#### CS447: Natural Language Processing

http://courses.engr.illinois.edu/cs447

# Lecture 6: Logistic Regression continued, Intro to Neural Nets

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

#### Where are we at?

Language Models: P(w₁....w<sub>N</sub>)

- N-Gram models

Classification for NLP: P(c I w<sub>1</sub>...w<sub>n</sub>)

- Naive Bayes
- Logistic Regression (← to be wrapped up today)

#### Today: Introduction to neural networks

- From logistic regression to classification with neural nets
- A simple neural n-gram model

#### Future lectures:

- From words to vectors (distributional similarity, embeddings)
- Recurrent nets (getting rid of the n-gram assumption)

# Logistic Regression

#### Probabilistic classifiers

A probabilistic classifier returns the *most likely* class *y* for input **x**:

$$y^* = \operatorname{argmax}_y P(Y = y \mid \mathbf{X} = \mathbf{x})$$

#### Naive Bayes uses Bayes Rule:

$$y^* = \operatorname{argmax}_{y} P(y \mid \mathbf{x}) = \operatorname{argmax}_{y} P(\mathbf{x} \mid y) P(y)$$

Naive Bayes models the joint distribution:  $P(\mathbf{x} \mid y)P(y) = P(\mathbf{x}, y)$ Joint models are also called **generative** models because we can view them as stochastic processes that *generate* (labeled) items:

Sample/pick a label y with P(y), and then an item x with P(x|y)

#### **Logistic Regression** models $P(y \mid \mathbf{x})$ directly

This is also called a **discriminative** or **conditional** model, because it only models the probability of the class given the input, and not of the raw data itself.

# P(Y | X) with Logistic Regression

**Task:** Model  $P(y \mid \mathbf{x})$  for any input (feature) vector  $\mathbf{x} = (x_1, ..., x_n)$ 

**Idea:** Learn feature weights  $\mathbf{w} = (w_1, ..., w_n)$  (and a bias term b) to capture how important each feature  $x_i$  is for predicting the class y

For **binary** classification ( $y \in \{0,1\}$ ), (standard) logistic regression uses the sigmoid function:

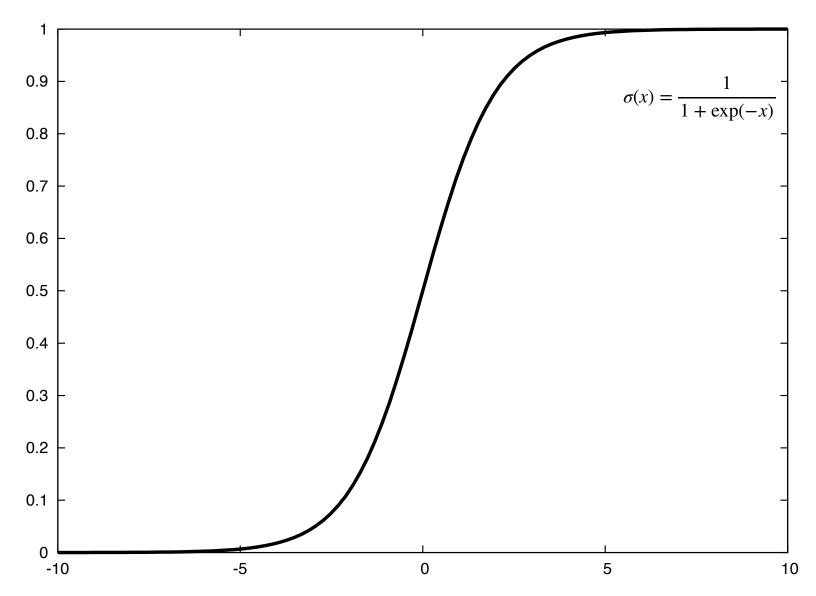
$$P(Y=1 \mid \mathbf{x}) = \sigma(\mathbf{wx} + b) = \frac{1}{1 + \exp(-(\mathbf{wx} + b))}$$

Parameters to learn:

one feature weight vector **w** and one bias term **b** 

5

# The sigmoid function



CS447: Natural Language Processing (J. Hockenmaier)

# Using Logistic Regression

How do we create a (binary) logistic regression classifier?

#### 1) Design:

Decide how to map raw inputs to feature vectors **x** [Advantage for discriminative models  $P(y \mid x)$ : features do not need to be independent]

#### 2) Training:

Learn parameters **w** and *b* on training da

#### 3) **Testing**:

Use the classifier to classify unseen inputs

# Feature Design

#### Features capture **properties** of the input

Does the input contain a particular unigram, bigram, longer phrase...? (Or: what's the frequency of a particular unigram, bigram, phrase in the input?) Is a word capitalized? Does it end in a particular substring? Does it contain a particular character?

