CS447: Natural Language Processing

http.//courses.engtr.illinois.edu/cs447

Lecture 5:
Logistic Regression

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Today’s class

Wrapping up last class: running and evaluating
classification experiments

Logistic Regression:

CS447: Natural Language Processing (J. Hockenmaier)

Running and Evaluating
Classification
Experiments

CS447: Natural Language Processing (J. Hockenmaier) 3

Evaluating Classifiers

Evaluation setup:
Split data into separate training, (development) and test sets.

‘ TRAINING E ‘EITRAININGE

Better setup: n-fold cross validation:

Split data into n sets of equal size
Run n experiments, using set /to test and remainder to train

TN (TR TULTED QT TS

This gives average, maximal and minimal accuracies

When comparing two classifiers:
Use the same test and training data with the same classes

CS447: Natural Language Processing (J. Hockenmaier) 4

Evaluation Metrics

Accuracy: How many documents in the test data
did you classify correctly?

It’s easy to get high accuracy if one class is very
common (just label everything as that class)

But that would be a pretty useless classifier

CS447: Natural Language Processing (J. Hockenmaier)

Precision and recall

Precision and recall were originally developed

as evaluation metrics for information retrieval:
- Precision: What percentage of retrieved documents are
relevant to the query?
- Recall: What percentage of relevant documents were
retrieved?

In NLP, they are often used in addition to accuracy:
- Precision: What percentage of items that were assigned
label X do actually have label X in the test data?
-Recall: What percentage of items that have label X in the test
data were assigned label X by the system?
Particularly useful when there are more than two labels.

CS447: Natural Language Processing (J. Hockenmaier) 6

True vs. false positives, false negatives

ltems labeled X ltems labeled X
in the gold standard by the system
(‘truth’) =TP + FP

=TP + FN

False

Negatives
(FN)

- True positives: ltems that were labeled X by the system,
and should be labeled X.

- False positives: Items that were labeled X by the system,
but should not be labeled X.

- False negatives: Iltems that were not labeled X by the system,
but should be labeled X,

CS447: Natural Language Processing (J. Hockenmaier) 7

Precision, recall, f-measure

ltems labeled X ltems labeled X
in the gold standard by the system
(‘truth’) =TP + FP
=TP + FN

False
Negatives

(FN)
Precision: P =

/(
Recall: l + FN

F-measure: harmonlc mean of precision and recall
F=(2-P-R)/(P+R)

CS447: Natural Language Processing (J. Hockenmaier) 8

Confusion matrices

gold labels
urgent normal spam
8
urgent | & 10 1 precisionu= ——-—r
system T 60
output normal 5 60 50 precisionn= ———
"""" .. 200
v |3 |30 [2001 precsions sy,
' recallu= recalln srecalls =
8 1 60 1 200

8+5+3 10+60+30 1+50+200

1Dt X ®] Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,cp), how many documents from c¢; were (in)correctly assigned to ¢

CS447: Natural Language Processing (J. Hockenmaier) 9

Confusion matrices

gold labels
urgent normal spam
8
urgent | & 10 1 precisionu= ——-—r
system T 60
output normal 5 60 50 precisionn= ———
"""" .. 200
v |3 |30 [2001 precsions sy,
' recallu= recalln srecalls =
8 1 60 1 200

8+5+3 10+60+30 1+50+200

1Dt X ®] Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,cp), how many documents from c¢; were (in)correctly assigned to ¢

CS447: Natural Language Processing (J. Hockenmaier) 10

Macro-average vs Micro-average

Class 1: Urgent Class 2: Normal Class 3: Spam
true true true true true true
urgent not normal not spam not
system system system
urgent 8 11 normal 60 | 55 spam 200| 33
system system system
ynot 8 340 ynot 40 2 1 2 ynot 5 1 83
. 8 . 60 . 200
precision = ——= .42 precision= —— =.52 precision= ——— =.
8+11 60+55 200+33
macroaverage _ -42+.52+.86 60
precision 3

