 
statistics (counts or PMI values)

 
Alternative, dense vector representations: 
-We can use Singular Value Decomposition to turn these 
sparse vectors into dense vectors (Latent Semantic Analysis)
-We can also use neural models to explicitly learn a dense 
vector representation (embedding) (word2vec, Glove, etc.) 

Sparse vectors = most entries are zero  
Dense vectors = most entries are non-zero
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(Static) Word Embeddings
A (static) word embedding is a function that maps 
each word type to a single vector 

— these vectors are typically dense and have much 
lower dimensionality than the size of the vocabulary

— this mapping function typically ignores that the 
same string of letters may have different senses  
(dining table vs. a table of contents) or parts of 
speech (to table a motion vs. a table)

— this mapping function typically assumes a fixed 
size vocabulary (so an UNK token is still required)
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Word2Vec
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Word2Vec (Mikolov et al. 2013)
The first really influential dense word embeddings  

Two ways to think about Word2Vec:
— a simplification of neural language models
— a binary logistic regression classifier  

Variants of Word2Vec
— Two different context representations: CBOW or Skip-Gram
— Two different optimization objectives:  
Negative sampling (NS) or hierarchical softmax
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Word2Vec Embeddings
Main idea: 
Train a binary classifier to predict which words c appear 
in the context of (i.e. near) a target word t.
The parameters of that classifier provide a dense vector 
representation (embedding) of the target word t.

Words that appear in similar contexts (that have high 
distributional similarity) will have very similar vector 
representations. 

These models can be trained on large amounts of raw 
text (and pre-trained embeddings can be downloaded)
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Skip-Gram with negative sampling
Train a binary logistic regression classifier to decide whether target 
word t does or doesn’t appear in the context of words c1..k

— “Context”: the set of k words near (surrounding) t
— Positive (+) examples:  t and any word c  in its context
— Negative (–) examples: t and randomly sampled words c’
— Training objective:  maximize the probability of the correct label     
     P(+ | t, c) or P(— | t, c) of these examples
— This classifier represents t and c as vectors (embeddings) 
     It has two sets of parameters:  
     a) a matrix of target embeddings to represent target words,  
     b) a matrix of context embeddings to represent context words

— �  depends on similarity (dot product) of t, c

Use the target embeddings as word embeddings.

P( + | t, c) =
1

1 + exp(−t ⋅ c)

�9



CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Goal (during training)
Given a tuple (t,c)  = target, context
(apricot, jam)
(apricot, aardvark)

Return the probability that c is a real 
context word:
P( D = +  | t, c)
P( D = −  | t, c)   =   1 − P(D = + | t, c)

11/27/18
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Skip-Gram Training data (Negative Sampling)

	Training sentence:
	… lemon, a tablespoon of apricot jam   a   pinch ... 
	                         c1              c2     t        c3    c4

	Training data: input/output pairs centering on apricot 
	Assume a +/- 2 word window
	Positive examples (for target apricot)  
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)
	Negative examples (for target apricot)   
For each positive example, sample k negative examples,  
using noise words: (apricot, aardvark), (apricot, puddle)…  
Noise words can be sampled according to corpus frequency  
or according to a smoothed variant where freq’(w) = freq(w)0.75

(This gives more weight to rare words)
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Word2Vec: Negative Sampling
D+: all positive training examples, 
D-: all negative trainng examples 

Training objective: 
Maximize log-likelihood of training data D+ ∪ D-:
�ℒ(D) = ∑

(t,c)∈D+

log P(D = + | t, c) + ∑
(t,c)∈D−

log P(D = − | t, c)
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The Skip-Gram classifier
Use logistic regression to predict whether the pair (t, c )  
(target word t and a context word c),  
is a positive or negative example:

� �
Assume that t and c are represented as vectors,  
so that their dot product tc captures their similarity

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).
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Where do we get vectors t, c from?
Iterative approach: 
Assume an initial set of vectors, and then adjust them 
during training to maximize the probability of the 
training examples. 
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• Minimize the similarity of the (t,c) pairs drawn from the negative examples.
We can express this formally over the whole training set as:

L(q) =
X

(t,c)2+
logP(+|t,c)+

X

(t,c)2�
logP(�|t,c) (6.33)

Or, focusing in on one word/context pair (t,c) with its k noise words n1...nk, the
learning objective L is:

L(q) = logP(+|t,c)+
kX

i=1

logP(�|t,ni)

= logs(c · t)+
kX

i=1

logs(�ni · t)

= log
1

1+ e�c·t +
kX

i=1

log
1

1+ eni·t
(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We can then use stochastic gradient descent to train to this objective, iteratively
modifying the parameters (the embeddings for each target word t and each context
word or noise word c in the vocabulary) to maximize the objective.