Features may also be computed by other classifiers

We typically specify **feature templates** and then use **feature selection** (or **regularization**) methods to automatically identify useful **features** (instantiations of these features)

Feature Template:

"any pair of adjacent words that appears >2x in training data"
Actual features: "an apple",...., "zillion zebras"

# Learning parameters w and b

#### **Training objective:**

Find w and b that assign the largest possible conditional probability to the labels of the items in D<sub>train</sub>

$$(\mathbf{w}^*, b^*) = \operatorname{argmax}_{(\mathbf{w}, b)} \prod_{(\mathbf{x}_i, y_i) \in D_{train}} P(y_i \mid \mathbf{x}_i)$$

- $\Rightarrow$  Maximize  $P(1 \mid \mathbf{x}_i)$  for any  $(\mathbf{x}_i, 1)$  with a positive label in  $D_{train}$
- $\Rightarrow$  Maximize  $P(0 \mid \mathbf{x}_i)$  for any  $(\mathbf{x}_i, 0)$  with a *negative* label in  $D_{train}$

#### Learning = Optimization = Loss Minimization

#### Learning = parameter estimation = optimization:

Given a particular class of model (logistic regression, Naive Bayes, ...) and data D<sub>train</sub>, find the *best* parameters for this class of model on D<sub>train</sub>

# If the model is a probabilistic classifier, think of optimization as Maximum Likelihood Estimation (MLE)

"Best" = return (among all possible parameters for models of this class) parameters that assign the **largest probability** to D<sub>train</sub>

# In general (incl. for probabilistic classifiers), think of optimization as Loss Minimization:

"Best" = return (among all possible parameters for models of this class) parameters that have the **smallest loss** on D<sub>train</sub>

#### "Loss": how bad are the predictions of a model?

The **loss function** we use to measure loss depends on the class of model  $L(\hat{y}, y)$ : how bad is it to predict  $\hat{y}$  if the correct label is y?

### Conditional MLE ⇒ Cross-Entropy Loss

#### Conditional MLE: Maximize probability of labels in Dtrain

$$(\mathbf{w}^*, b^*) = \operatorname{argmax}_{(\mathbf{w}, b)} \prod_{(\mathbf{x}_i, y_i) \in D_{train}} P(y_i \mid \mathbf{x}_i)$$

- $\Rightarrow$  Maximize  $P(1 \mid \mathbf{x}_i)$  for any  $(\mathbf{x}_i, 1)$  with a positive label in  $D_{train}$
- $\Rightarrow$  Maximize  $P(0 \mid \mathbf{x}_i)$  for any  $(\mathbf{x}_i, 0)$  with a *negative* label in  $D_{train}$

#### Equivalently: Minimize negative log prob. of labels in Dtrain

```
P(y_i \mid \mathbf{x}) = 0 \Leftrightarrow -\log(P(y_i \mid \mathbf{x})) = +\infty \qquad \text{if } y_i \text{ is the correct label for } \mathbf{x}, \text{ this is the worst possible model} \\ P(y_i \mid \mathbf{x}) = 1 \Leftrightarrow -\log(P(y_i \mid \mathbf{x})) = 0 \qquad \text{if } y_i \text{ is the correct label for } \mathbf{x}, \text{ this is the best possible model}
```

#### The negative log probability of the correct label is a loss function:

- $-\log(P(y_i \mid \mathbf{x}_i))$  is largest (+ $\infty$ ) when we assign all probability to the wrong label,
- $-\log(P(y_i \mid \mathbf{x}_i))$  is smallest (0) when we assign all probability to the correct label.

#### This negative log likelihood loss is also called cross-entropy loss

# Training with Cross-Entropy Loss

Binary classification:

The training examples  $(\mathbf{x}_i, y_i)$  have gold labels  $y_i \in \{0,1\}$ 

A logistic regression classifier, defined by parameters  $(\mathbf{w}, b)$ , computes the conditional probability of a label given the input as

$$P(Y_i = 1 \mid \mathbf{x}_i) = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$$

$$P(Y_i = 0 \mid \mathbf{x}_i) = 1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b)$$

Define the loss of this classifier on any training example  $(\mathbf{x}_i, y_i)$  as the negative log probability  $-\log P_{\mathbf{w},b}(Y_i = y_i \mid \mathbf{x}_i)$  that it assigns to that example.

$$L_{\mathbf{w},b}(\mathbf{x}_i, y_i) = -\log P_{\mathbf{w},b}(y_i \mid \mathbf{x}_i)$$

Training objective: find parameters  $(\mathbf{w}, b)$  that minimize this loss

Let's define the "cost" of our classifier on the whole dataset as the average loss of each of the *m* training examples:

$$Cost_{CE}(D_{train}) = \frac{1}{m} \sum_{i=1..m} -\log P(y_i \mid \mathbf{x}_i)$$

$$-\log P(y_i \mid \mathbf{x}_i)$$

Let's define the "cost" of our classifier on the whole dataset as the average loss of each of the *m* training examples:

$$Cost_{CE}(D_{train}) = \frac{1}{m} \sum_{i=1..m} -\log P(y_i \mid \mathbf{x}_i)$$

$$-\log P(y_i \mid \mathbf{x}_i)$$

$$= -\log(P(1 \mid \mathbf{x}_i)^{y_i} \cdot P(0 \mid \mathbf{x}_i)^{1-y_i})$$
[either  $y_i = 1$  or  $y_i = 0$ ]

Let's define the "cost" of our classifier on the whole dataset as the average loss of each of the *m* training examples:

$$Cost_{CE}(D_{train}) = \frac{1}{m} \sum_{i=1..m} -\log P(y_i \mid \mathbf{x}_i)$$