IDENICE N Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

Macro-average: average the precision over all classes
(regardless of how common each class is)

CS447: Natural Language Processing (J. Hockenmaier) 11

Micro-average vs Macro-average

Class 1: Urgent Class 2: Normal Class 3: Spam Pooled
true true true true true true true true
urgent not normal not spam not yes no
system system system system
urgent| 8 | 11 normal| 60 | 55 spam [200| 33 yes [268| 99
system system system system
ynot 8 340 ynot 40 2 1 2 ynot 5 1 83 yno 99 63 5
60 200 :
precision = ——= .42 precision= —— =.52 precision= —— =. microaverage _ _268 _ 73
8+11 60+55 200+33 precision 268+99
macroaverage _ -42+.52+.86
precision 3

IDENICE N Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

Macro-average: average the precision over all classes
(regardless of how common each class is)

Micro-average: average the precision over all items
(regardless of which class they have)

CS447: Natural Language Processing (J. Hockenmaier) 12

Logistic Regression

CS447: Natural Language Processing (J. Hockenmaier)

Probabillistic classifiers

A probabilistic classifier returns the most likely class y for input x:
y* = argmaxyP(Y =y|X =Xx)

[Last class:] Naive Bayes uses Bayes Rule:
yF = argmaxyP(y | X) = argmaxyP(X | v)P(y)
Naive Bayes models the joint distribution: P(x | y) P(y) = P(X,y)
Joint models are also called generative models because we can view them

as stochastic processes that generate (labeled) items:
Sample/pick a label y with P(y), and then an item x with P(xly)

[Today’s class:] Logistic Regression models P(y | X) directly

This is also called a discriminative or conditional model, because it only
models the probability of the class given the input, and not of the raw data itself.

CS447: Natural Language Processing (J. Hockenmaier) 14

P(Y | X) with Logistic Regression

Task: Model P(y | X) for any input (feature) vector x=(x1,...,Xn)
Idea: Learn feature weights w=(w1,...,wn) (and a bias term b) to
capture how important each feature x; is for predicting the class y

For binary classification (y € {0,1}), (standard) logistic
regression uses the sigmoid function:

P(Y=1]x) = o(Wx + b) = !

1 + exp(—(wx + b))

Parameters to learn: one feature weight vector w and one bias term b

For multiclass classification (y € {0,1,...,K}), multinomial

logistic regression uses the softmax function:

P(Y=y, | x) = softmax(z), = — 2% _ XWX + b))

ZJ-K:l exp(z)) Zj[il exp(—(Wx + b))

Parameters to learn: one feature weight vector w and one bias term b per class.

CS447: Natural Language Processing (J. Hockenmaier) 15

Binary logistic regression is just a special
case of multinomial logistic regression

Binary logistic regression needs a distribution over y € {0,1}:
1

1 + exp(—(wx + b))

P(Y=0x)= —PCXHD)) piy=1]x)
1 + exp(—(wx + b))

P(Y=1]|x)=

Compare with Multinomial logistic regression over y € {0,1}:
exp(—(wx + b))
exp(—(W X + by)) + exp(—(WpX + b))
exp(—(wWoX + by))
exp(—(w X + by)) + exp(—(WoX + b))

P(Y=1|x)=

P(Y=0]|x)=

-» Think of binary Ir. as multinomial Ir. with exp(—(w;x + b)) = 1
(i.e. where w1 is set to the null vector and by := 0)

CS447: Natural Language Processing (J. Hockenmaier)

Using Logistic Regression
How do we create a (binary) logistic regression classifier?

1) Design: Decide how to map raw inputs to feature vectors x
2) Training: Learn parameters w and b on training da
3) Testing: Use the classifier to classify unseen inputs

Feature Design: from raw inputs to feature vectors x

In a generative model, we have to learn a model for P(x | y).

To guarantee that we get a proper distribution (ZX P(x|y)=1),we
have to assume that the features (elements of x) are independent
(more precisely, conditionally independent given y),

In a conditional model, we only have to learn P(y | x), not for P(x | y).

