
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 9:  
Word2Vec  
and basic intro to RNNs

CS447: Natural Language Processing (J. Hockenmaier)

Class Admin
Assignments:
MP1: due 11:59pm Monday, Sept 30
MP2: will be released later today.

Midterm: Friday, Oct 11 in class
Closed book exam, short questions

4th Credit: Proposal due Friday, Oct 4
(via Compass)
We’ll release a template later today.
We want to make sure that you have a topic,  
that you’ve started to look at relevant papers,  
and that your project is realistic.

�2

CS447: Natural Language Processing (J. Hockenmaier)

Words as input to neural models
We typically think of words as atomic symbols,  
but neural nets require input in vector form.

Naive solution: one-hot encoding (dim(x) = |V|)
“a” = (1,0,0,…0), “aardvark” = (0,1,0,…,0), ….
Very high-dimensional, very sparse vectors (most elements 0) 
No ability to generalize across similar words
Still requires a lot of parameters.

How do we obtain low-dimensional, dense vectors?
Low-dimensional => our models need far fewer parameters
Dense => lots of elements are non-zero
We also want words that are similar to have similar vectors

�3

CS447: Natural Language Processing (J. Hockenmaier)

Vector representations of words
“Traditional” distributional similarity approaches
represent words as sparse vectors
-Each dimension represents one specific context
-Vector entries are based on word-context co-occurrence
statistics (counts or PMI values)

 
Alternative, dense vector representations:
-We can use Singular Value Decomposition to turn these
sparse vectors into dense vectors (Latent Semantic Analysis)
-We can also use neural models to explicitly learn a dense
vector representation (embedding) (word2vec, Glove, etc.) 

Sparse vectors = most entries are zero  
Dense vectors = most entries are non-zero

�4

CS447: Natural Language Processing (J. Hockenmaier)

(Static) Word Embeddings
A (static) word embedding is a function that maps
each word type to a single vector

— these vectors are typically dense and have much
lower dimensionality than the size of the vocabulary

— this mapping function typically ignores that the
same string of letters may have different senses  
(dining table vs. a table of contents) or parts of
speech (to table a motion vs. a table)

— this mapping function typically assumes a fixed
size vocabulary (so an UNK token is still required)

�5

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec

�6

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec (Mikolov et al. 2013)
The first really influential dense word embeddings  

Two ways to think about Word2Vec:
— a simplification of neural language models
— a binary logistic regression classifier  

Variants of Word2Vec
— Two different context representations: CBOW or Skip-Gram
— Two different optimization objectives:  
Negative sampling (NS) or hierarchical softmax

 

�7

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec Embeddings
Main idea:
Train a binary classifier to predict which words c appear
in the context of (i.e. near) a target word t.
The parameters of that classifier provide a dense vector
representation (embedding) of the target word t.

Words that appear in similar contexts (that have high
distributional similarity) will have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pre-trained embeddings can be downloaded)

�8

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram with negative sampling
Train a binary logistic regression classifier to decide whether target
word t does or doesn’t appear in the context of words c1..k

— “Context”: the set of k words near (surrounding) t
— Positive (+) examples: t and any word c in its context
— Negative (–) examples: t and randomly sampled words c’
— Training objective: maximize the probability of the correct label  
 P(+ | t, c) or P(— | t, c) of these examples
— This classifier represents t and c as vectors (embeddings) 
 It has two sets of parameters:  
 a) a matrix of target embeddings to represent target words,  
 b) a matrix of context embeddings to represent context words

— � depends on similarity (dot product) of t, c

Use the target embeddings as word embeddings.

P(+ | t, c) =
1

1 + exp(−t ⋅ c)

�9

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Goal (during training)
Given a tuple (t,c) = target, context
(apricot, jam)
(apricot, aardvark)

Return the probability that c is a real
context word:
P(D = + | t, c)
P(D = − | t, c) = 1 − P(D = + | t, c)

11/27/18
�10

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Training data (Negative Sampling)

	Training sentence:
	… lemon, a tablespoon of apricot jam a pinch ...
	 c1 c2 t c3 c4

	Training data: input/output pairs centering on apricot
	Assume a +/- 2 word window
	Positive examples (for target apricot)  
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)
	Negative examples (for target apricot)  
For each positive example, sample k negative examples,  
using noise words: (apricot, aardvark), (apricot, puddle)…  
Noise words can be sampled according to corpus frequency  
or according to a smoothed variant where freq’(w) = freq(w)0.75

(This gives more weight to rare words)
�11

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: Negative Sampling
D+: all positive training examples,
D-: all negative trainng examples 

Training objective:
Maximize log-likelihood of training data D+ ∪ D-:
�ℒ(D) = ∑

(t,c)∈D+

log P(D = + | t, c) + ∑
(t,c)∈D−

log P(D = − | t, c)

�12

CS447: Natural Language Processing (J. Hockenmaier)

The Skip-Gram classifier
Use logistic regression to predict whether the pair (t, c)  
(target word t and a context word c),  
is a positive or negative example:

� �
Assume that t and c are represented as vectors,  
so that their dot product tc captures their similarity

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

�13

CS447: Natural Language Processing (J. Hockenmaier)

Where do we get vectors t, c from?
Iterative approach:
Assume an initial set of vectors, and then adjust them
during training to maximize the probability of the
training examples.

