CS447: Natural Language Processing

http.//courses.engtr.illinois.edu/cs447

Lecture 6: Logistic
Regression continued,
Intro to Neural Nets

Julia Hockenmaier

juliahmr@illinois.edu
3324 Siebel Center

Where are we at?

Language Models: P(w1....wn)
— N-Gram models

Classification for NLP: P(c | w1...wn)
— Naive Bayes
— Logistic Regression (< to be wrapped up today)

Today: Introduction to neural networks
— From logistic regression to classification with neural nets
— A simple neural n-gram model

Future lectures:
— From words to vectors (distributional similarity, embeddings)

— Recurrent nets (getting rid of the n-gram assumption)
CS447: Natural Language Processing (J. Hockenmaier) 2

Logistic Regression

CS447: Natural Language Processing (J. Hockenmaier)

Probabillistic classifiers

A probabilistic classifier returns the most likely class y for input x:
y* = argmaxyP(Y =y|X =Xx)

Naive Bayes uses Bayes Rule:
yF = argmaxyP(y | x) = argmaxyP(X | v)P(y)
Naive Bayes models the joint distribution: P(x | y) P(y) = P(X,y)
Joint models are also called generative models because we can view them

as stochastic processes that generate (labeled) items:
Sample/pick a label y with P(y), and then an item x with P(xly)

Logistic Regression models P(y | X) directly

This is also called a discriminative or conditional model, because it only
models the probability of the class given the input, and not of the raw data itself.

CS447: Natural Language Processing (J. Hockenmaier) 4

P(Y | X) with Logistic Regression

Task: Model P(y | X) for any input (feature) vector x=(x1,...,Xn)
Idea: Learn feature weights w=(w1,...,wn) (and a bias term b) to
capture how important each feature x; is for predicting the class y

For binary classification (y € {0,1}), (standard) logistic
regression uses the sigmoid function:

P(Y=1]|X)=oc(WX +b) =

1
1 + exp(—(wx + b))

Parameters to learn:
one feature weight vector w and one bias term b

CS447: Natural Language Processing (J. Hockenmaier) 5

The sigmoid function

1 I I

09

0.8

0.7

0.6

0.5 |

04

03

0.2

01

0 !
-10 -5 0

CS447: Natural Language Processing (J. Hockenmaier)

10

Using Logistic Regression
How do we create a (binary) logistic regression classifier?
1) Design:

Decide how to map raw inputs to feature vectors x

[Advantage for discriminative models P(y Ix):
features do not need to be independent]

2) Training:
Learn parameters w and b on training da

3) Testing:
Use the classifier to classify unseen inputs

CS447: Natural Language Processing (J. Hockenmaier) 7

Feature Design

Features capture properties of the input

Does the input contain a particular unigram, bigram, longer phrase...? (Or:
what’s the frequency of a particular unigram, bigram, phrase in the input?)

Is a word capitalized? Does it end in a particular substring? Does it contain a
particular character?

Features may also be computed by other classifiers

We typically specity feature templates and then use
feature selection (or regularization) methods to
automatically identify useful features (instantiations of

these features)

Feature Template:
“any pair of adjacent words that appears >2x in training data”
Actual features: “an apple’,...., “zillion zebras”

CS447: Natural Language Processing (J. Hockenmaier) 8

Learning parameters w and b

Training objective:
Find w and b that assign the largest possible
conditional probability to the labels of the items in Dirain

| (W>I< b*) = argmax . H P(y; | X) .

(Xl,y,)eD

train

{ = Maximize P(1 | x;) for any (x;,1) with a positive label in Dyain
i = Maximize P(0 | x;) for any (x;,0) with a negative label in Diain

CS447: Natural Language Processing (J. Hockenmaier) 9

Learning = Optimization = Loss Minimization

Learning = parameter estimation = optimization:

Given a particular class of model (logistic regression, Naive Bayes, ...) and data
Dtrain, find the best parameters for this class of model on Dtrain

If the model is a probabilistic classifier, think of

optimization as Maximum Likelihood Estimation (MLE)

“Best” = return (among all possible parameters for models of this class)
parameters that assign the largest probability {0 Dirain

In general (incl. for probabilistic classifiers), think of

optimization as Loss Minimization:

“Best” = return (among all possible parameters for models of this class)
parameters that have the smallest loss on Diain

“Loss’: how bad are the predictions of a model?