Advantage: Because we don’t need a distribution over x, we do not
need to assume that our features x1,...,Xn are independent.

CS447: Natural Language Processing (J. Hockenmaier) 17

Feature Design:
From raw inputs to feature vectors x

Feature design for generative models (Naive Bayes):
— In a generative model, we have to learn a model for P(x | y).
— Getting a proper distribution (ZX P(x | y)=1)is difficult
— NB assumes that the features (elements of x) are independent*

and defines P(x | y) = H,-P(xi |) via a multinomial or Bernoulli
(*more precisely, conditionally independent given y)

— Different kinds of feature values (boolean, integer, real) require
different kinds of distributions P(x; | y) (Bernoulli, multinomial, etc.)

Feature design for conditional models (Logistic Regression):
— In a conditional model, we only have to learn P(y | x)

— It is much easier to get a proper distribution (Zy P(y|x)=1)
— We don’t need to assume that our features are independent
— Any numerical feature xi can be used to compute exp(wjxi)

CS447: Natural Language Processing (J. Hockenmaier)

18

Useful features that are not independent

Different features can overlap in the input
(e.g. we can model both unigrams and bigrams, or overlapping bigrams)

Features can capture properties of the input

(e.g. whether words are capitalized, in all-caps, contain particular
[classes of] letters or characters, etc.)

This also makes it easy to use predefined dictionaries of words

(e.g. for sentiment analysis, or gazetteers for names):

Is this word “positive” (‘happy’) or “negative” (‘awfufl)?

Is this the name of a person (‘Smith’) or city (‘Boston’) [it may be both (‘Paris’)]

Features can capture combinations of properties
(e.g. whether a word is capitalized and ends in a full stop)

We can use the outputs of other classifiers as features

(e.g. to combine weak [less accurate] classifiers for the same task,
or to get at complex properties of the input that require a learned classifier)

CS447: Natural Language Processing (J. Hockenmaier) 19

Feature Design and Selection

How do you specify features?
We can’t manually enumerate 10,000s of features
(e.g. for every possible bigram: “an apple’, ..., “zillion zebras”)
Instead we use feature templates that define what type of
feature we want to use
(e.g. “any pair of adjacent words that appears >2 times in the training data’)

How do you know which features to use?

|dentifying useful sets of feature templates requires

expertise and a lot of experimentation (e.g. ablation studies)
Which specific set of feature (templates) works well depends very much
on the particular classification task and dataset.

Feature selection methods prune useless features

automatically. This reduces the number of weights to learn.
(e.g. ‘of the’ may not be useful for sentiment analysis, but ‘very coof is)

CS447: Natural Language Processing (J. Hockenmaier) 20

Learning parameters w and b

Training objective: Find parameters w and b that
“capture the training data Diain as well as possible”

More formally (and since we re being probabilistic): _
; Find w and b that assign the largest possible conditional
t probability to the labels of the items in Dirain

(W*, bF) = argmax,, , H P(y; | x;)

‘ (X yz)EDtram i
| = Maximize P(1 | x;) for any (x;,1) with a positive label in Dyain |

| = Maximize PO | x;) for any (x.0) with a negative label in Dian

Since y; € {0,1} we can rewrite this to:

(w",b¥) =argmax, , [] PC1Ix)-[1=PO]x)]"™

(XY)ED i
Foryi =1, this comes out to: P(1 | x)!'(1 —P(1|x,))’ =P(1]x))
Foryi=0,thisis: P(1|x)(1—P(1|x)!=1-P(1|x;)=P(0]x,)

CS447: Natural Language Processing (J. Hockenmaier)

21

Learning = Optimization = Loss Minimization

Learning = parameter estimation = optimization:

Given a particular class of model (logistic regression, Naive Bayes, ...) and data
Dtrain, find the best parameters for this class of model on Dtrain

If the model is a probabilistic classifier, think of

optimization as Maximum Likelihood Estimation (MLE)

“Best” = return (among all possible parameters for models of this class)
parameters that assign the largest probability {0 Dirain

In general (incl. for probabilistic classifiers), think of

optimization as Loss Minimization:

“Best” = return (among all possible parameters for models of this class)
parameters that have the smallest loss on Diain

“Loss’: how bad are the predictions of a model?