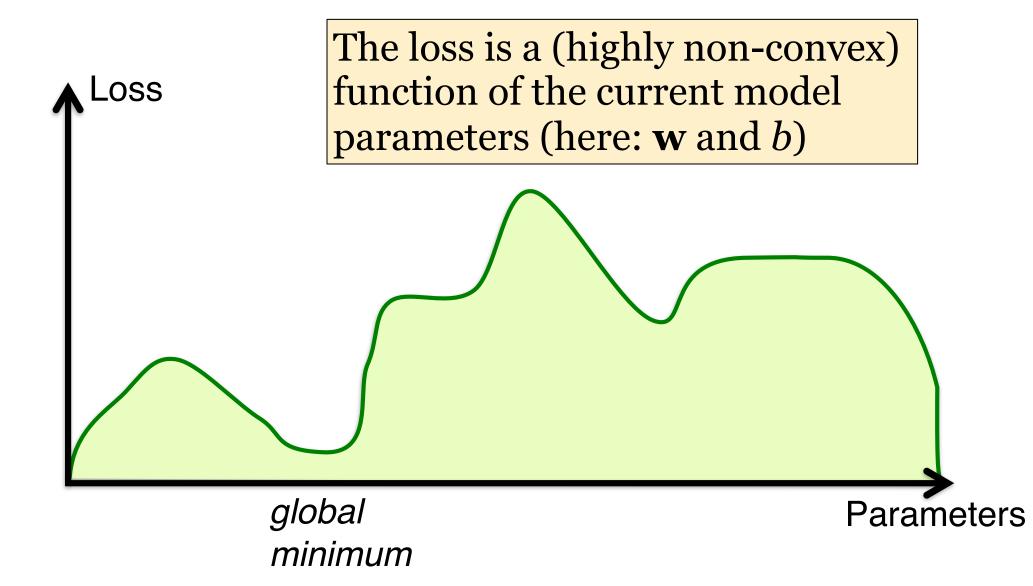
$$\begin{aligned} -\log P(y_i \mid \mathbf{x}_i) \\ &= -\log(P(1 \mid \mathbf{x}_i)^{y_i} \cdot P(0 \mid \mathbf{x}_i)^{1-y_i}) \\ &= [\text{either } y_i = 1 \text{ or } y_i = 0] \\ &= -[y_i \log(P(1 \mid \mathbf{x}_i)) + (1 - y_i) \log(P(0 \mid \mathbf{x}_i))] \\ &\text{[moving the log inside]} \end{aligned}$$

Let's define the "cost" of our classifier on the whole dataset as the average loss of each of the *m* training examples:

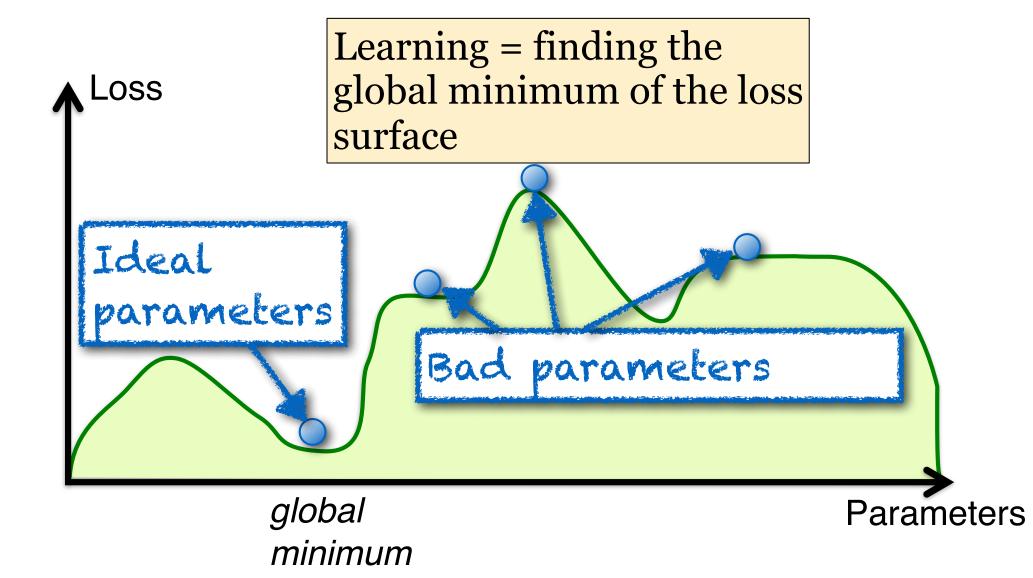
$$Cost_{CE}(D_{train}) = \frac{1}{m} \sum_{i=1..m} -\log P(y_i \mid \mathbf{x}_i)$$

$$\begin{aligned} -\log P(y_i \mid \mathbf{x}_i) \\ &= -\log (P(1 \mid \mathbf{x}_i)^{y_i} \cdot P(0 \mid \mathbf{x}_i)^{1-y_i}) \\ &= -\log (P(1 \mid \mathbf{x}_i)^{y_i} \cdot P(0 \mid \mathbf{x}_i)^{1-y_i}) \\ &= -[y_i \log (P(1 \mid \mathbf{x}_i)) + (1-y_i) \log (P(0 \mid \mathbf{x}_i))] \\ &= -[y_i \log (\sigma(\mathbf{w}\mathbf{x}_i + b) + (1-y_i) \log (1-\sigma(\mathbf{w}\mathbf{x}_i + b))] \\ &= -[y_i \log (\sigma(\mathbf{w}\mathbf{x}_i + b) + (1-y_i) \log (1-\sigma(\mathbf{w}\mathbf{x}_i + b))] \\ &= [\text{plugging in definition of } P(1 \mid \mathbf{x}_i)] \end{aligned}$$

