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Today’s lecture
Very brief intro to classification  

Naive Bayes Classifiers for text classification
 
How to run and evaluate classification experiments
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What is 
Classification?
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Spam Detection

 
 
 
 
Spam detection is a binary classification task: 
Assign one of two labels (e.g. {SPAM, NOSPAM}) 
to the input (here, an email message)
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Spam Detection

 
 
 
 
 
 

A classifier is a function that maps inputs  
to a predefined (finite) set of class labels: 

Spam Detector: Email ⟼ {SPAM, NOSPAM}
Classifier:          Input  ⟼ {LABEL1, …, LABELK} 

�5



CS447: Natural Language Processing (J. Hockenmaier)

The importance of generalization
 
 
 
 
 
 
 
 
 
 
We need to be able to classify items  
our classifier has never seen before. 
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Mail thinks this message is junk mail.
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The importance of adaptation
 
 
 
 
 
 
 
 
 
 
The classifier needs to adapt/change based 
on the feedback (supervision) it receives
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Text classification more generally

This is a multiclass classification task: 
Assign one of K labels to the input  
{SPAM, CONFERENCES, VACATIONS,…}  
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Classification tasks

Classification tasks: Map inputs to a fixed set of class labels
Binary classification: each input has exactly one of two classes
Multi-class classification: each input has exactly one of K classes (K > 2)
Multi-label classification: each input has N of K classes (N ≥1, varies per input)

What are “inputs”?  
To talk about machine learning mathematically, we often 
assume each input item is represented as a vector x = (x1….xN)

(The number of elements N is fixed, and may be very large) 

In NLP, inputs are documents, sentences, words, …. 
⇒ How do we represent these as vectors? 
Later today we’ll assume that each element xi in (x1….xN)  
corresponds to one word type (vi) in the vocabulary V = {v1,…,vN} 

— If xi ∈ {0,1}:             Does word vi occur in the input document?
— If xi ∈ {0, 1, 2, …}:  How often does word vi occur in the input document?
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Classification as supervised machine learning

Classification tasks: Map inputs to a fixed set of class labels
Underlying assumption: Each input really has one (or N) correct labels 
Corollary: The correct mapping is a function (aka the ‘target function’)

How do we obtain a classifier (model) for a given task?
— If the target function is very simple (and known), implement it directly
— Otherwise, if we have enough correctly labeled data,  
    estimate (aka. learn/train) a classifier based on that labeled data.  

Supervised machine learning: 
Given (correctly) labeled training data, obtain a classifier  
that predicts these labels as accurately as possible.

Learning is supervised because the learning algorithm can get feedback 
about how accurate its predictions are from the labels in the training data.
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Supervised machine learning
The supervised learning task (for classification): 

Given (correctly) labeled data D  = {(xi, yi)},  
where each item xi is a vector (x1….xN) with label yi  
(which we assume is given by the target function f(xi) = yi),
return a classifier g(xi) that predicts these labels as accurately 
as possible (i.e. such that g(xi) = yi = f(xi))

To make this more concrete, we need to specify:
— what class of functions g(xi) to consider
(many classifiers assume g(xi) is a linear function)
— what learning algorithm we will use to learn g(xi)
(many learning algorithms assume a particular class of functions)
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Classifiers in vector spaces

Binary classification:  
Learn a function g that best separates  
the positive and negative examples: 
•Assign y = 1 to all x where g(x) > 0
•Assign y = 0 to all x where g(x) < 0
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Probabilistic classifiers
Return the most likely class y for the input x:

�
We can either model �  directly [next class]  
or use Bayes’ Rule  (“the posterior probability P(A|B) 
is proportional to prior (P(A)) times likelihood P(B|A)”)

�

�

   �  [Bayes’ Rule]

     [P(X) doesn’t change argmaxy ]

y* = argmaxyP(Y = y |X = x)
P(Y = y |X = x)

P(A |B) =
P(A, B)

P(B)
=

P(B |A)P(A)
P(B)

∝ P(B |A)P(A)

y* = argmaxyP(Y = y |X = x)

= argmaxy
P(X = x |Y = y)P(Y = y)

P(X = x)
= argmaxyP(X = x |Y = y)P(Y = y)
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Supervised learning: Training

!14

Labeled 
Training Data 

D train 

 (x1, y1) 
(x2, y2) 