The loss function we use to measure loss depends on the class of model
L(y,y): how bad is it to predict y if the correct label is y ?

CS447: Natural Language Processing (J. Hockenmaier) 10

Conditional MLE = Cross-Entropy Loss

Conditional MLE: Maximize probability of labels in Dirain

(W*’ b*) — argmax(w,b) H P(Vi | Xi)
(Xi Y i) €D train
= Maximize P(1 | x;) for any (xi,1) with a positive label in Dyain

= Maximize P(0 | x;) for any (x;,0) with a negative label in Din

Equivalently: Minimize negative log prob. of labels in Drain
PQ(y;|x) =0< —log(P(y; | X)) =+ if y; is the correct label for X, this is the worst possible model

Py, | x) =1 —log(P(y; | x)) =0 if y; is the correct label for X, this is the best possible model

The negative log probability of the correct label is a loss function:
—log(P(y; | x,)) is largest (+«) when we assign all probability to the wrong label,
—log(P(y; | x,)) is smallest (0) when we assign all probability to the correct label.

This negative log likelinood loss is also called cross-entropy loss

CS447: Natural Language Processing (J. Hockenmaier) 11

Training with Cross-Entropy Loss

Binary classification:
The training examples (X;, y;) have gold labels y. € {0,1}

A logistic regression classifier, defined by parameters (w, b),

computes the conditional probability of a label given the input as
PY;=1]|x)=0(W-X+b)

PY,;=0|x)=1—o(W-x+b)

Define the loss of this classifier on any training example (X;, y;)
as the negative log probability —log Py, ,(Y; = y; | X;)
that it assigns to that example.

Ly (X5, y) = —log Py, ,(y; | X;)

Training objective: find parameters (w, b) that minimize this loss

CS447: Natural Language Processing (J. Hockenmaier) 12

From loss to per-example cost

Let’s define the “cost” of our classifier on the whole dataset
as the average loss of each of the m training examples:

1
Costcr(Dyrain) = . 2 —log P(y; | x;)
i=1..m
For each example:

—log P(y; | X,)

CS447: Natural Language Processing (J. Hockenmaier) 13

From loss to per-example cost

Let’s define the “cost” of our classifier on the whole dataset
as the average loss of each of the m training examples:

1
COStCE(Dtrain) - Z —lOg P(Yi | Xi)
m i=1..m
For each example:

—log P(y; | X,)
= —log(P(1 | x;)" - P(O | Xi)l_y")
[either y; =1 or y; = 0]

CS447: Natural Language Processing (J. Hockenmaier) 14

From loss to per-example cost

Let’s define the “cost” of our classifier on the whole dataset
as the average loss of each of the m training examples:

1
Costcr(Dirain) = — Z —log P(y; | x;)
m .
i=1..m
For each example:
—log P(y; | X,)
= —log(P(1 | x)" - P(0 | x)'™)
[either y; =1 or y; = 0]
= —[y;log(P(1 [xy) + (1 = yplog(P(O | x))]
[moving the log inside]

CS447: Natural Language Processing (J. Hockenmaier) 15

From loss to per-example cost

Let’s define the “cost” of our classifier on the whole dataset
as the average loss of each of the m training examples:

1
Costcr(Dirain) = — Z —log P(y; | x;)
m.
i=1..m
For each example:
—log P(y; | x;)
= —log(P(1|x)"-P(0|x)"™)
[either y; =1 or y; = 0]
= —[y;log(P(1[x)) + (1 — y)log(P(O | x))]
[moving the log inside]
= —[y;log(e(wx; + b) + (1 — y)log(l — o(wx; + b))]
[plugging in definition of P(1 | x,)]