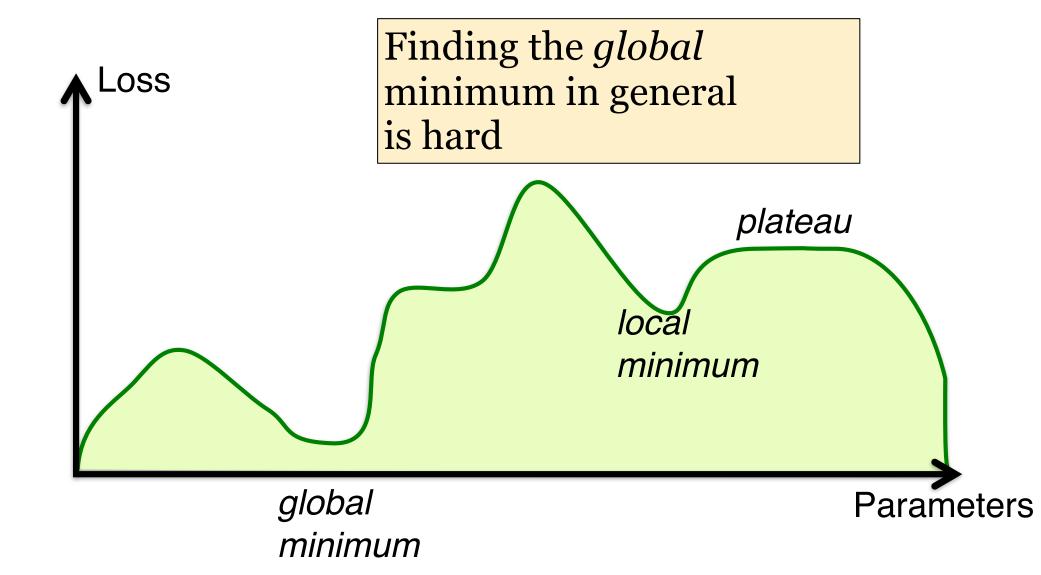
#### The loss surface



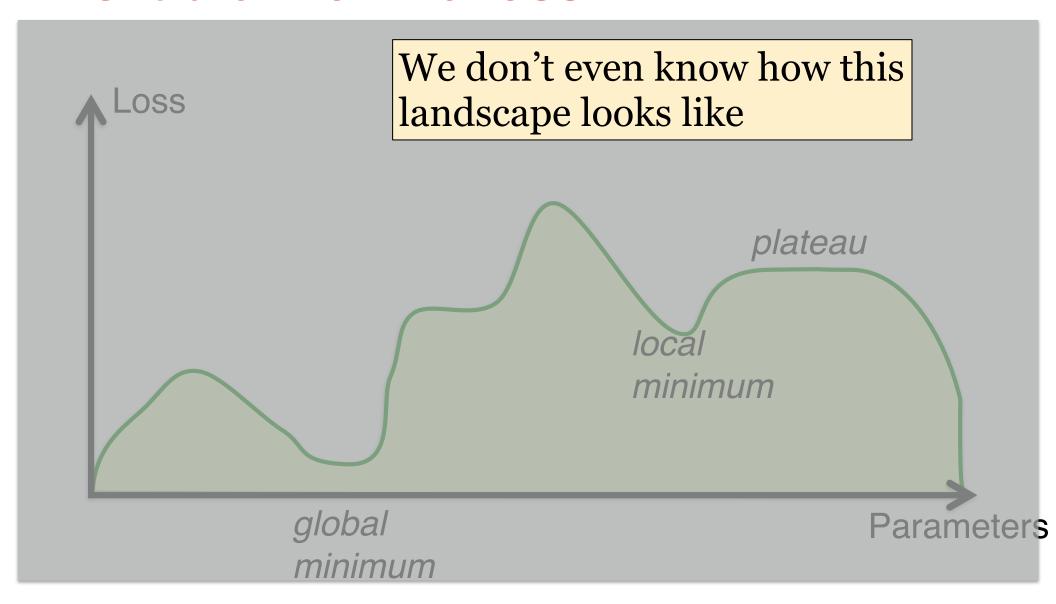
#### The loss surface



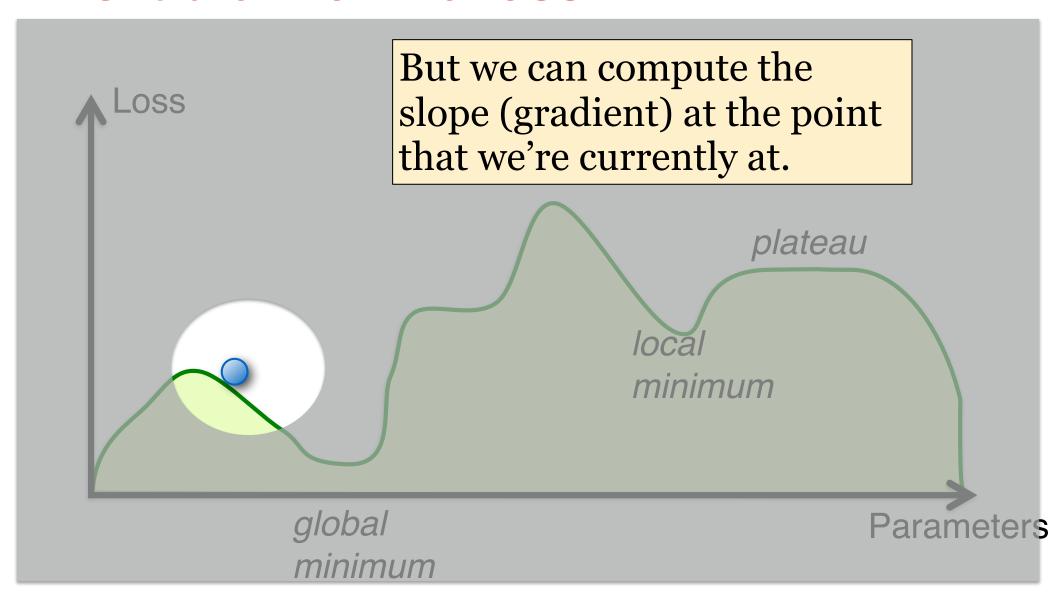
#### The loss surface



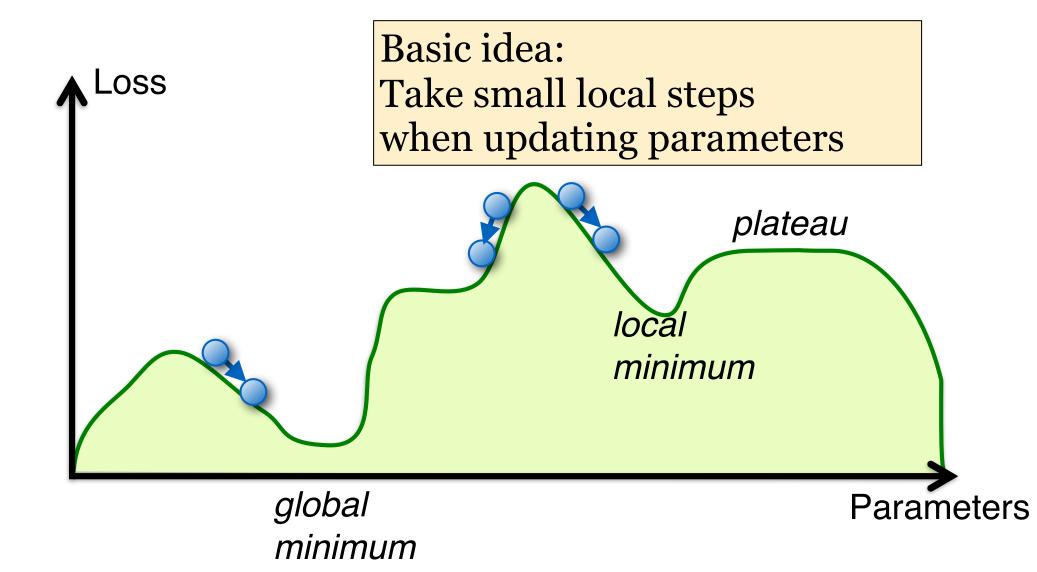
#### Gradient of the loss



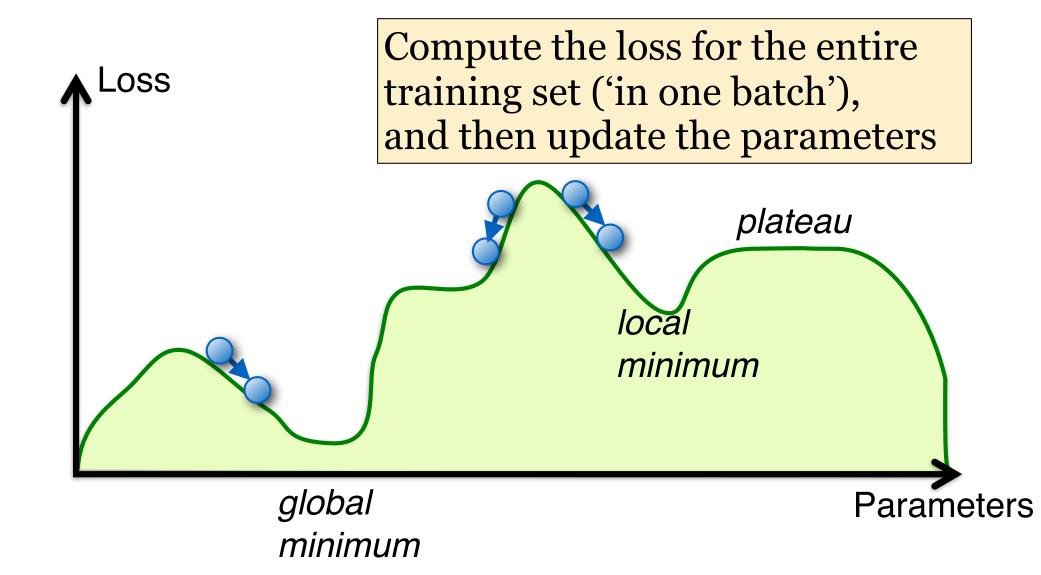
#### Gradient of the loss



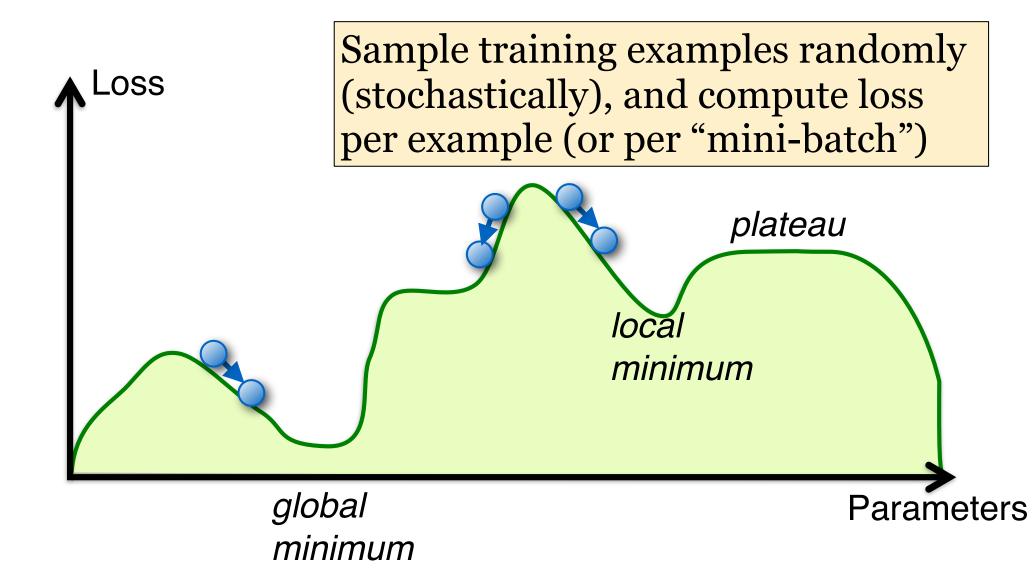
#### Gradient descent



#### Batch Gradient descent



#### Stochastic Gradient descent



# (Stochastic) Gradient Descent

- We want to find parameters that have minimal cost (loss) on our training data.
- But we don't know the whole loss surface.
- However, the gradient of the cost (loss) of our current parameters tells us how the slope of the loss surface at the point given by our current parameters
- And then we can take a (small) step in the right (downhill) direction (to update our parameters)

#### Gradient descent:

Compute loss for entire dataset before updating weights

