
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447 

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 8:
Vector Semantics and 
Word Embeddings



CS447: Natural Language Processing (J. Hockenmaier)

Today’s lecture

The Distributional Hypothesis

From words to sparse vectors  
that capture distributional similarities

From words to dense vectors  
via word embeddings

�2



CS447: Natural Language Processing (J. Hockenmaier)

How do we represent words?
As atomic symbols?

[e.g. as in a traditional n-gram language model, or  
when we use them as explicit features in a classifier]

As very high-dimensional one-hot vectors?
[e.g. as in a naive neural language model]

As very high-dimensional sparse vectors?
[to capture so-called distributional similarities]

As lower-dimensional dense vectors?
[“word embeddings” —  important prerequisite for neural NLP]

�3



CS447: Natural Language Processing (J. Hockenmaier)

What should word representations 
capture?
Vector representations of words were originally 
motivated by attempts to capture lexical semantics 
(the meaning of words) so that words that have 
similar meanings have similar representations

These representations may also capture some 
morphological or syntactic properties of words  
(parts of speech, inflections, stems etc.). 

�4



CS447: Natural Language Processing (J. Hockenmaier)

Why do we care about word similarity?

Question answering:
Q: “How tall is Mt. Everest?”  
Candidate A: “The official height of Mount Everest is 
29029 feet”

“tall” is similar to “height”

�5



CS447: Natural Language Processing (J. Hockenmaier)

Why do we care about word similarity?
Plagiarism detection

�6



CS447: Natural Language Processing (J. Hockenmaier)

Different approaches to lexical semantics

Lexicographic tradition: 
-Use lexicons, thesauri, ontologies
-Assume words have discrete word senses:
bank1 = financial institution; bank2 = river bank, etc. 
-May capture explicit relations between word (senses):  
“dog” is a “mammal”, etc.

 
Distributional tradition:
-Map words to (sparse) vectors that capture corpus statistics 
-Contemporary variant: use neural nets to learn dense vector 
“embeddings” from very large corpora

(this is a prerequisite for most neural approaches to NLP)
- If each word type is mapped to a single vector, this ignores 
the fact that words have multiple senses or parts-of-speech 

�7



CS447: Natural Language Processing (J. Hockenmaier)

The distributional 
hypothesis

�8



CS447: Natural Language Processing (J. Hockenmaier)

The Distributional Hypothesis
Zellig Harris (1954):

“oculist and eye-doctor … occur in almost the same 
environments”
“If A and B have almost identical environments we say that 
they are synonyms.”

John R. Firth 1957:
You shall know a word by the company it keeps. 

The contexts in which a word appears  
tells us a lot about what it means.

Words that appear in similar contexts have similar meanings

�9



CS447: Natural Language Processing (J. Hockenmaier)

Why do we care about word contexts?
What is tezgüino?
A bottle of tezgüino is on the table.  
Everybody likes tezgüino. 
Tezgüino makes you drunk.  
We make tezgüino out of corn.  
(Lin, 1998; Nida, 1975)

The contexts in which a word appears  
tells us a lot about what it means.  

�10



CS447: Natural Language Processing (J. Hockenmaier)

Two ways NLP uses context for semantics

Distributional similarities (vector-space semantics): 
Use the set of contexts in which words (= word types) 
appear to measure their similarity

Assumption: Words that appear in similar contexts (tea, coffee) 
have similar meanings.  

Word sense disambiguation (future lecture) 
Use the context of a particular occurrence of a word 
(token) to identify which sense it has. 

Assumption: If a word has multiple distinct senses  
(e.g. plant: factory or green plant), each sense will appear in 
different contexts. 

�11



CS447: Natural Language Processing (J. Hockenmaier)

Word similarities as 
vector distances

�12



CS447: Natural Language Processing (J. Hockenmaier)

Distributional Similarities 
Measure the semantic similarity of words  
in terms of the similarity of the contexts  
in which the words appear

Represent words as vectors such that
— each vector element (dimension)  
     corresponds to a different context
— the vector for any particular word captures  
     how strongly it is associated with each context

Compute the semantic similarity of words  
as the similarity of their vectors.

�13



CS447: Natural Language Processing (J. Hockenmaier)

Distributional similarities
Distributional similarities use the set of contexts  
in which words appear to measure their similarity.