Note that the skip-gram model thus actually learns two separate embeddings
for each word w: the target embedding t and the context embedding c. Thesetarget

embedding
context

embedding embeddings are stored in two matrices, the target matrix T and the context matrix
C. So each row i of the target matrix T is the 1⇥ d vector embedding ti for word
i in the vocabulary V , and each column i of the context matrix C is a d ⇥ 1 vector
embedding ci for word i in V . Fig. 6.13 shows an intuition of the learning task for
the embeddings encoded in these two matrices.
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Figure 6.13 The skip-gram model tries to shift embeddings so the target embedding (here
for apricot) are closer to (have a higher dot product with) context embeddings for nearby
words (here jam) and further from (have a lower dot product with) context embeddings for
words that don’t occur nearby (here aardvark).

Just as in logistic regression, then, the learning algorithm starts with randomly
initialized W and C matrices, and then walks through the training corpus using gra-
dient descent to move W and C so as to maximize the objective in Eq. 6.34. Thus
the matrices W and C function as the parameters q that logistic regression is tuning.
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Summary: How to learn word2vec (skip-gram) 
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings 

Train a logistic regression classifier to distinguish words 
that co-occur in corpus from those that don’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples
Train the classifier to distinguish these by slowly adjusting 
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.
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Evaluating embeddings
Compare to human scores on word 
similarity-type tasks:

WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset 
(Huang et al., 2012) 
TOEFL dataset: Levied	is	closest	in	meaning	to:	imposed,	
believed,	requested,	correlated	
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Properties of embeddings
Similarity depends on window size C

C = ±2 The nearest words to Hogwarts:	
Sunnydale	
Evernight	
 
C = ±5 The nearest words to Hogwarts:	
Dumbledore	
Malfoy	
hal@lood
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Analogy: Embeddings capture 
relational meaning!
vector(‘king’) - vector(‘man’) + vector(‘woman’)  = 
vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’)  = 
vector(‘Rome’)
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Dense embeddings you can 
download!
Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/
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Recurrent Neural 
Nets (RNNs)
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Recap: Fully connected feedforward nets
Three kinds of layers,  
arranged in sequence: 

— Input layer  
     (what’s fed into the net) 
— Hidden layers:
     (intermediate computations)
— Output layer:  
     (what the net returns)

Each layer consists of a number of units.
— Each unit computes a real-valued activation
— In a feedforward net, each (hidden/output) unit receives inputs 
     from the units in the immediately preceding layer
— In a fully connected feedforward net, each unit receives inputs  
     from all units in the immediately preceding layer 

  Additional “Highway connections” from layers in earlier layers can be useful
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Input layer: vector x

Hidden layer: vector h1

Hidden layer: vector hn

Output layer: vector y
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Recurrent Neural Nets (RNNs)
The input to a feedforward net has a fixed size.

How do we handle variable length inputs?
In particular, how do we handle variable length 
sequences? 

RNNs handle variable length sequences

There are 3 main variants of RNNs, which differ in 
their internal structure:

basic RNNs (Elman nets) 
LSTMs
GRUs
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Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward 
architecture (which predicts a string w0…wn one word 
at a time) such that the output of the current step (wi) 
is given as additional input to the next time step 
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.
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Basic RNNs
Each time step corresponds to a feedforward net 
where the hidden layer gets its input not just from the 
layer below but also from the activations of the hidden 
layer at the previous time step
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Basic RNNs
Each time step corresponds to a feedforward net 
where the hidden layer gets its input not just from the 
layer below but also from the activations of the hidden 
layer at the previous time step
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A basic RNN unrolled in time
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RNNs for language modeling
If our vocabulary consists of V words, the output layer 
(at each time step) has V units, one for each word.

The softmax gives a distribution over the V words for 
the next word.

To compute the probability of a string w0w1…wn wn+1
(where w0 = <s>, and wn+1 = <\s>), feed in wi as input 
at time step i and compute 
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RNNs for language generation
To generate a string w0w1…wn wn+1 (where w0 = <s>, 
and wn+1 = <\s>), give w0 as first input, and then pick 
the next word according to the computed probability 

Feed this word in as input into the next layer. 

Greedy decoding: always pick the word with the 
highest probability

(this only generates a single sentence — why?)
Sampling: sample according to the given distribution
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RNNs for sequence classification
If we just want to assign a label to the entire 
sequence, we don’t need to produce output at each 
time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the 
sequence as input to a feedforward net:
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