#### Stochastic gradient descent:

Compute loss for one (randomly sampled) training example before updating weights

# P(Y | X) with Logistic Regression

**Task:** Model  $P(y \mid \mathbf{x})$  for any input (feature) vector  $\mathbf{x} = (x_1, ..., x_n)$  **Idea:** Learn feature weights  $\mathbf{w} = (\mathbf{w}_1, ..., \mathbf{w}_n)$  (and a bias term b) to capture how important each feature  $\mathbf{x}_i$  is for predicting the class y

For **binary** classification ( $y \in \{0,1\}$ ), (standard) logistic regression uses the sigmoid function:

$$P(Y=1 \mid \mathbf{x}) = \sigma(\mathbf{w}\mathbf{x} + b) = \frac{1}{1 + \exp(-(\mathbf{w}\mathbf{x} + b))}$$

Parameters to learn: one feature weight vector w and one bias term b

For **multiclass** classification ( $y \in \{0,1,...,K\}$ ), multinomial logistic regression uses the softmax function:

$$P(Y=y_i \mid \mathbf{x}) = \operatorname{softmax}(\mathbf{z})_i = \frac{\exp(z_i)}{\sum_{j=1}^K \exp(z_j)} = \frac{\exp(-(\mathbf{w}_i \mathbf{x} + b_i))}{\sum_{j=1}^K \exp(-(\mathbf{w}_j \mathbf{x} + b_j))}$$

Parameters to learn: one feature weight vector w and one bias term b per class.

#### Stochastic Gradient Descent

```
function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns \theta
     # where: L is the loss function
     # f is a function parameterized by \theta
     # x is the set of training inputs x^{(1)}, x^{(2)}, ..., x^{(n)}
     # y is the set of training outputs (labels) y^{(1)}, y^{(2)}, ..., y^{(n)}
\theta \leftarrow 0
repeat T times
   For each training tuple (x^{(i)}, y^{(i)}) (in random order)
   Compute \hat{y}^{(i)} = f(x^{(i)}; \theta) # What is our estimated output \hat{y}?
  Compute the loss L(\hat{y}^{(i)}, y^{(i)}) # How far off is \hat{y}^{(i)} from the true output y^{(i)}?
   g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)}) # How should we move \theta to maximize loss?
   \theta \leftarrow \theta - \eta g # go the other way instead
return \theta
```