�14

22 CHAPTER 6 • VECTOR SEMANTICS

• Minimize the similarity of the (t,c) pairs drawn from the negative examples.
We can express this formally over the whole training set as:

L(q) =
X

(t,c)2+
logP(+|t,c)+

X

(t,c)2�
logP(�|t,c) (6.33)

Or, focusing in on one word/context pair (t,c) with its k noise words n1...nk, the
learning objective L is:

L(q) = logP(+|t,c)+
kX

i=1

logP(�|t,ni)

= logs(c · t)+
kX

i=1

logs(�ni · t)

= log
1

1+ e�c·t +
kX

i=1

log
1

1+ eni·t
(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We can then use stochastic gradient descent to train to this objective, iteratively
modifying the parameters (the embeddings for each target word t and each context
word or noise word c in the vocabulary) to maximize the objective.

Note that the skip-gram model thus actually learns two separate embeddings
for each word w: the target embedding t and the context embedding c. Thesetarget

embedding
context

embedding embeddings are stored in two matrices, the target matrix T and the context matrix
C. So each row i of the target matrix T is the 1⇥ d vector embedding ti for word
i in the vocabulary V , and each column i of the context matrix C is a d ⇥ 1 vector
embedding ci for word i in V . Fig. 6.13 shows an intuition of the learning task for
the embeddings encoded in these two matrices.

1
.
k
.
n
.
V

1.2…….j………V

1
.
.
.
d

W
C

1. .. … d

increase
similarity(apricot , jam)

wj . ck

jam

apricot

aardvark

decrease
similarity(apricot , aardvark)

wj . cn

“…apricot jam…”
neighbor word

random noise
word

Figure 6.13 The skip-gram model tries to shift embeddings so the target embedding (here
for apricot) are closer to (have a higher dot product with) context embeddings for nearby
words (here jam) and further from (have a lower dot product with) context embeddings for
words that don’t occur nearby (here aardvark).

Just as in logistic regression, then, the learning algorithm starts with randomly
initialized W and C matrices, and then walks through the training corpus using gra-
dient descent to move W and C so as to maximize the objective in Eq. 6.34. Thus
the matrices W and C function as the parameters q that logistic regression is tuning.

CS447: Natural Language Processing (J. Hockenmaier)

Summary: How to learn word2vec (skip-gram)
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings 

Train a logistic regression classifier to distinguish words
that co-occur in corpus from those that don’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples
Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

�15

CS447: Natural Language Processing (J. Hockenmaier)

Evaluating embeddings
Compare to human scores on word
similarity-type tasks:

WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset
(Huang et al., 2012)
TOEFL dataset: Levied	is	closest	in	meaning	to:	imposed,	
believed,	requested,	correlated	

�16

CS447: Natural Language Processing (J. Hockenmaier)

Properties of embeddings
Similarity depends on window size C

C = ±2 The nearest words to Hogwarts:	
Sunnydale	
Evernight	
 
C = ±5 The nearest words to Hogwarts:	
Dumbledore	
Malfoy	
hal@lood

�17

CS447: Natural Language Processing (J. Hockenmaier)

Analogy: Embeddings capture
relational meaning!
vector(‘king’) - vector(‘man’) + vector(‘woman’) =
vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) =
vector(‘Rome’)

�18

CS447: Natural Language Processing (J. Hockenmaier)

Dense embeddings you can
download!
Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

�19

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent Neural
Nets (RNNs)

�20

CS447: Natural Language Processing (J. Hockenmaier)

Recap: Fully connected feedforward nets
Three kinds of layers,  
arranged in sequence:

— Input layer  
 (what’s fed into the net)
— Hidden layers:
 (intermediate computations)
— Output layer:  
 (what the net returns)

Each layer consists of a number of units.
— Each unit computes a real-valued activation
— In a feedforward net, each (hidden/output) unit receives inputs 
 from the units in the immediately preceding layer
— In a fully connected feedforward net, each unit receives inputs  
 from all units in the immediately preceding layer

 Additional “Highway connections” from layers in earlier layers can be useful

�21

Input layer: vector x

Hidden layer: vector h1

Hidden layer: vector hn

Output layer: vector y

… … …
… … …

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent Neural Nets (RNNs)
The input to a feedforward net has a fixed size.

How do we handle variable length inputs?
In particular, how do we handle variable length
sequences?

RNNs handle variable length sequences

There are 3 main variants of RNNs, which differ in
their internal structure:

basic RNNs (Elman nets) 
LSTMs
GRUs

�22

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward
architecture (which predicts a string w0…wn one word
at a time) such that the output of the current step (wi)
is given as additional input to the next time step
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.

�23

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net

CS447: Natural Language Processing (J. Hockenmaier)

Basic RNNs
Each time step corresponds to a feedforward net
where the hidden layer gets its input not just from the
layer below but also from the activations of the hidden
layer at the previous time step

�24

input

output

hidden

CS447: Natural Language Processing (J. Hockenmaier)

Basic RNNs
Each time step corresponds to a feedforward net
where the hidden layer gets its input not just from the
layer below but also from the activations of the hidden
layer at the previous time step

�25

CS447: Natural Language Processing (J. Hockenmaier)

A basic RNN unrolled in time

�26

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for language modeling
If our vocabulary consists of V words, the output layer
(at each time step) has V units, one for each word.

The softmax gives a distribution over the V words for
the next word.

To compute the probability of a string w0w1…wn wn+1
(where w0 = <s>, and wn+1 = <\s>), feed in wi as input
at time step i and compute

�27

∏
i=1..n+1

P(wi |w0 . . . wi−1)

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for language generation
To generate a string w0w1…wn wn+1 (where w0 = <s>,
and wn+1 = <\s>), give w0 as first input, and then pick
the next word according to the computed probability

Feed this word in as input into the next layer.

Greedy decoding: always pick the word with the
highest probability

(this only generates a single sentence — why?)
Sampling: sample according to the given distribution

�28

P(wi |w0 . . . wi−1)

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for sequence classification
If we just want to assign a label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the
sequence as input to a feedforward net:

�29