They represent each word w as a vector w
w = (w1, …, wN) ∈ RN  

in an N-dimensional vector space.
-Each dimension corresponds to a particular context cn

-Each element wn of w captures the degree to which  
the word w is associated with the context cn.
-  wn depends on the co-occurrence counts of w and cn 

The similarity of words w and u is given by the 
similarity of their vectors w and u 

�14



CS447: Natural Language Processing (J. Hockenmaier)

Documents as contexts
Let’s assume our corpus consists of a (large) number 
of documents (articles, plays, novels, etc.) 

In that case, we can define the contexts of a word as 
the sets of documents in which it appears. 

Conversely, we can represent each document as the 
(multi)set of words which appear in it.
- Intuition: Documents are similar to each other if they contain 
the same words. 
-This is useful for information retrieval, e.g. to compute the 
similarity between a query (also a document) and any 
document in the collection to be searched.

�15



CS447: Natural Language Processing (J. Hockenmaier)

Term-Document Matrix
 
 
 
 
 
 
A Term-Document Matrix is a 2D table:
-Each cell contains the frequency (count) of the term (word) t 
in document d:  tft,d 
-Each column is a vector of counts over words, representing a 
document
-Each row is a vector of counts over documents, representing 
a word

�16

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0



CS447: Natural Language Processing (J. Hockenmaier)

Term-Document Matrix
 
 
 
 
 
 
Two documents are similar if their vectors are similar
Two words are similar if their vectors are similar

�17

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0



CS447: Natural Language Processing (J. Hockenmaier)

What is a ‘context’?
There are many different definitions of context  
that yield different kinds of similarities:

Contexts defined by nearby words: 
How often does w appear near the word drink?
Near = “drink appears within a window of ±k words of w”,  
or “drink appears in the same document/sentence as w”
This yields fairly broad thematic similarities. 

Contexts defined by grammatical relations:
How often is (the noun) w used as the subject (object)  
of the verb drink?  (Requires a parser).
This gives more fine-grained similarities. 
 

�18



CS447: Natural Language Processing (J. Hockenmaier)

Using nearby words as contexts
-Decide on a fixed vocabulary of N context words c1..cN

Context words should occur frequently enough in your corpus that you get 
reliable co-occurrence counts, but you should ignore words that are too 
common (‘stop words’: a, the, on, in, and, or, is, have, etc.)   

-Define what ‘nearby’ means
 For example: w appears near c if c appears within ±5 words of w  

-Get co-occurrence counts of words w and contexts c 

-Define how to transform co-occurrence counts  
of words w and contexts c into vector elements wn
For example: compute (positive) PMI of words and contexts 

-Define how to compute the similarity of word vectors
For example: use the cosine of their angles.

�19



CS447: Natural Language Processing (J. Hockenmaier)

Defining and counting co-occurrence
Defining co-occurrences:
-Within a fixed window: vi occurs  within ±n words of w
-Within the same sentence: requires sentence boundaries
-By grammatical relations:  
vi occurs as a subject/object/modifier/… of verb w  
(requires parsing - and separate features for each relation) 

Counting co-occurrences:
- fi  as binary features (1,0): w does/does not occur with vi
- fi  as frequencies: w occurs n times with vi
- fi  as probabilities:  
e.g. fi is the probability that vi is the subject of w.

�20



CS447: Natural Language Processing (J. Hockenmaier)

Getting co-occurrence counts
Co-occurrence as a binary feature:

Does word w ever appear in the context c?  (1 = yes/0 = no)

Co-occurrence as a frequency count:
How often does word w appear in the context c? (0…n times)

 
 
 
 
Typically: 10K-100K dimensions (contexts), very sparse vectors

�21

arts boil data function large sugar water
apricot 0 1 0 0 1 1 1

pineapple 0 1 0 0 1 1 1

digital 0 0 1 1 1 0 0

information 0 0 1 1 1 0 0

arts boil data function large sugar water
apricot 0 1 0 0 5 2 7

pineapple 0 2 0 0 10 8 5

digital 0 0 31 8 20 0 0

information 0 0 35 23 5 0 0



CS447: Natural Language Processing (J. Hockenmaier)

Counts vs PMI
Sometimes, low co-occurrences counts are very 
informative, and high co-occurrence counts are not:
-Any word is going to have relatively high co-occurrence 
counts with very common contexts (e.g. “it”, “anything”, “is”, 
etc.), but this won’t tell us much about what that word means. 
-We need to identify when co-occurrence counts are more 
likely than we would expect by chance.  