# Gradient for Logistic Regression

Computing the gradient of the loss for example  $\mathbf{x}_i$  and weight  $\mathbf{w}_j$  is very simple  $(\mathbf{x}_{ji}: j$ -th feature of  $\mathbf{x}_i)$ 

$$\frac{\delta L(\mathbf{w}, b)}{\delta w_i} = [\sigma(\mathbf{w}\mathbf{x}_i + b) - y_i]x_{ji}$$

#### Multiclass classification

For **binary** classification ( $y \in \{0,1\}$ ), (standard) logistic regression uses the sigmoid function:

$$P(Y=1 \mid \mathbf{x}) = \sigma(\mathbf{w}\mathbf{x} + b) = \frac{1}{1 + \exp(-(\mathbf{w}\mathbf{x} + b))}$$

Parameters to learn: one feature weight vector w and one bias term b

For **multiclass** classification ( $y \in \{0,1,...,K\}$ ), multinomial logistic regression uses the softmax function:

$$P(Y=y_i \mid \mathbf{x}) = \text{softmax}(\mathbf{z})_i = \frac{\exp(z_i)}{\sum_{j=1}^K \exp(z_j)} = \frac{\exp(-(\mathbf{w}_i \mathbf{x} + b_i))}{\sum_{j=1}^K \exp(-(\mathbf{w}_j \mathbf{x} + b_j))}$$

Parameters to learn: one feature weight vector w and one bias term b per class.

# Binary logistic regression is just a special case of multinomial logistic regression

**Binary logistic regression** needs a distribution over  $y \in \{0,1\}$ :

$$P(Y=1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-(\mathbf{w}\mathbf{x} + b))}$$

$$P(Y=0 \mid \mathbf{x}) = \frac{\exp(-(\mathbf{w}\mathbf{x} + b))}{1 + \exp(-(\mathbf{w}\mathbf{x} + b))} = 1 - P(Y=1 \mid \mathbf{x})$$

Compare with **Multinomial logistic regression** over  $y \in \{0,1\}$ :

$$P(Y=1 \mid \mathbf{x}) = \frac{\exp(-(\mathbf{w}_1 \mathbf{x} + b_1))}{\exp(-(\mathbf{w}_1 \mathbf{x} + b_1)) + \exp(-(\mathbf{w}_0 \mathbf{x} + b_0))}$$

$$P(Y=0 \mid \mathbf{x}) = \frac{\exp(-(\mathbf{w}_0 \mathbf{x} + b_0))}{\exp(-(\mathbf{w}_1 \mathbf{x} + b_1)) + \exp(-(\mathbf{w}_0 \mathbf{x} + b_0))}$$

→ Think of binary Ir. as multinomial Ir. with  $\exp(-(\mathbf{w}_1\mathbf{x} + b_1)) = 1$  (i.e. where  $\mathbf{w}_1$  is set to the null vector and  $b_1 := 0$ )

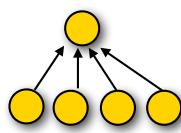
# From logistic regression to neural nets

#### What are neural nets?

Simplest variant: single-layer feedforward net

For binary classification tasks:

Single output unit Return 1 if y > 0.5 Return 0 otherwise



Output unit: scalar y

Input layer: vector x

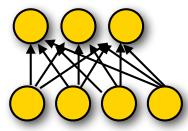
For multiclass classification tasks:

K output units (a vector)

Each output unit

y<sub>i</sub> = class i

Return argmax<sub>i</sub>(y<sub>i</sub>)



Output layer: vector y

**Input layer:** vector **x** 

# Multiclass models: softmax(yi)

Multiclass classification = predict one of K classes. Return the class i with the highest score:  $argmax_i(y_i)$ 

In neural networks, this is typically done by using the **softmax** function, which maps real-valued vectors in R<sup>N</sup> into a distribution over the N outputs

For a vector  $\mathbf{z} = (z_0...z_K)$ :  $P(i) = softmax(z_i) = exp(z_i) / \sum_{k=0..K} exp(z_k)$ This is just logistic regression

## Single-layer feedforward networks

#### Single-layer (linear) feedforward network

```
y = \mathbf{w}\mathbf{x} + b (binary classification)
w is a weight vector, b is a bias term (a scalar)
```

This is just a linear classifier (aka Perceptron) (the output y is a linear function of the input x)

#### Single-layer non-linear feedforward networks:

Pass  $\mathbf{wx} + b$  through a non-linear activation function, e.g.  $y = \tanh(\mathbf{wx} + b)$ 

## Nonlinear activation functions

Sigmoid (logistic function):  $\sigma(x) = 1/(1 + e^{-x})$ 

Useful for output units (probabilities) [0,1] range

Hyperbolic tangent:  $tanh(x) = (e^{2x}-1)/(e^{2x}+1)$ 

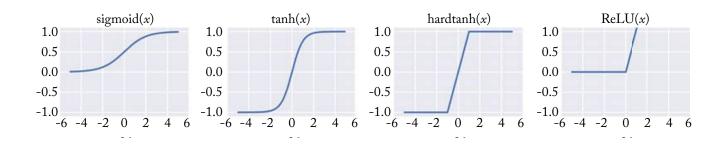
Useful for internal units: [-1,1] range

Hard tanh (approximates tanh)

htanh(x) = -1 for x < -1, 1 for x > 1, x otherwise

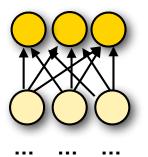
Rectified Linear Unit: ReLU(x) = max(0, x)