CS447: Natural Language Processing (J. Hockenmaier) 16

The loss surface

The loss is a (highly non-convex)
Loss function of the current model
parameters (here: w and b)

global Parameters
minimum

CS447: Natural Language Processing (J. Hockenmaier) 17

The loss surface

Learning = finding the
Loss global minimum of the loss
surface

i Ideal |
parameters)

Ne

global Parameters
minimum

CS447: Natural Language Processing (J. Hockenmaier) 18

The loss surface

Finding the global

Loss minimum in general
is hard

plateau

local
minimum

global Parameters
minimum

CS447: Natural Language Processing (J. Hockenmaier) 19

Gradient of the loss

We don’t even know how this
landscape looks like

CS447: Natural Language Processing (J. Hockenmaier)

Gradient of the loss

But we can compute the
slope (gradient) at the point
that we're currently at.

CS447: Natural Language Processing (J. Hockenmaier)

Gradient descent

Basic idea:
Loss Take small local steps
when updating parameters

. '\ latea
u
X\ P

local
?\' minimum

global Parameters
minimum

CS447: Natural Language Processing (J. Hockenmaier) 22

Batch Gradient descent

Compute the loss for the entire
Loss training set (‘in one batch’),
and then update the parameters

f &
'; \' plateau
local \
?\' minimum
global Parameters

minimum

CS447: Natural Language Processing (J. Hockenmaier) 23

Stochastic Gradient descent

Sample training examples randomly
Loss (stochastically), and compute loss
per example (or per “mini-batch”)

f &
'; \' plateau
local \
Q\' minimum
global Parameters

minimum

CS447: Natural Language Processing (J. Hockenmaier) 24

(Stochastic) Gradient Descent

— We want to find parameters that have minimal cost (loss)
on our training data.

— But we don’t know the whole loss surface.

— However, the gradient of the cost (loss) of our current

parameters tells us how the slope of the loss surface

at the point given by our current parameters

— And then we can take a (small) step in the right (downhill)

direction (to update our parameters)

Gradient descent:
Compute loss for entire dataset before updating weights

Stochastic gradient descent:
Compute loss for one (randomly sampled) training example
before updating weights

CS447: Natural Language Processing (J. Hockenmaier) 25

P(Y | X) with Logistic Regression

Task: Model P(y | X) for any input (feature) vector x=(x1,...,Xn)
Idea: Learn feature weights w=(w1,...,wn) (and a bias term b) to
capture how important each feature x; is for predicting the class y

For binary classification (y € {0,1}), (standard) logistic
regression uses the sigmoid function:

P(Y=1]x) = o(Wx + b) = !

1 + exp(—(wx + b))

Parameters to learn: one feature weight vector w and one bias term b

For multiclass classification (y € {0,1,...,K}), multinomial

logistic regression uses the softmax function:

P(Y=y, | x) = softmax(z), = — 2% _ XWX + b))

ZJ-K:l exp(z)) Zj[il exp(—(Wx + b))

Parameters to learn: one feature weight vector w and one bias term b per class.

CS447: Natural Language Processing (J. Hockenmaier) 26

Stochastic Gradient Descent

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f is a function parameterized by 0
X is the set of training inputs x x@) L xn)
y is the set of training outputs (labels) y(l), y(z) ey y(”)

00
repeat T times
For each training tuple (x(), y()) (in random order)
Compute $() = f (x(i) ;0) # What is our estimated output §?
Compute the loss L($,y()) # How far off is $(!)) from the true output y(!)?

g VoL(f(x);0),y\) # How should we move 6 to maximize loss ?
0—0 —ng # go the other way instead
return 0

CS447: Natural Language Processing (J. Hockenmaier)