We can use pointwise mutual information (PMI) 
values instead of raw frequency counts:  

 
But this requires us to define p(w, c), p(w) and p(c) 

�22

PMI(w, c) = log
p(w, c)

p(w)p(c)



CS447: Natural Language Processing (J. Hockenmaier)

Word-Word Matrix
Context: ± 7 words
 
 
 
 
Resulting word-word matrix:

f(w, c) = how often does word w appear in context c: 
“information” appeared six times in the context of “data” 
 
 
 
 

�23

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0



CS447: Natural Language Processing (J. Hockenmaier) �24

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi ) =
fij

j=1

C

∑

N

p(cj ) =
fij

i=1

W

∑

N

p(w=information, c=data) = 6/19 = .32
p(w=information) = 11/19 = .58
p(c=data) = 7/19 = .37

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11



CS447: Natural Language Processing (J. Hockenmaier)

Computing PMI of w and c:  
Using a fixed window of ± k words

N: How many tokens does the corpus contain?
f(w) ≤ N: How often does w occur?
f(w, c) ≤ f(w,): How often does w occur with c in its window?
f(c) = ∑wf(w, c) ≤ N: How many tokens have c in their window?  

p(w) =  f(w)/N 
p(c) =  f(c)/N 
p(w, c) = f(w, c)/N

�25

PMI(w, c) = log
p(w, c)

p(w)p(c)



CS447: Natural Language Processing (J. Hockenmaier)

Computing PMI of w and c:  
w and c in the same sentence

N: How many sentences does the corpus contain?
f(w) ≤ N: How many sentences contain w?
f(w, c) ≤ f(w): How many sentences contain w and c?
f(c) ≤ N: How many sentences contain c?  

p(w) =  f(w)/N 
p(c) =  f(c)/N 
p(w, c) = f(w, c)/N

�26

PMI(w, c) = log
p(w, c)

p(w)p(c)



CS447: Natural Language Processing (J. Hockenmaier)

Positive Pointwise Mutual Information
PMI is negative when words co-occur less than 
expected by chance.

This is unreliable without huge corpora:
With P(w1) ≈ P(w2) ≈ 10-6, we can’t estimate whether P(w1,w2) 
is significantly different from 10-12

 
We often just use positive PMI values,  
and replace all PMI values < 0 with 0:

Positive Pointwise Mutual Information (PPMI):
PPMI(w,c) = PMI(w,c) if PMI(w,c) > 0  

                   = 0             if PMI(w,c) ≤ 0

�27



CS447: Natural Language Processing (J. Hockenmaier)

PMI and smoothing
PMI is biased towards infrequent events:

If P(w, c) = P(w) = P(c), then PMI(w,c) = log(1/P(w))
So PMI(w, c) is larger for rare words w with low P(w).

Simple remedy: Add-k smoothing of P(w, c), P(w), P(c)  
pushes all PMI values towards zero.
Add-k smoothing affects low-probability events more, 
and will therefore reduce the bias of PMI  towards 
infrequent events.

(Pantel & Turney 2010)

�28



CS447: Natural Language Processing (J. Hockenmaier)

Vector similarity as vector distances
In distributional models, every word is a point in n-dimensional 
space.
How do we measure the similarity between two points/vectors?  

In general:
•Manhattan distance (Levenshtein distance, L1 norm) 
 
 

•Euclidian distance (L2 norm)

�29

distL1(⌅x, ⌅y) =
N�

i=1

|xi � yi|

distL2(⌅x, ⌅y) =

⌅⇤⇤⇥
N�

i=1

(xi � yi)2 X

Y

L1L2



CS447: Natural Language Processing (J. Hockenmaier)

Dot product as similarity
If the vectors consist of simple binary features (0,1), 
we can use the dot product as similarity metric: 
 
 
 
 

The dot product is a bad metric if the vector elements 
are arbitrary features: it prefers long vectors
- If one xi is very large (and yi nonzero), sim(x,y) gets very large  

If the number of nonzero xi and yi s is very large, sim(x,y) gets very large.
- Both can happen with frequent words.

�30

simdot�prod(⌅x, ⌅y) =
N�

i=1

xi � yi

length of ⇥x : |⇥x| =

⌅⇤⇤⇥
N�

i=1

x2
i



CS447: Natural Language Processing (J. Hockenmaier)

Vector similarity: Cosine
One way to define the similarity of two vectors  
is to use the cosine of their angle. 