Useful for internal units



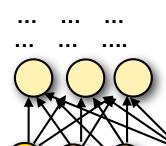
# Multi-layer feedforward networks

We can generalize this to multi-layer feedforward nets



Output layer: vector y

Hidden layer: vector hn



Hidden layer: vector h<sub>1</sub>

**Input layer:** vector **x** 

# Neural Language Models

# What is a language model?

Probability distribution over the strings in a language, typically factored into distributions  $P(w_i \mid ...)$  for each word:

$$P(\mathbf{w}) = P(w_1...w_n) = \prod_i P(w_i \mid w_1...w_{i-1})$$

N-gram models assume each word depends only preceding n-1 words:

$$P(w_i \mid w_1...w_{i-1}) =_{def} P(w_i \mid w_{i-n+1}...w_{i-1})$$

To handle variable length strings, we assume each string starts with n–1 start-of-sentence symbols (BOS), or  $\langle S \rangle$  and ends in a special end-of-sentence symbol (EOS) or  $\langle S \rangle$ 

# An n-gram model $P(w \mid w_1...w_k)$ as a feedforward net (naively)

- The **vocabulary** V contains *n* types (incl. UNK, BOS, EOS)
- We want to condition each word on k preceding words
- [Naive] Each input word  $w_i \in V$  (that we're conditioning on) is an *n*-dimensional one-hot vector v(w) = (0,...0, 1,0....0)
- Our **input layer**  $\mathbf{x} = [v(w_1),...,v(w_k)]$  has  $n \times k$  elements
- To predict the probability over output words, the **output layer** is a softmax over n elements  $P(w \mid w_1...w_k) = softmax(\mathbf{h}\mathbf{W}^2 + \mathbf{b}^2)$

With (say) one hidden layer **h** we'll need two sets of parameters, one for **h** and one for the output

# Naive neural n-gram model

#### Architecture:

Input Layer:  $\mathbf{x} = [\mathbf{v}(\mathbf{w}_1)....\mathbf{v}(\mathbf{w}_k)]$ 

 $v(w) = E_{[w]}$ 

Hidden Layer:  $\mathbf{h} = g(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1)$ 

Output Layer:  $P(w \mid w1...wk) = softmax(\mathbf{h}\mathbf{W}^2 + \mathbf{b}^2)$ 

#### Parameters:

Weight matrices and biases:

first layer:  $\mathbf{W}^1 \in \mathbf{R}^{k \cdot \dim(\mathbf{V}) \times \dim(\mathbf{h})}$   $\mathbf{b}^1 \in \mathbf{R}^{\dim(\mathbf{h})}$ 

second layer:  $\mathbf{W}^2 \in \mathrm{R}^{\dim(\mathbf{h}) \times |V|}$   $\mathbf{b}^2 \in \mathrm{R}^{|V|}$ 

# Naive neural n-gram model

#### Advantage over non-neural n-gram model:

- The hidden layer captures interactions among context words
- Increasing the order of the n-gram requires only a small linear increase in the number of parameters.

```
dim(W^1) goes from k \cdot dim(emb) \times dim(h) to (k+1) \cdot dim(emb) \times dim(h)
```

 Increasing the vocabulary also leads only to a linear increase in the number of parameters

But: with a one-hot encoding and dim(V) ≈ 10K or so, this model still requires a LOT of parameters to learn.

```
#parameters going to hidden layer: k \cdot \dim(V) \cdot \dim(\mathbf{h}), with \dim(\mathbf{h}) = 300, \dim(V) = 10,000 and k=3: 9,000,000 Plus #parameters going to output layer: \dim(\mathbf{h}) \cdot \dim(V) with \dim(\mathbf{h}) = 300, \dim(V) = 10,000: 3,000,000
```

# Neural n-gram models

#### Advantages over traditional n-gram models:

-Increasing the order requires only a small linear increase in the number of parameters.

 $\mathbf{W}^1$  goes from  $\mathbf{R}^{k \cdot \text{dim}(\text{emb}) \times \text{dim}(\mathbf{h})}$  to  $\mathbf{R}^{(k+1) \cdot \text{dim}(\text{emb}) \times \text{dim}(\mathbf{h})}$ 

- Increasing the number of words in the vocabulary also leads only to a linear increase in the number of parameters
- -Easy to incorporate more context: just add more input units
- Easy to generalize across contexts (embeddings!)

# Neural n-gram models

# Naive neural language models have similar shortcomings to standard n-gram models

- -Models get very large (and sparse) as n increases
- -We can't generalize across similar contexts
- Markov (independence) assumptions in n-gram models are too strict

#### Solutions offered by less naive neural models:

- Do not represent context words as distinct, discrete symbols (i.e. very high-dimensional one-hot vectors), but use a dense low-dimensional vector representation where similar words have similar vectors [next class]
- Use recurrent nets that can encode variable-lengths contexts [later class]