The loss function we use to measure loss depends on the class of model
L(y,y): how bad is it to predict y if the correct label is y ?

CS447: Natural Language Processing (J. Hockenmaier) 22

Conditional MLE = Cross-Entropy Loss

Conditional MLE: Maximize probability of labels in Dirain

(W*’ b*) — argmax(w,b) H P(Vi | Xi)
(Xi Y i) €D train
= Maximize P(1 | x;) for any (xi,1) with a positive label in Dyain

= Maximize P(0 | x;) for any (x;,0) with a negative label in Din

Equivalently: Minimize negative log prob. of labels in Drain
PQ(y;|x) =0< —log(P(y; | X)) =+ if y; is the correct label for X, this is the worst possible model

Py, | x) =1 —log(P(y; | x)) =0 if y; is the correct label for X, this is the best possible model

The negative log probability of the correct label is a loss function:
—log(P(y; | x,)) is largest (+«) when we assign all probability to the wrong label,
—log(P(y; | x,)) is smallest (0) when we assign all probability to the correct label.

This negative log likelinood loss is also called cross-entropy loss

CS447: Natural Language Processing (J. Hockenmaier) 23

From loss to per-example cost

Let’s define the “cost” of our classifier on the whole dataset
as the average loss of each of the m training examples:

1
Costcr(Dirain) = — Z —log P(y; | x;)
m.
i=1..m
For each example:
—log P(y; | x;)
= —log(P(1|x)"-P(0|x)"™)
[either y; =1 or y; = 0]
= —[y;log(P(1[x)) + (1 — y)log(P(O | x))]
[moving the log inside]
= —[y;log(e(wx; + b) + (1 — y)log(l — o(wx; + b))]
[plugging in definition of P(1 | x,)]

CS447: Natural Language Processing (J. Hockenmaier) 24

The loss surface

Learning = finding the
Loss global minimum of the loss
surface
global Parameters
minimum

CS447: Natural Language Processing (J. Hockenmaier) 25

The loss surface

Finding the global

Loss minimum in general
is hard

plateau

local
minimum

global Parameters
minimum

CS447: Natural Language Processing (J. Hockenmaier) 26

(Stochastic) Gradient Descent

— We want to find parameters that have minimal cost (loss) on
our training data.

— But we don’t know the whole loss surface.

— However, the gradient of the cost (loss) of our current
parameters tells us how the slope of the loss surface

at the point given by our current parameters

— And then we can take a (small) step in the right (downhill)
direction (to update our parameters)

Gradient descent:
Compute loss for entire dataset before updating weights

Stochastic gradient descent:
Compute loss for one (randomly sampled) training example
before updating weights

CS447: Natural Language Processing (J. Hockenmaier) 27

Stochastic Gradient Descent

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f is a function parameterized by 0
X is the set of training inputs x x@) L xn)
y is the set of training outputs (labels) y(l), y(z) ey y(”)

00
repeat T times
For each training tuple (x(), y()) (in random order)
Compute $() = f (x(i) ;0) # What is our estimated output §?
Compute the loss L($,y()) # How far off is $(!)) from the true output y(!)?

g VoL(f(x);0),y\) # How should we move 6 to maximize loss ?
0—0 —ng # go the other way instead
return 0

CS447: Natural Language Processing (J. Hockenmaier)

Gradient for Logistic Regression

Computing the gradient of the loss for example x; and
weight wjis very simple (x;: j-th feature of x;)

oL(w, D)

= [o(WX; + D) — yl-]le-

CS447: Natural Language Processing (J. Hockenmaier) 29