Gradient for Logistic Regression

Computing the gradient of the loss for example x; and
weight wjis very simple (x;: j-th feature of x;)

oL(w, D)

= [o(WX; + D) — yl-]le-

CS447: Natural Language Processing (J. Hockenmaier) 28

Multiclass classification

For binary classification (y € {0,1}), (standard) logistic
regression uses the sigmoid function:

P(Y=1|x)=o(Wx+Db) =

1

I + exp(—(Wx + D))
Parameters to learn: one feature weight vector w and one bias term b

For multiclass classification (y € {0,1,...,K}), multinomial
logistic regression uses the softmax function:

€ j exp(—(W.X + b.
P(Y=y, | x) = softmax(z), = — P& _ _ Xp(Z(WX+ D))

Zszl exp(z;) Z]K:I exp(—(W;x + b;))

Parameters to learn: one feature weight vector w and one bias term b per class.

CS447: Natural Language Processing (J. Hockenmaier) 29

Binary logistic regression is just a special
case of multinomial logistic regression

Binary logistic regression needs a distribution over y € {0,1}:
1

1 + exp(—(wx + b))

P(Y=0x)= —PCXHD)) piy=1]x)
1 + exp(—(wx + b))

P(Y=1]|x)=

Compare with Multinomial logistic regression over y € {0,1}:
exp(—(wx + b))
exp(—(W X + by)) + exp(—(WpX + b))
exp(—(wWoX + by))
exp(—(w X + by)) + exp(—(WoX + b))

P(Y=1|x)=

P(Y=0]|x)=

-» Think of binary Ir. as multinomial Ir. with exp(—(w;x + b)) = 1
(i.e. where w1 is set to the null vector and by := 0)

CS447: Natural Language Processing (J. Hockenmaier)

From logistic
regression
to neural nets

What are neural nets?

Simplest variant: single-layer feedforward net

For binary Output unit: scalar y

classification tasks: T
Single output unit (;Q Input layer: vector x

Return 1ify > 0.5
Return O otherwise

For multiclass Output layer: vector y
classification tasks:
K output units (a vector)) Input layer: vector x
Each output unit
yi=class |

Return argmaxi(y;)

CS447: Natural Language Processing (J. Hockenmaier) 32

Multiclass models: softmax(y;)

Multiclass classification = predict one of K classes.
Return the class i with the highest score: argmaxi(y;)

In neural networks, this is typically done by using the softmax
function, which maps real-valued vectors in RN into a distribution

over the N outputs

For a vector z = (zo...zx): P(i) = softmax(zi) = exp(zi) / X k=0.x exp(zx)
This is just logistic regression

CS447: Natural Language Processing (J. Hockenmaier) 33

Single-layer feedforward networks

Single-layer (linear) feedforward network
y = WX + b (binary classification)
W is a weight vector, b is a bias term (a scalar)

This is just a linear classifier (aka Perceptron)
(the output yis a linear function of the input x)

Single-layer non-linear feedforward networks:

Pass wx + b through a non-linear activation function,

e.g. y =tanh(wx + b)

CS447: Natural Language Processing (J. Hockenmaier)

34

Nonlinear activation functions

Sigmoid (logistic function): o(x) = 1/(1 + e¥)
Useful for output units (probabilities) [0,1] range
Hyperbolic tangent: tanh(x) = (e2x-1)/(e2*+1)
Useful for internal units: [-1,1] range
Hard tanh (approximates tanh)
htanh(x) = -1 for x < -1, 1 for x > 1, X otherwise
Rectified Linear Unit: ReLU(x) = max(0, x)
Useful for internal units

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

1.0 1.0 1.0 1.0
0.5 / 0.5 0.5 0.5 /
0.0 0.0 0.0 0.0

-0.5 -0.5 -0.5 -0.5

-1.0 -1.0 -1.0 -1.0

"6 420 2 46 6-4-2 02 46 6-4-2 02 46 -6-4-202 46

CS546 Machine Learning in NLP 35

Multi-layer feedforward networks

We can generalize this to multi-layer feedforward nets

T Output layer: vector y
Hidden layer: vector hn

Hidden layer: vector hy

Input layer: vector x

CS447: Natural Language Processing (J. Hockenmaier) 36

Neural Language
Models

CS546 Machine Learning in NLP

What is a language model?