The cosine of two vectors is their dot product,  
divided by the product of their lengths: 
 
 
 

sim(w, u) = 1: w and u point in the same direction
sim(w, u) = 0: w and u are orthogonal 
sim(w, u) = −1: w and u point in the opposite direction

�31

simcos(⌅x, ⌅y) =
�N

i=1 xi ⇥ yi⇥�N
i=1 x2

i

⇥�N
i=1 y2

i

=
⌅x · ⌅y

|⌅x||⌅y|



CS447: Natural Language Processing (J. Hockenmaier)

Word Embeddings

�32



CS447: Natural Language Processing (J. Hockenmaier)

Words as input to neural models
We typically think of words as atomic symbols,  
but neural nets require input in vector form.

Naive solution: one-hot encoding (dim(x) = |V| )
“a” = (1,0,0,…0), “aardvark” = (0,1,0,…,0), ….
Very high-dimensional, very sparse vectors (most elements 0) 
No ability to generalize across similar words
Still requires a lot of parameters. 

How do we obtain low-dimensional, dense vectors?
Low-dimensional => our models need far fewer parameters
Dense => lots of elements are non-zero
We also want words that are similar to have similar vectors

�33



CS447: Natural Language Processing (J. Hockenmaier)

Vector representations of words
“Traditional” distributional similarity approaches 
represent words as sparse vectors
-Each dimension represents one specific context 
-Vector entries are based on word-context co-occurrence 
statistics (counts or PMI values)

 
Alternative, dense vector representations: 
-We can use Singular Value Decomposition to turn these 
sparse vectors into dense vectors (Latent Semantic Analysis)
-We can also use neural models to explicitly learn a dense 
vector representation (embedding) (word2vec, Glove, etc.) 

Sparse vectors = most entries are zero  
Dense vectors = most entries are non-zero

�34



CS447: Natural Language Processing (J. Hockenmaier)

(Static) Word Embeddings
A (static) word embedding is a function that maps 
each word type to a single vector 

— these vectors are typically dense and have much 
lower dimensionality than the size of the vocabulary

— this mapping function typically ignores that the 
same string of letters may have different senses  
(dining table vs. a table of contents) or parts of 
speech (to table a motion vs. a table)

— this mapping function typically assumes a fixed 
size vocabulary (so an UNK token is still required)

�35



CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec Embeddings
Main idea: 
Use a binary classifier to predict which words appear in 
the context of (i.e. near) a target word.
The parameters of that classifier provide a dense vector 
representation of the target word (embedding)

Words that appear in similar contexts (that have high 
distributional similarity) will have very similar vector 
representations. 

These models can be trained on large amounts of raw 
text (and pre-trained embeddings can be downloaded)

�36



CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec (Mikolov et al. 2013)
The first really influential dense word embeddings  

Two ways to think about Word2Vec:
— a simplification of neural language models
— a binary logistic regression classifier  

Variants of Word2Vec
— Two different context representations: CBOW or Skip-Gram
— Two different optimization objectives:  
Negative sampling (NS) or hierarchical softmax

 

�37



CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram with negative sampling
Train a binary classifier that decides whether a target 
word t appears in the context of other words c1..k

— Context: the set of k words near (surrounding) t
— Treat the target word t and any word that actually appears  
in its context in a real corpus as positive examples
— Treat the target word t and randomly sampled words  
that don’t appear in its context as negative examples
— Train a binary logistic regression classifier to distinguish  
these cases
— The weights of this classifier depend on the similarity of t 
and the words in c1..k 

Use the weights of this classifier as embeddings for t 

�38



CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Goal
Given a tuple (t,c)  = target, context
(apricot, jam)
(apricot, aardvark)

Return the probability that c is a real 
context word:
P( D = +  | t, c)
P( D = −  | t, c)   =   1 − P(D = + | t, c)

11/27/18
�39



CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Training data
	Training sentence:
	... lemon, a tablespoon of apricot jam   a   pinch ... 
	                         c1              c2     t        c3    c4

	Training data: input/output pairs centering on apricot 
	Assume a +/- 2 word window
	Positive examples:  
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)
	For each positive example, create k negative examples,  
using noise words: 
	(apricot, aardvark), (apricot, puddle)… 

�40



CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: Negative Sampling
Training data: D+ ∪ D-

D+ = actual examples from training data

Where do we get D- from? 
Lots of options.
Word2Vec: for each good pair (w,c), sample k words and add 
each wi as a negative example (wi,c) to D’
(D’ is k times as large as D)

Words can be sampled according to corpus frequency  
or according to smoothed variant where freq’(w) = freq(w)0.75

(This gives more weight to rare words)

�41



CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: Negative Sampling
Training objective: 
Maximize log-likelihood of training data D+ ∪ D-:

�42

L (Q,D,D0) = Â
(w,c)2D

logP(D = 1|w,c)