… 
(xN, yN)  

Learned 
model 
g(x)

Learning 
Algorithm

Give the learning algorithm examples in D train

The learning algorithm returns a model g(x)



CS447: Natural Language Processing (J. Hockenmaier)

Supervised learning: Testing
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Labeled 
Test Data 

D test  

 (x’1, y’1) 
 (x’2, y’2) 

… 
 (x’M, y’M)  

Reserve some labeled data for testing
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Supervised learning: Testing
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Labeled 
Test Data 

D test  

 (x’1, y’1) 
 (x’2, y’2) 

… 
 (x’M, y’M)  

Test  
Labels 
Y test  

 y’1 
 y’2 

... 
y’M 

Raw Test 
Data 
X test  

x’1 
x’2 
…. 

x’M 
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Test  
Labels 
Y test  

 y’1 
 y’2 

... 
y’M 

Raw Test 
Data 
X test  

x’1 
x’2 
…. 

x’M 

Supervised learning: Testing
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Learned 
model 
g(x)

Predicted  
Labels 
g(X test) 
g(x’1)  
g(x’2) 

…. 
g(x’M) 

Apply the learned model to the raw test data to 
obtain predicted labels for the test data
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Supervised learning: Testing
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Test  
Labels 
Y test  

 y’1 
 y’2 

... 
y’M 

Raw Test 
Data 
X test  

x’1 
x’2 
…. 

x’M 

Predicted  
Labels 
g(X test) 
g(x’1)  
g(x’2) 

…. 
g(x’M) 

Learned 
model 
g(x)

Evaluate the learned model by comparing the 
predicted labels against the (correct) test labels
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The Naive Bayes 
Classifier
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Probabilistic classifiers
Return the most likely class y for the input x:

�
We can either model �  directly [next class]  
or use Bayes’ Rule  (“the posterior probability P(A|B) 
is proportional to prior (P(A)) times likelihood P(B|A)”)

�

�

   �  [Bayes’ Rule]

     [P(X) doesn’t change argmaxy ]

y* = argmaxyP(Y = y |X = x)
P(Y = y |X = x)

P(A |B) =
P(A, B)

P(B)
=

P(B |A)P(A)
P(B)

∝ P(B |A)P(A)

y* = argmaxyP(Y = y |X = x)

= argmaxy
P(X = x |Y = y)P(Y = y)

P(X = x)
= argmaxyP(X = x |Y = y)P(Y = y)
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Modeling �P(X = x |Y = y)P(Y = y)
�   is the “prior” class probability

We can estimate this as the fraction of documents  
in the training data that have class y:

�

�  is the “likelihood” of the input x
x = (x1….xn) is a vector; each xi ≈ a word in our vocabulary 

Let’s make a (naive) independence assumption: 
�

Now we need to multiply together all �  

P(Y = y)

̂P(Y = y) =
#documents ⟨xi, yi⟩ ∈ Dtrainwith yi = y

#documents ⟨xi, yi⟩ ∈ Dtrain

P(X = x |Y = y)

P(X = ⟨x1, . . . , xn⟩ |Y = y) := ∏
i=1..n

P(Xi = xi |Y = y)

P(Xi = xi |Y = y)
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The Naive Bayes Classifier
Assign class y* to input x = (x1…xn) if 

�

�  is the prior class probability (estimated as 
the fraction of items in the training data with class y)

�  is the (class-conditional) likelihood 
of the feature xi. 

There are different ways to model this probability

y* = argmaxyP(Y = y) ∏
i=1..n

P(Xi = xi |Y = y)

P(Y = y)

P(Xi = xi |Y = y)
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�  as BernoulliP(Xi = xi |Y = y)
�  is a Bernoulli distribution ( � )

 is the probability that word vi occurs  
in a document of class y.

 is the probability that word vi does not occur  
in a document of class y

Estimation:  
�

�

P(Xi = xi |Y = y) xi ∈ {0,1}
P(Xi = 1 |Y = y)

P(Xi = 0 |Y = y)

̂P(Xi = 1 |Y = y) =
#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y in which xi occurs

#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y

̂P(Xi = 0 |Y = y) =
#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y in which xi does not occur

#docs ⟨xi, yi⟩ ∈ Dtrainwith yi = y
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�  as MultinomialP(Xi = xi |Y = y)
�  is a Multinomial: ( � )

 is the probability that word vi occurs with 
frequency xi (= 0, 1, 2, …) in a document of class y. 
 