Probability distribution over the strings in a language,
typically factored into distributions P(w;il ...)
for each word:

P(w) =P(wi...wp) = [Ii P(Wi l wi...Wi1)

N-gram models assume each word depends only
preceding n—1 words:

P(wil wi...Wi-1) =det P(Wi | Wicn+1...Wi-1)
To handle variable length strings, we assume each string starts
with n—1 start-of-sentence symbols (BOS), or (S)

and ends in a special end-of-sentence symbol (EOS) or {\S)

CS546 Machine Learning in NLP 38

An n-gram model P(w | wi...wy)
as a feedforward net (naively)

— The vocabulary V contains n types (incl. UNK, BOS, EOS)
— We want to condition each word on k preceding words

— [Naive] Each input word w; € V (that we’re conditioning on)
IS an n-dimensional one-hot vector v(w) = (0,...0, 1,0....0)
— Our input layer x = [v(w)),...,v(wk)] has nxk elements
— To predict the probability over output words,
the output layer is a softmax over n elements
P(w | wi...wx) = softmax(hW2 + b2)

With (say) one hidden layer h we’ll need two sets of parameters,
one for h and one for the output

CS447: Natural Language Processing (J. Hockenmaier) 39

Naive neural n-gram model

Architecture:

Input Layer: X =[v(Wi)....v(Wy)]
V(W) = Ejw]
Hidden Layer: h = g(xW! + bl)
Output Layer: P(w | wl...wk) = softmax(hW?2 + b?)

Parameters:
Weight matrices and biases:
first layer: W! &€ Rk-dim(V)xdimth) pl & Rdim(h)
second layer: W2 & Rdim(h)xIV] b2 € RV

CS546 Machine Learning in NLP 40

Naive neural n-gram model

Advantage over non-neural n-gram model:
— The hidden layer captures interactions among context words
— Increasing the order of the n-gram requires only a small linear
iIncrease in the number of parameters.

d|m(W1) goes from k-dim(emb)xdim(h) o (k+1)-dim(emb)xdim(h)
— Increasing the vocabulary also leads only to a linear increase
iIn the number of parameters

But: with a one-hot encoding and dim(V) = 10K or so,
this model still requires a LOT of parameters to learn.
#parameters going to hidden layer: k - dim(V) - dim(h),
with dim(h) = 300, dim(V) = 10,000 and k=3: 9,000,000
Plus #parameters going to output layer: dim(h) - dim(V)
with dim(h) = 300, dim(V) = 10,000: 3,000,000
CS447: Natural Language Processing (J. Hockenmaier) 41

Neural n-gram models

Advantages over traditional n-gram models:

- Increasing the order requires only a small linear increase in

the number of parameters.
W1 goes from Rk-dim(emb)xdim(h) g R(k+1)-dim(emb)xdim(h)

- Increasing the number of words in the vocabulary also leads
only to a linear increase in the number of parameters

- Easy to incorporate more context: just add more input units

- Easy to generalize across contexts (embeddings!)

CS546 Machine Learning in NLP 42

Neural n-gram models

Naive neural language models have similar

shortcomings to standard n-gram models
-Models get very large (and sparse) as n increases
-We can’t generalize across similar contexts
-Markov (independence) assumptions in n-gram models are
too strict

Solutions offered by less naive neural models:

-Do not represent context words as distinct, discrete symbols
(i.e. very high-dimensional one-hot vectors), but use a dense
low-dimensional vector representation where similar words
have similar vectors [next class]

-Use recurrent nets that can encode variable-lengths contexts
[later class]

CS546 Machine Learning in NLP 43