+ Â
(w,c)2D0

logP(D = 0|w,c)



CS447: Natural Language Processing (J. Hockenmaier)

The Skip-Gram classifier
Use logistic regression to predict whether the pair (t, c) (target 
word t and a context word c), is a positive or negative example:

� �
Assume that t and c are represented as vectors,  
so that their dot product tc captures their similarity

To capture the entire context window c1..k, assume the words in 
c1:k are independent (multiply) and take the log:  

�

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

�43



CS447: Natural Language Processing (J. Hockenmaier)

Where do we get vectors t, c from?
Iterative approach: 
Assume an initial set of vectors, and then adjust them 
during training to maximize the probability of the 
training examples. 

�44



CS447: Natural Language Processing (J. Hockenmaier)

How to compute p(+ | t, c)?
Intuition:
Words are likely to appear near similar words
Model similarity with dot-product!

Similarity(t,c)  ∝ t · c
Problem:
Dot product is not a probability! 
(Neither is cosine)
	 		

�45



CS447: Natural Language Processing (J. Hockenmaier)

Turning the dot product into a 
probability
The sigmoid lies between 0 and 1:

 
 
 
 

�46

σ(x) =
1

1 + exp(−x)

P( + | t, c) =
1

1 + exp(−t ⋅ c)

P( − | t, c) = 1 −
1

1 + exp(−t ⋅ c)
=

exp(−t ⋅ c)
1 + exp(−t ⋅ c)



CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: Negative Sampling
Distinguish “good” (correct) word-context pairs (D=1), 
from “bad” ones (D=0) 

Probabilistic objective:  
P( D = 1 | t, c ) defined by sigmoid: 
 

 
P( D = 0 | t, c ) = 1 — P( D = 0 | t, c )
P( D = 1 | t, c ) should be high when (t, c) ∈ D+, and low when 
(t,c) ∈ D-

�47

P(D = 1|w,c) = 1
1+ exp(�s(w,c))



CS447: Natural Language Processing (J. Hockenmaier)

Summary: How to learn word2vec (skip-gram) 
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings 

Train a logistic regression classifier to distinguish words 
that co-occur in corpus from those that don’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples
Train the classifier to distinguish these by slowly adjusting 
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

�48



CS447: Natural Language Processing (J. Hockenmaier)

Evaluating embeddings
Compare to human scores on word 
similarity-type tasks:

WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset 
(Huang et al., 2012) 
TOEFL dataset: Levied	is	closest	in	meaning	to:	imposed,	
believed,	requested,	correlated	

�49



CS447: Natural Language Processing (J. Hockenmaier)

Properties of embeddings
Similarity depends on window size C

C = ±2 The nearest words to Hogwarts:	
Sunnydale	
Evernight	
 
C = ±5 The nearest words to Hogwarts:	
Dumbledore	
Malfoy	
hal@lood

�50



CS447: Natural Language Processing (J. Hockenmaier)

Analogy: Embeddings capture 
relational meaning!
vector(‘king’) - vector(‘man’) + vector(‘woman’)  = 
vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’)  = 
vector(‘Rome’)

�51



CS447: Natural Language Processing (J. Hockenmaier)

Using Word 
Embeddings

�52



CS447: Natural Language Processing (J. Hockenmaier)

Using pre-trained embeddings
Assume you have pre-trained embeddings E.
How do you use them in your model?

-Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.
-Option 2: Keep E fixed, but add another hidden layer that is 
learned for your task
-Option 3: Learn matrix T ∈ dim(emb)×dim(emb) and use rows 
of E’ = ET  (adapts all embeddings, not specific words)
-Option 4: Keep E fixed, but learn matrix Δ ∈ R|V|×dim(emb) and 
use E’ = E + Δ or E’ = ET + Δ (this learns to adapt specific 
words)

�53



CS447: Natural Language Processing (J. Hockenmaier)

More on embeddings
Embeddings aren’t just for words!

You can take any discrete input feature (with a fixed number of 
K outcomes, e.g. POS tags, etc.) and learn an embedding 
matrix for that feature.

Where do we get the input embeddings from?
We can learn the embedding matrix during training.
Initialization matters: use random weights, but in special range 
(e.g. [-1/(2d), +(1/2d)] for d-dimensional embeddings), or use 
Xavier initialization
We can also use pre-trained embeddings
LM-based embeddings are useful for many NLP task

�54



CS447: Natural Language Processing (J. Hockenmaier)

Dense embeddings you can 
download!
Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

�55