Recall: a multinomial computes the probability of, say, getting 
three 6s and two 5s if you roll a die five times:

�

#of sequences of three 6s and two 5s: 5!/(0!0!0!0!2!3!)  
Prob. of getting a 5 (or a 6) when you roll a die once = 1/6
Prob. of any one sequence of three 6s and two 5s: (1/6)2(1/6)3

Note that we can now ignore the probabilities of any sides  
(1, 2, 3, 4) that didn’t come up in our trial

P(Xi = xi |Y = y) xi ∈ {0,1,2,...}
P(Xi = xi |Y = y)

P(⟨0,0,0,0,2,3⟩) =
5!

0!0!0!0!2!3!
(1/6)2(1/6)3
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�  as MultinomialP(Xi = xi |Y = y)
We want to know P(x = (0,0,0,0,2,3) | y = SPAM) for a given x: 

— Words do not have uniform probability (language ≠ dice)
— We need to know the class-conditional unigram probability 
P(vi | Y = y) of word vi in all documents of class y
— We also do not need to worry about the probability of the 
particular sequence of words in our document  

So, for us: 
�  P(⟨0,0,0,0,2,3⟩ |Y = y) = P(v5 |Y = y)2P(v6 |Y = y)3
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Unigram probabilities P(vi | Y = y) 
We can estimate the unigram probability P(vi | Y = y)  
of word vi in all documents of class y as 

 �

 
or with add-one smoothing (with N words in vocab V): 

�

̂P(vi |Y = y) =
#vi in all docs ∈ Dtrainof class y

#words in all docs ∈ Dtrainof class y

̂P(vi |Y = y) =
(#vi in all docs ∈ Dtrainof class y) + 1

(#words in all docs ∈ Dtrainof class y) + N
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Running and Evaluating 
Classification 
Experiments 
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Evaluation setup:
Split data into separate training, (development) and test sets.  
 
 

Better setup: n-fold cross validation:
Split data into n sets of equal size
Run n experiments, using set i to test and remainder to train  
 

This gives average, maximal and minimal accuracies
 
When comparing two classifiers:

Use the same test and training data with the same classes

Evaluating Classifiers
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Evaluation Metrics
Accuracy: How many documents in the test data  
did you classify correctly?

It’s easy to get high accuracy if one class is very 
common (just label everything as that class)

But that would be a pretty useless classifier
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Precision and recall
Precision and recall were originally developed  
as evaluation metrics for information retrieval:
-Precision: What percentage of retrieved documents are 
relevant to the query?
-Recall: What percentage of relevant documents were 
retrieved?

In NLP, they are often used in addition to accuracy:
-Precision: What percentage of items that were assigned 
label X do actually have label X in the test data?
-Recall: What percentage of items that have label X in the test 
data were assigned label X by the system? 

Particularly useful when there are more than two labels.
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True vs. false positives, false negatives

-True positives:    Items that were labeled X by the system, 
                           and should be labeled X.
-False positives:  Items that were labeled X by the system,  

                           but should not be labeled X. 
-False negatives: Items that were not labeled X by the system,  

                           but should be labeled X, 
�31

False 
Positives 

(FP)

False 
Negatives

(FN)

True 
Positives

(TP)

Items labeled X  
in the gold standard  

(‘truth’)

Items labeled X  
by the system

= TP + FP
= TP + FN
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Precision, recall, f-measure
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False 
Positives 

(FP)

False 
Negatives

(FN)

True 
Positives 

(TP)

Items labeled X  
in the gold standard  

(‘truth’)
= TP + FN

Items labeled X  
by the system

= TP + FP

Precision: P = TP ∕( TP + FP ) 
Recall:       R = TP ∕( TP + FN )
F-measure: harmonic mean of precision and recall  
                    F = (2·P·R)∕(P + R)
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Confusion matrices
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Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common
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Confusion matrices
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Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common
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Macro-average vs Micro-average
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Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2
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Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

Macro-average: average the precision over all classes  
                  (regardless of how common each class is)
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Micro-average vs Macro-average

�36

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2
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Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common

Macro-average: average the precision over all classes  
                  (regardless of how common each class is)
Micro-average: average the precision over all items  
                  (regardless of which class they have)


